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Abstract. With the development of Building Information Modelling aiming for automatic, the 

automating of sustainability analysis will be a certain requirement in the future. Unlike the current 

research stream, this paper investigates a novel approach of directly linking parametric architectural 

models to sustainability optimization through an automatic design-through analysis workflow with 

the support of parametric virtual design techniques. Data required for optimization was directly 

extracted from architectural models and then being evaluated. After the optimization, architectural 

models are automatically updated with optimal parameters through parametric virtual modelling 

steps. A case study was carried out with optimization of daylight and energy performance for a 

residential building. The result demonstrates the advantages of directly using architectural models 

instead of energy models and the possibility of further development. 

1. Introduction 

With the increasing demand for sustainable building design, a practical and complete system of 

sustainability analysis has been gradually developed by the research community over the past 

years as an important step in the Building Information Modeling (BIM) design loop. Useful 

analysis tools have been developed and put in practice in commonly-used industrial design 

software such as Autodesk Insight® (AUTODESK. Autodesk Insight, 2019) for Revit 

(AUTODESK. Autodesk Revit, 2019), EnergyPlus® (EnergyPlus, 2019), and Autodesk Green 

Building Studio® (GBS) (AUTODESK. Autodesk Green Building Studio, 2019), also known 

as DOE-2. However, these analysis tools often involve a large amount of manual work in 

modeling, remodeling and adjustment. Moreover, to run sustainability analysis, two types of 

information are required, which are building geometry and material properties. Except for some 

energy analysis which could be done in a well-developed analyzing system with proper 

software environment (Asl, et al., 2015), common energy analyzing tools allow designers to 

input these two types of information separately with no constraints which could have potential 

risks. For example, solar and energy analysis in Autodesk Insight® is based on energy models 

created from conceptual masses providing basic geometry information and typed-in energy 

settings providing other remaining information. Where Autodesk® has recommended three 

common approaches for automatically generating energy models from architectural models 

(AUTODESK. Autodesk Revit, 2019), but the approaches are not exactly automatic. In the 

early design stages, where the geometries of architectural models are simple, box-shaped 

conceptual masses are manually created representing the geometries of target buildings and 

used for analysis. When the building models become more complex with large amounts of 

architectural elements, the energy model can only be created with a large amount of manual 

work to prepare the architectural model. After analysis, the effects of the building parameters 

on the total sustainability performance of the building will be provided individually. Then, the 

engineer has to make several attempts to determine an optimal solution and manually update 

the original model. However, this is where potential risks exist, for example, that conflicting 

parameters are selected for one architectural element, or the theoretically optimal result (e.g. 

high glass-to-wall ratio) is unrealistic or does not fit into the specific project. These two 

shortcomings, before and after analysis, demonstrate the limit of manual sustainability analysis. 

Sustainability analysis and optimization should ideally be conducted in early design stages. In 
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later design stages, both the working load of preparing analytical model, and the impact scale 

of parameter change due to sustainability optimization, is significantly increased. 

In recent years, many researchers have investigated different automatic approaches for 

sustainability designs (Wang, et al., 2006; Tuhus-Dubrow & Krarti, 2010; Evins, 2013; Hachem, 

et al., 2013). However, the current state-of-the-art in this field has significant limitations for 

practical design tasks. Most of the studies have been performed based on conceptual energy 

models that cannot directly be used for architectural design in the BIM design process, or based 

on architectural models with a limited set of parameters, which are too simple to provide critical 

ideas for the building’s initial design. For example, Asl, et al. (2015) optimized the daylight 

and thermal performances of a manually predesigned building in Revit with only changing 

window size and window type as parameters. Backer (2017) optimized the Daylight Factor, 

Solar Heat Gains and Thermal Energy Losses with varying room depth, window size and 

building orientation for a highly simplified L-shape building. The research outcomes of these 

papers are therefore only a step towards parametric optimization of sustainability, which is 

however not detailed enough for informing an initial practical design. 

In conclusion, both the official manual optimization method provided by Autodesk® and the 

automatic methods being explored in recent research are useful but not efficient or automated 

enough considering the development of higher maturity level BIM in the future. In real-design 

conditions, it is more reasonable to directly extract the building geometry and construction 

information from architectural models and use them for analysis. After optimization, the model 

can be automatically updated, with the optimal parameters acquired from calculation. However, 

since BIM has grown out of the design tools for interactive object-based parametric design 

(Eastman, et al., 2008), and recently developed tools enable the combination of the BIM object-

based concept with parametric modelling techniques by also embedding some intelligence in 

the relationship between objects (Boeykens, 2012). This could be used to bridge the limitations 

in sustainable building optimization. Therefore, in this paper, we attempt to overcome the 

barrier of current software and implementation by using parametric virtual design technique. 

