
1

Conformance Checking of IFC Models via Semantic BIM Reasoner

Muhammad Fahad, Nicolas Bus

Centre Scientifique et Technique du Batiment (CSTB), 06560 Valbonne, France

{fahad.muhammad, Nicolas.bus}@cstb.fr

Abstract. In the Building Information Modeling world, compliance checking of IFC models is an

immense challenge. Many approaches such as Hard Coded Rule Checking, Query based Rule

Checking, Rule Checking Approaches via dedicated rule languages (SWRL, Jess, N3Logic, etc., are

being contributed to fulfil these requirements. In this paper, we present our research and

development of Semantic BIM Reasoner (SBIM-Reasoner) tool for measuring and ensuring

conformance of IFC models. SBIM-Reasoner implements multi-threading approach for embedding

semantic querying and rule based approach for developing French building code compliance system.

Various pre-processors (IFC2RDF Converter, Geometry Extractor, Rule Evaluator, etc.) run in

different execution threads to build the underlying semantic repository providing faster rule

checking and information retrieval from the triple store. When it finds non-compliant objects in the

IFC model, it presents them to the end-user. With the knowledge graph over triplets, we have the

freedom of extending our semantic IFC model, creation of newer vocabulary and formation of newer

rules, concatenation of triplets to build rules with conditions and constraints over IFC data, dynamic

reasoning over the triplets based on the initial data of IFC model, etc. We present encouraging results

by various tests which were build using online IFC test models of various sizes and designs to test

the performance of SBIM-Reasoner.

1. Introduction

Buildings must conform to the building regulations (commonly known as building codes)

which are the policies and guidelines to identify the least acceptable level of security, hazards,

accessibility, general welfare, etc. (Rebekka and Schultmann, 2014). Through building codes

and standards, organizations accomplish their ultimate aim to guard public health, safety and

general welfare as they relate to the construction and occupancy of buildings. For an example

earthquake-resistant building codes verify building structures so that they can withstand during

the seismic activity. The purpose of verifying models is to align several specialized indexations

of building components at both sides, assuming that they deal with the same abstract concepts

or physical objects, but according to their distinct representation prisms (Eastman et al., 2008).

Building Code is vital to detect non-compliance elements in the IFC model (Thein, 2011) and

to guarantee its quality and reliability in the entire life-cycle of Building Information Modeling

(BIM). Many approaches and tools for the compliance checking of IFC models are being

contributed to fulfil these requirements such as; Hard Coded Rule Checking, Query based Rule

Checking and Rule Checking via Dedicated Rule Languages (Pauwels & Zhang, 2015). During

our research for the French building codes compliance system, we investigated deeply whether

which approach divulges more recompenses for the compliance checking of building codes.

According to our exploration, a hybrid approach based on semantic querying for the

information retrieval and building rule evaluator based on the semantic rule engine produces

good results. Therefore, we have implemented a hybrid approach for French building code

compliance system named Semantic BIM Reasoner (SBIM-Reasoner) which reasons

compliance of building codes via semantic reasoning over RDF Triples. Building codes are

implemented as SPARQL (2013) queries which run on the semantic repository to verify

correctness and consistency of IFC objects in the building model. We use both forward chaining

and backward chaining mechanisms (where appropriate) to build our semantic reasoner.

2

Several newer concepts, SPARQL rules (statements and materialization) are applied to enrich

the underlying semantic repository as per demand of verification rules. Use of forward chaining

mechanisms support the dynamic semantic verification for the future checks. We build several

test cases comprise of different queries on different sizes of IFC models to evaluate our

semantic approach. We discuss our experimental findings on many different analysis

parameters; such as number of RDF triples in the RDF (turtle file) equivalent to IFC model,

number of RDF triples in the semantic model (filtered turtle file) in the triple-store, estimated

time taken by the conversion pre-processor and geometric pre-processor, etc. From the initial

results, we conclude that SPARQL queries are flexible for retrieving data and perform

validation in an optimized way giving better run-time as compared to the traditional approaches.