Instead of using conceptual masses to evaluate the building, by combining parametric virtual 

design with optimization techniques, the feasibility and efficiency of linking multi-objective 

sustainable analysis directly to an architectural model is investigated.  

2. Methodology 

In this paper, we propose an approach for the sustainable building design loop by extracting 

information from an architectural model, running automated optimisation of building 

sustainability in terms of daylight and energy performance, and updating the original model 

using parametric virtual design technique. The performance of this approach is explored with a 

predefined case study of a target building. The methodology includes parametric virtual design, 

energy performance assessment, sensitivity analysis and optimisation. To cover the relevant 

areas in the initial sustainability design, parameters of both building geometry and construction 

materials are considered. Prior to optimization, a sensitivity analysis is performed to decrease 

the range of parameters, which helps to accelerate the convergence. Then, during the 

optimization, similar to Generative Design (Zarzycki, 2012), possible solutions are investigated 

using an optimization algorithm within predefined ranges, and a range of optimal solutions is 

obtained through an iterative process. Then, the results are automatically applied with a 

parametric virtual design technique to generate an example of an optimal building model. 
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2.1 Linking Architectural Model and Sustainability Analysis 

An obvious disadvantage of using architectural models in optimization tasks is that standard 

design software currently spends too much time in automatically regenerating models with 

large amounts of architectural elements. However, two alternative approaches can be explored 

to avoid this shortcoming. The first approach is by applying parametric virtual design, where a 

conceptual geometry model (e.g. surfaces created in Dynamo) is constructed following the 

same algorithm as the architectural model. In this case, these two models could change 

synchronously with the variation of parameters. The conceptual geometry model can be applied 

in the optimization process without generating an actual design model. After optimization, the 

same optimal architectural model can be built by directly applying the optimal parameters. This 

method works quickly with simple calculations, but appears to be insufficient for the analysis 

software, which require a large amount of specific data to finish the calculation. The second 

approach is to use an architectural model during the optimization, but only for the critical part 

instead of the whole model. This means that only instances described with the parameters 

relevant for the analysis will be considered, while other excess elements which are not 

influencing the result or not worth studying will be neglected. An example for selecting the 

critical parts of the model is demonstrated in the case study. This approach can be adopted for 

different types of buildings, such as residential and office buildings, where the most important 

rooms for sustainability design are normally identical, with a large amount of repetition inside 

the building. In this case, only simplified models appear in the optimization with limited 

possible variations. In this research, the second approach was explored because it is more 

suitable for practical applications and can integrate with 3rd-party analysis tools. 

2.2 Optimization Algorithm 

The optimization algorithm adopted in this research is a Genetic Algorithm, specifically the 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb, et al., 2002). This is a powerful 

multi-objective optimization tool for environmental design (Kheiri, 2018). The function of 

Genetic Algorithm is an improved version of Evolutionary Algorithms. As shown in Figure 1, 

an initial list of samples is randomly created between predefined lower and upper bounds, then 

a Fitness Function is used to calculate the series of initial objectives corresponding to the 

variables. The Fitness Function in this research is a script including steps of extracting geometry 

and material properties, evaluating daylight and energy performance, and exporting results for 

further data processing. Then, initial variables and objectives are grouped into a list and 

regarded as the initial generation, which is then input into a while loop for optimization. Inside 

the loop, new parameter values are created after crossover and mutation. The Fitness Function 

is applied again for generating the new generation and continued until the iteration number 

approaches a predefined boundary. A special advantage for NSGA-II is that the elitism samples 

among each child generation are compared with the last elitism before the creation of the next 

generation, so that the variables in the next generation will automatically be close to the value 

of the last elitism (Kheiri, 2018). In this case, the convergence is accelerated as the impact of 

useless samples among a generation is significantly decreased. The result of optimization is 

plotted and the best trade-off between the thermal and daylight performance is found. This is 

followed by a further weighted-sum optimization to optimize the Normalized Average 

Objective (NAO) (Qu & Suganthan, 2010) calculated from the two performances. After this, 

the difference between each sample in the Pareto front is compared with the optimal NAO value 

to select the final best result. 
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Figure 1: Workflow of NSGA-II 