The rest of paper is organized as follows. Section 2 presents related work. Section 3 presents

our research and development of Semantic BIM Reasoner and its different sub-components.

Section 4 presents our experimental analysis via using online building models. Section 5

concludes this paper and shows our future directions.

2. Related Work

Many approaches and tools are being contributed to fulfil these requirements. Primarily Hard

Coded Rule Checking mechanisms via MVDs are used where building codes are assimilated

inside the application for the conformance checking of IFC models (Zhang et al., 2014). Tools

such as Solibri Model Checking (Khemlani, 2009), IfcDoc (2012), etc. are contributed are

examples of this approach. There are many drawbacks of mvdXML for extracting building

views such as: lack of logical formalisms, solely consideration of IFC schema and MVD-based

view constructors are not very flexible and dynamic (Mendes de Farias et al., 2016). The subset

of the IFC schema needed to satisfy one or many Exchange Requirements of the AEC industry

is called Model View Definition (MVD) and mvdXML is an open standard used to publish the

concepts and associated rules (Chipman et al., 2016). It can be used with the BIM Server or

IfcDoc tool developed by the buildingSMART International to read and write mvdXML and to

provide a graphical user interface for defining all content within mvdXML. Due to the

limitation of MVD and mvdXML, semantic web technologies have seen as an option which is

regarded as a good compromise between development efforts and possibilities. Therefore

Query based Rule Checking mechanisms are emerged, where BIM model is interrogated via

conformance rules that are formalized directly into SPARQL queries. The contribution from

Bouzidi et al. (2012) is regarded as Rule-checking by querying. They transform building model

into RDF, create rules as SPARQL queries, and finally interpret query result to visualize the

result. Recently Rule Checking Approaches via dedicated rule languages were developed for

the rule-based inspection of IFC models for the conformance checking. Most recent

contributions use rule languages such as; Wicaksono et al. (2013) based on SWRL rules

(Horrocks, 2004), Pauwels et al. (2001) based on N3Logic rules (Berners-Lee, 2008) and M.

Kadolsky et al. (2014). We have implemented a hybrid approach (SPARQL + Rule Engine) for

French building code compliance system named Semantic BIM Reasoner (SBIM-Reasoner)

which reasons compliance of building codes via semantic reasoning over RDF Triples. Our

work is similar to these proposals as we also make advantage of semantic web technologies,

but, we also consider geometric aspects, with focus on optimization and performance. We

presented first version of our developed semantic reasoner which was without multi-threading

approach (Fahad et al., 2017). This paper presents our optimized solution using multi-threading

approach. We build several test cases comprise of different queries on different sizes of IFC

models to evaluate our semantic approach. The only overhead is the conversion from an IFC to

RDF and then storage of RDF triples into triple store which takes time. In a long run, once the

3

triplestore is loaded with the data, querying is much faster to validate IFC models and detect

inconsistent non-compliant IFC elements in the building model.

3. Multi-Threaded Semantic Approach for the Conformance Checking of BIM

The main contribution in this paper is about the research and development of Semantic BIM

Reasoner (SBIM-Reasoner) tool for measuring and ensuring conformance of IFC models. The

idea is to formulize building code rule as a SPARQL query and then execute it on the building

model, which is formulated as triplestore via forward/backward chaining mechanisms, to check

the possibility of non-compliant elements in the building model. Figure 1 illustrates the top

level architecture of SBIM-Reasoner. SBIM-Reasoner implements multi-threaded approach for

embedding semantic querying and rule based approach for developing French building code

compliance system. The main thread gets desired IFC models as input and triggers the Parallel

Execution of Pre-Processsors for the execution of different tasks. Primarily it has three pre-

processors, i.e., IFC to RDF Converter, Geometry Extractor, and Semantic Preprocessor which

has further sub-components named IfcOWL Ontology sub-graph, SPARQL Rules, SPARQL

Queries and TripleStore. Finally rule evaluator executes queries over semantic repository to

checking and report the conformance report of IFC objects.