2.3 Daylight Simulation 

The daylight simulation in this paper is evaluated by estimating the in-door lux values (lx). For 

the design purpose, this value needs to be high, to reduce the electricity costs spent by the 

lighting system. Professional 3rd-party analysing software has been used for this step. In this 

research, the climate environment data for location in London is used. Building properties 

include glass-to-wall ratio, façade orientation, glass transmittance and opaque material surface 

properties such as roughness. In order to be compared with energy performance, the objective 

Daylight Factor (DF), which is calculated based on the average in-door lux value, is introduced 

to the optimization system as given in the following equation: 

 𝐷𝐹 =  
0.01

𝑛
∑ 𝑙𝑥

𝑛

𝑖=1

 2.3-1 

Where: 

n is the total amount of individual lx values. 

2.4 Energy Analysis 

In this research, the Solar Heat Gains (SHG) through glassing areas in summer and 

Transmission Heat Losses (THL) in winter are calculated. For the design purpose, the value of 

these factors needs to be lower, in order to reduce the energy consumption. SHG gives the total 

solar heat absorbed by the walls and transmitted by the glass (Baker, 2017). 

 𝐻𝑆𝐻𝐺 =
𝐴𝑔𝑙𝑎𝑠𝑠

𝐴𝑟𝑜𝑜𝑚

𝐼𝑡 (τ +
𝛼𝑈

ℎ0

) [𝑊/𝑚2] 2.4-1 

Where: 

It is the total radiation; 

τ is the transmittivity of glass extracted from Revit; 

α is the absorptivity of glass defined; 

U is the overall heat transfer coefficient for glass extracted from Revit W/(m2K); 

h0 is the external heat transfer coefficient set as constant in this case study; 

The total radiation can be calculated from direct radiation, diffuse radiation and reflected 

radiation. 

 𝐼𝑡 = 𝐼𝐷𝑁cos [180° − (𝛾 + 𝜁)] ∙ cos (
𝜋

2
− |𝐼 − 𝑑|) + 𝐼𝑑 + 𝐼𝑟 2.4-2 



5 

 

 𝐼𝐷𝑁 = 1080 × exp [−
0.21

𝑠𝑖𝑛 (
𝜋
2

− |𝐼 − 𝑑|)
] 2.4-3 

 𝐼𝑑 = 0.135𝐼𝐷𝑁

1 + 𝑐𝑜𝑠Σ

2
 2.4-4 

 𝐼𝑟 = (𝐼𝐷𝑁 + 𝐼𝑑)𝜌𝑔

1 − 𝑐𝑜𝑠Σ

2
 2.4-5 

Where: 

I is the latitude angle at location; 

d is the declination on the selected dates; 

Σ is the tilt angle of surface (90° for vertical walls); 

ξ is the wall azimuth angle; 

ρg is the wall reflectivity; 

Thermal Losses (TL) is the thermal energy diffused out of the building in winter when the 

environment temperature is lower than the room temperature, in which the Transmission Heat 

Losses (THL) are the most direct way. THL gives the heat directly transferred outside the 

building through the building envelope, including walls and glass: 

 𝐻𝑇𝐻𝐿 = ∑
(𝐴(𝑤𝑎𝑙𝑙/𝑔𝑙𝑎𝑠𝑠),𝑖 ∙ 𝑈𝑤𝑎𝑙𝑙)(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡)(1 +

𝛼
100

)

𝐴𝑓𝑙𝑜𝑜𝑟,𝑖

𝑛

𝑖=1

 2.4-6 

Where:  

U is the heat transfer coefficient extracted from wall properties in Revit W/(m2K); 

Tin is the temperature in room taken as 20 °C; 

Tout is the temperature outside the room taken as 0 °C in winter; 

α is the proportion of thermal bridges %; 

Then, a normalised Thermal Factor (TF) is calculated following the general structure presented 

below to make a comparison with DF. After finding the pareto front between DF and TF, the 

final NAO could be calculated as shown:  