Figure 1: Top level architecture of SBIM-Reasoner

3.1 IFC2RDF Conversion Pre-processor

First thread executes conversion pre-processor to build the initial semantic repository based on

RDF triples equivalently converted from an IFC model. Figure 2 shows partial RDF triples of

an IfcDoor object. IFC-to-RDF is a set of reusable Java component that allows parsing IFC

files and converts them into RDF graphs. Our implementation deploys modified version of IFC-

to-RDF conversion plug-in provided by Pauwels & Oraskari (2012). After conversion,

underlying RDF semantic model acts as a foundation stone to execute all the verification rules.

We also need to apply filtration to get an RDF equivalent compact triple file to avoid several

IFC elements, such as Person, Address, Material-List, etc. Therefore, the same thread did

filtration to get only relevant RDF triples from the IFC model.

3.2 Geometric Pre-processor

Second thread executes geometric pre-processor to extract geometric related data from an IFC

model. It employs Geometry Render Engine to extract geometric information and stores them

4

as RDF triples in the semantic repository. Figure 2 illustrates the output triples corresponding

to bounding box values of an IfcDoor object. Mainly there are two geometry render engine

plugins available with the BIM Server named IFCOPENSHELL and IFC Engine DLL. These

are helpful to extract geometry data about the IFC objects. The outputs of this preprocessor are

the RDF triples which are formed from the extracted geometry data of relevant IFC objects.

These two pre-processors are executed in parallel to gain time. The advantage of their parallel

execution is that none of the threads wait for each other, their functionality is different so they

can efficiently utilize the server processor to achieve their desired tasks. These threads

propagate their results to the next thread. Once all RDF triples (i.e., Filtered RDF file of an IFC

model and RDF triples corresponding to Geometry data) are generated by first and second

threads, third thread gets and loads these RDF triples into the triple store for the fast querying,

searching, and analyzing of RDF triples.

Figure 2: RDF triples corresponding to an IfcDoor object

3.3 Semantic Pre-processor

Third Thread executes to build the semantic repository (i.e., triplestore) with the output of

previously discussed two pre-processors. It waits till it is triggered by the outputs of Converter

thread and Geometry Extractor thread. It will not start until both the threads finish their

execution completely and generate RDF triples. It uploads all the RDF triples to the triplestore.

All types of inference and reasoning mechanisms for the semantic verification are applied over

this semantic RDF repository to meet the requirements of compliance checking, and in addition

to discover additional information that is not explicitly stated in the initial data of the IFC

model. We have integrated both forward chaining and backward chaining mechanisms (where

appropriate) to build our semantic repository. Several newer concepts, SPARQL rules

(statements and materialization) are applied to enrich the underlying semantic repository as per

the demand of verification rules. Use of forward chaining mechanisms support the dynamic

semantic verification for the future checks. The following are its sub-components.

TripleStore – Stardog. Although IFC is an open standard; its complex nature makes

information retrieval difficult from an IFC model when the size of IFC model grows. Therefore,

we have used Stardog as a triplestore to build our semantic model so that querying semantic

model is faster and gives a good run-time. When the application starts, an end-user provides an

IFC model and the set of SPARQL queries which are the verification rules for checking code

compliance of desired IFC model. As a result, our system converts an IFC file into filtered RDF

model. It loads that converted-filtered IFC equivalent RDF into stardog. After RDF triples

concerning geometry are added to capture geometrical information in the triplestore. Then the

semantic model is enriched with IfcOWL basic vocabulary, i.e., sub-graph of IFC ontology.

Then, it adds SPARQL rules into the triplestore. Finally, it executes our project specific forward

5

chaining SPARQL queries which creates high level vocabulary and builds further RDF graphs

over the existing triplets.

IfcOWL ontology sub-graph. As the standard IfcOWL ontology (Terkaj & Pauwels, 2014)

has a very large set of IFC elements, therefore, we deal with the sub-graph to achieve better

processing and querying performance.

SPARQL Rules – Statements. We have created a large set of SPARQL rules, i.e., statements.

In fact, these statements are shortcuts overs the long chain of triplets to enable simplicity. For

instance, we created ‘intersects’ shortcut over the RDF triplets corresponding to bounded box

values of IFC elements (see Figure 3). These statements promote readability, understandability

and enable simplicity when creating SPARQL rules and queries. Otherwise the chain of triplets

make things complex and ambiguous.

Figure 3: Intersect relation between two IFC objects

SPARQL Queries - Materialization. During the analysis of rules specification, we come

across various types of vocabulary (introduced by regulatory texts) during building code

compliance application. This vocabulary is composed of high level concepts present in business

rules and regulation texts which are familiar by the stakeholders of BIM. There are two methods

to build such vocabulary of newer high-level concepts, i.e.; via forwarding chaining and/or

backward chaining. Based on the SPARQL rules, we have built SPARQL queries to introduce

high level concepts based on the primary IFC vocabulary by using both forward and backward

chaining where applicable. Figure 3 shows high level concepts ‘intersects’ in our case study of

building French code compliance via forward chaining. Backward chaining consists of

ontology statements that align IFC concepts with regulatory concepts, whereas forward

chaining consists of insert statements that create supplementary triplets. Forward chaining is a

good at an implementation stage to save memory and CPU resources. From the machine point

of view, backward chaining is processed each time a semantic query is submitted whereas

forward chaining is executed each time the data changes. At this stage, this choice is a

compromise between effective queries (forward chaining is more appropriate for complex and

numerous queries) and model update frequency (backward chaining is more appropriate when

data changes frequently). We can even say that it is a compromise between the amount of triplet

(considering triplet generated by forward chaining statements) and the ontology complexity.

Therefore, we have mixed both approaches backward and forward chaining to provide the

optimal setting that minimizes response time and maximizes ontology consistence. With the

help of these techniques, we have simplified several IFC patterns such as classifications,

predefined types, properties, geometry, topology, etc.

3.4 Rule Evaluator - Compliance Checker

Fourth Thread executes rule evaluator also called compliance checker as it performs the

fundamental task of evaluating building model against building codes. It waits till it is triggered

6

by the outputs of third thread that builds semantic repository to fast access triples to fetch data

and validate IFC models. It performs SPARQL queries over the semantic repository for the

verification and code compliance of an IFC model. An end-user may apply SPARQL ASK and

DESCRIBE queries to retrieve relevant information regarding the verification rules. Instead of

using IfcDoc tool where there is no intermediate state and no explanation for the reason of non-

compliance, we use SPARQL DESCRIBE Queries. The SPARQL DESCRIBE query does not

actually return resources matched by the graph pattern of the query, but an RDF graph that

"describes" those resources. It is up to the SPARQL query service to choose what triples are

included to describe a resource. Therefore, SPARQL queries serve best by concatenating

desired triplets for building verification rules to check the code compliance. Figure 5 shows an

example of SPARQL query to detect whether an ‘Alarm’ is installed at some space in the

building. This query is based on semantic rules ifcowl:in and ifcowl:inStorey which are also

shown below the query. Once, it finds an IFC model which is not instatlled with an Alarm (in

this example) or non-compliant objects in the IFC model (in other cases), it presents them to

the end-user as inconsistent elements in the building model. With the knowledge graph over

RDF triples, we have the freedom of extending our semantic IFC model, creation of newer

vocabulary and formation of newer rules, concatenation of RDF triples to build rules with

condition and constraints over IFC data, dynamic reasoning over the RDF triples based on the

initial data of IFC model, etc.

Figure 4: SPARQL Query build on several shortcuts

4. Implementation and Testing

The following sub-sections elaborate implementation and testing details of SBIM-Reasoner.

4.1 SBIM-Reasoner as a Semantic Service

We have developed SBIM-Reasoner as a semantic service inside a KROQI platform. As it is
developed especially for the French building code compliance, therefore our web interface is
also in French targeting French community. When the application starts, an end-user has to
configure IFC input model by clicking under the synchronization button on the very first tab
‘Maquette’. Then an end-user selects the set of rules to be verified on this input model by
selecting/browsing their set of rules on the second tab ‘Protocoles’. Then our web service starts
by calling semantic reasoner which computes the set of rules and redirects to the result page

7

‘Résultats’. Each of the rule is highlighted as green or red color depending on its status of
compliance (see Figure 5a). When SBIM-Reasoner detects non-compliant objects (in case of
red status), an end-user can further analyze them by clicking on the corresponding row. It
displays the list of IFC non-compliant objects containing Name, GUID and Type of each IFC
object (see Figure 5b). One can also export PDF and BCF files to analyze their results in detail.