 𝑁 = 𝑎1(𝑥1)𝑏1 ± 𝑎2(𝑥2)𝑏2 ± 𝑎3(𝑥3)𝑏3 ± ⋯ ± 𝑎𝑛(𝑥𝑛)𝑏𝑛 2.4-7 

 𝑇𝐹 =
12.5

𝐻𝑇𝐻𝐿

+
50

𝐻𝑆𝐻𝐺

 2.4-8 

 𝑁𝐴𝑂 =
1

𝑇𝐹
+

1

𝐷𝐹
 2.4-9 

2.5 Sensitivity Analysis 

A sensitivity analysis has been carried out before the optimization is carried out in order to find 

the individual impact of each parameter on the final sustainable performance. During the 

sensitivity analysis, the target parameter is varied, while other parameters are kept constant. By 

doing this, the range of each parameter between predefined upper and lower bond can be 
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reduced to a reasonable value based on the evaluated results. Since the overall range of 

parameters is decreased, the required number of generations for NSGA-II to reach the same 

optimal result is significantly reduced. As a result, the convergence of optimization is 

accelerated. Moreover, by comparing the resultant range of different parameters, the most 

influential one can be found. In conclusion, it is efficient to run a sensitivity analysis before the 

optimization. However, it needs to be considered that the total time cost of sensitivity analysis 

is significantly increased with an increasing number of parameters in the optimization task. 

2.6 Parametric Virtual Design 

After getting the optimal range of parameters from sustainability optimization, values are 

chosen and input to the script for generating building models with a parametric virtual design 

tool. The building model is generated based on the coordinates of several control points. An 

algorithm for positioning these points was developed such that the building profile is changed 

by adjusting predefined geometrical parameters, for example, rotation of several control points 

according to the orientation of one façade. Construction properties such as the insulation type 

and the glass type are controlled by the family type parameters of the architectural elements. 

Hence, the whole building, including geometric and construction parameters, is generated in a 

fully automatic way, by importing parametrized family instances onto a parametrically 

generated layout.   

3. Implementation 

As shown in Figure 2, following the general methodology briefly described in the previous 

section, the parametric virtual design and multi-objective optimization is carried out using 

Autodesk Revit® and its visual-programming plug-in Dynamo (Dynamo, 2019). With the 

support of open-source packages in Dynamo, the optimization task with the Genetic Algorithm 

is processed with the built-in package Optimo (Asl, et al., 2015) containing NSGA-II and the 

daylight performance is analyzed by the package Honeybee included in the Ladybug Tools 

(Mackey & Roudsari, 2017).  

 

Figure 2: Workflow of the general research method 

4. Case Study  

A case study was carried out to investigate the feasibility and efficiency of applying sustainable 

optimization directly with an architectural model. The target building is a standard residential 

building with 12 floors as shown in Figure 3.  
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Figure 3: Visualisation of target building in different geometry 

As shown in Figure 4, following the general parametric virtual design method described in 

previous section, the specific architectural model in this case study is generated. The algorithm 

performs the following steps: i) generation of initial control points and lines for one section; ii) 

and iii) rotations and symmetry operations for other sections; iv) generation of the reference 

lines and points for the architectural elements; v) generation of the initial architectural layer; 

and, vi) extraction of critical sections and generation of whole building. 

Figure 4: Demonstration of parametric virtual design process 

As shown in Figure 5, the profile of each floor is identical and includes three critical parts: west, 

middle and east. They are three residential areas in this building that are also the focus areas in 

this case study. Daylight and energy consumption in the remaining areas, such as stair cases 

and corridors, are not considered because normally no heating/cooling would be provided, and 

natural lighting is not normally required in these areas. 

 

Figure 5: Target building floor plan with shape change 
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As mentioned in the methodology, the critical parts are then selected as the target model for 

optimization. The parameters for optimization in the middle critical part are shown in Table 1. 

The discrete variables are default settings for architectural elements and materials provided by 

the software. The continuous ones, are independently defined values, which are required for the 

sustainability performance evaluation but not provided by software. Here, the size of the 

windows controls the glass-to-wall ratio. Moreover, the angle to project north is used to 

represent the façade orientation. By doing this, we avoid the rotation of the model during the 

optimization process. 