Figure 5: (a) Final output of SBIM-Reasoner, (b) Showing details of inconsistent IFC objects

4.2 Experimental Finding on SBIM-Reasoner

We deployed SBIM-Reasoner service on a cluster kubernetes of 3 nodes (1 node = 1 VM),
where each node has 4 vCPUs, 26 GB memory and type of Intel(R) Xeon(R) CPU @ 2.30GHz.
We choose several IFC models (see Table 1.) from the online repository to test our Semantic
BIM Reasoner such as; Chanteloup (17 Mb), AC9R1-Haus (4 Mb), BIM-EM (2 Mb), Candidat
(29 Mb), HITOS (63 Mb), and LcD (32 Mb), etc.

Table 1: Size of an IFC model and corresponding number of triples

IFC model
IFC Size

(Mb)

No of Triplets

RDF Equiv IFC RDF – Filtered ttl

HITOS 62.5 5,054,202 205,631

AC9R1-Haus 4.4 490,961 10,982

BIM_EM 1.9 275,927 2,138

Candidat-23_04 28.9 694,709 132,115

Chanteloup 17.1 807,250 142,668

LcD 32.4 1627,750 132,845

Bat_CSTB 14.9 1047,216 13,973

Maq Test Checker 11.2 1,572,792 100,230

HAixFlowCtrl 13.1 1,970,366 21,549

Liberty_V3 12.2 1,760,207 86,545

8

These IFC models vary in size, number of IFC objects, free spaces, etc. We have also used four
IFC models developed at our CSTB enterprise named Bat_CSTB (14.9 MB), HAixFlowCtrl
(13.1 MB), Maquette Test Checker (11.2 MB) and Liberty (12.2 Mb). Tables 1 shows the size
of these IFC models, the number of triples in the RDF equivalent to the original IFC model and
the filtered model by IFC2RDF pre-processor. We took many different analysis parameters
such as number of RDF triples in the RDF (turtle file) equivalent to IFC model, number of RDF
triples in the semantic model (filtered turtle file) in the triple-store, estimated time taken by the
conversion pre-processor and geometric pre-processor, etc. We have measured time taken by
different preprocessors that produce desired output in Table 2. Our first version implementation
is without multi-threading where pre-processors run sequentially. Our system gets input of an
IFC model along with the rule set to be verified on the building model. It invokes conversion
pre-processor, and loads the equivalent RDF triples into triple store. Then it runs the geometric
pre-processor and gets the bounding box values (i.e., min/max values X, Y and Z coordinates)
and updates the triple store with the geometric RDF triples. Finally Rule Evaluator runs the
SPARQL queries to verify the compliance of building codes.

Table 2: Time taken by different Pre-Processors of SBIM-Reasoner

Later in our implementation which is the contribution of this paper, we adopted multi-threaded

approach where geometric and conversion pre-processors run parallel to produce output RDF

triples. In our test experiment, there are IFC models of various sizes and structures. An IFC

model named HITOS is the largest building model which has 62.5 Mb size with 205,631

number of RDF triples and BIM_EM is the smallest building model which has 1.9 Mb size with

only 2,138 number of RDF triples. When we see the time graph, we observe that SBIM-

Reasoner took less than a minute by both the pre-processors to achieve their objectives when

the size of IFC model is under 15 MB. But when the size of IFC model is 62 MB (in case of

huge IFC model Hitos) then it took almost 3.4 minutes to convert and filter, and more than 5

minutes to extract geometry data. Here, we also mention that although pre-processors took time

to build semantic model at the first time, but querying for the verification of IFC models are

processed fast and a good run-time is achieved. On the other hand on traditional IFC model, it

takes much time to verify each of the individual rule. In addition, we are not able to execute all

types of rules as per our desire due to narrow scope of IFC tools available online. This is only

with the semantic model that we are flexible enough to fetch any triplets and build rules

according to our will for the verification of IFC models. We revealed encouraging results via

IFC model

IFC

Size

(Mb)

IFC-to-RDF

Conversion

(sec)

Geometry

Extraction

(sec)

Semantic

Pre-Proc.