Table 1: Initial, filtered and final ranges for the middle critical section-Run 1 

Parameters 

Initial Ranges Filtered Ranges Final Ranges 

Lower 

Bond 

Upper 

Bond 

Lower 

Bond 

Upper 

Bond 

Lower 

Bond 

Upper 

Bond 

Continuous 

Variable 

Angle to Project North (°) -60 60 -20 20 -9 8 

Glass Absorptivity 0.3 0.86 0.45 0.71 0.081 0.089 

Wall Surface Roughness 0 0.2 0.04 0.10 0.045 0.062 

Wall Surface Specularity 0 0.1 0.03 0.09 0.087 0.089 

Wall Surface Reflectivity 0 1.0 0.35 0.85 0.687 0.723 

Discrete 

Variable 

Glass Transmittance 0.3 0.9 0.37 0.9 0.57 0.61 

Wall Heat Transfer Coefficient 0.0876 0.1802 0.0876 0.1802 0.1056 

Glass Heat Transfer Coefficient 1.9873 6.7018 0.39 0.81 0.36 0.48 

North Window 
Width (mm) 406 915 406 915 610 

Height(mm) 610 1220 610 1220 915 

South Window 
Width (mm) 406 915 406 915 610 

Height(mm) 610 1220 610 1220 1220 

East Window 
Width (mm) 406 915 406 915 610 

Height(mm) 610 1220 610 1220 915 

West Window 
Width (mm) 406 915 406 915 610 

Height(mm) 610 1220 610 1220 915 

 

With these initial range of parameters, a sensitivity analysis was performed for each of the 

critical building parts. A filtered range of parameters has been obtained and applied to the final 

optimization to get the final range as also shown in Table 1. It can be observed that the optimal 

results for discrete variables such as glass transmittance and glass heat transfer coefficient are 

reasonable as the balanced point of higher daylight quality and lower SHG and TL are achieved. 

However, some of the continuous variables such as wall surface specularity directly converged 

to the upper bound, which seems unreasonable. This is because the discrete variables are all 

defined by the type of architectural elements, so they work like passive variables and cannot 

change independently. In this case, for the glass transmittance reaching the upper bound, the 

glass heat transfer coefficient reaching the lower bound would be the theoretically best solution. 

However, the type of glass satisfying these two values does not exist in practice. This is one 

strong advantage of directly extracting information from architectural models employing real 

objects, so this unrealistic scenario can be avoided. However, the obtained results for 

independent continuous variables were relatively valuable, since they are not limited by the 

practical condition. The error mentioned above could happen if all the parameters are simply 

used as semantic values to run an analysis without connecting them with real physical objects. 

The drawback of this result actually proved the advantage of directly extracting information 

from architectural models. 
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Finally, the values of objectives during convergence are plotted as DF versus TF and the optimal 

trade-off between these two objectives has been found. After applying a further weighted-sum 

optimization, figures of NAO for three critical parts are plotted. One example of the running 

result for the middle part of the building is shown in Figure 6. 

 

  

Figure 6: a) Pareto optimization result for the middle critical section-Run 1. b) Normalized 

optimal results for the critical middle section for 3 runs 

  

After getting the optimal range of parameters, one combination of parameters is selected and 

input into the custom node for generating an optimal building.  

5. Conclusion 

In this paper, we proposed a design loop for multi-objective optimization of building 

sustainability based on the parametric virtual design approach. The methodology of this concept 

includes setting an automatic link between architectural models and sustainability assessment 

tools, optimization of sustainable performance based on the genetic algorithm and finally an 

automatic update of the architectural model with the determined optimal parameters. The case 

study presented in this paper, demonstrated the potential of the proposed methods to perform a 

fully automated design-through-analysis-optimization workflow. Furthermore, from the 

presented case study, the behavior of passive and independent variables revealed the potential 

risk obtaining unrealistic results when extracting the geometry and semantics from non-related 

sources, if the input variables are not carefully constrained. Often these constraining steps 

require professional knowledge and experience in environmental engineering. However, this 

problem could be solved by developing a method or a tool for direct use of all the information 

(geometry and semantics) from a single architectural project. By doing this, all the parameters, 

which are passive variables, are defined by a real physical property of the construction material 

and the element size. Even though there are limitations in the existing practical 

implementations, this research area has a large potential for further improvement. Firstly, the 

enrichment of the environmental database of the standard design tools considering the 

requirements of different analysis tools, will allow for more user-friendly and efficient analysis. 

Secondly, the programming environment associated with these tools (open-source and 

developer-friendly) offers the advantage for exploration of different optimization strategies, 

since they show different performance for different optimization problems and conditions 

(Kheiri, 2018). Finally, the strong functionality of parametric virtual design techniques could 
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significantly decrease the workload for the manual update of the design models. However, 

developing a general algorithm for most common geometrical transformations of building 

forms that are compatible with the optimization tools, poses a significant challenge for future 

research. In conclusion, the design approach proposed in this paper has demonstrated that an 

automated design optimization loop based on a real design model is feasible and also offers a 

huge space for further developments. 
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