(sec)

Rule

Evaluator

(sec)

Total

(sec)

version 1

Total (sec)

Multi-

Threading

HITOS 62.5 205 308 40 10 563 358

AC9R1-Haus 4.4 17 10 9 8 43 33

BIM_EM 1.9 16 10 7 7 40 30

Candidat-23_04 28.9 48 65 27 10 150 102

Chanteloup 17.1 41 31 18 10 100 69

LcD 32.4 97 103 31 9.5 241 144

Batiment_CSTB 14.9 40 27 11 9 87 60

Maq.Test Checker 11.2 32 19 8 8 67 48

HAixFlowCtrl 13.1 39 22 14 9 84 62

Liberty_V3 12.2 38 23 12 9 82 59

9

several tests from the initial version of SBIM-Reasoner. The results of SBIM-Reasoner are

checked manually to access the correctness of SBIM-Reasoner for each of the building models

and they were 100% correct. On the basis of this analysis, we conclude that semantic model

serves best for the verification of IFC models. We conclude that for such modules where

execution can be done separately, multi-threading can benefit and gain time. It is highly visible

when an IFC model is large (in the case of HITOS IFC model), parallel processing and CPU

utilization reveals these pre-processors to execute simultaneously resulting the whole process

take lesser time to achieve the whole functionality.

5. Conclusion

In the context of BIM when the question about the evaluation of an IFC model appears, the

implementation of compliance checking of IFC models is vital to address. It is necessary to

detection inconsistent and non-compliant IFC objects to ensure quality and reliability of an IFC

model in the entire life-cycle of BIM. Compliance checking is an exhaustive process which

cannot be done manually, in addition requires revolutionized advanced technology to process

due to complex inherent nature of an IFC model itself. There are many techniques for the

automatic verification of IFC models, but, still there are many open challenges. In this paper,

we evaluated the idea to formulize building code rule as a semantic SPARQL query and then

execute it on the building model to check the possibility of non-compliant elements in the

building model. We have built a research prototype named SBIM-Reasoner which employs

semantic approach for the building code conformance checking. We have tested and concluded

that our approach based on semantic queries and rules can be easily extended, configured and

deployed for the dynamic and changing BIM environment having broad spectrum of

functionalities for the conformance checking of IFC models. We have also analyzed how multi-

threaded approach can benefit our solution by comparing run-time of our two implementations

with and without threading. We demonstrated several test models on SBIM-Reasoner and

presented its efficiency and efficacy with empirical results. We conclude that the semantic

model based on the semantic web technology is a good compromise between development

efforts and opportunities. The graphical representation of RDF allows rules to be more intuitive

and more efficient to reason and execute. Concatenation of triplets allows flexibility of making

wide range of verification rules with condition and constraints at ease. SPARQL has a global

scope with larger visibility of querying with the built-in functions and support of intermediate

calculations for the validation of IFC models.On the basis of several analysis parameters, we

have shown encouraging results by several tests on the SBIM-Reasoner. We have also found

that multi-threading based approach served best and provided faster computation for the

conformance checking of IFC models.

References

Building Smart, International home of openBIM, https://www.buildingsmart.org/standards/ [last access: jan 2019]

Bouzidi, K. R., Fies, B., Faron-Zucker, C., Zarli, A. and Thanh N. Le. (2012), “Semantic Web Approach to Ease

Regulation Compliance Checking in Construction Industry”, Future Internet, Special Issue Semantic

Interoperability and Knowledge Building, 4 (3). pp. 830-851.

Chipman, T., Liebich, T., and Weise, M. (2016) “mvdXML specification of a standardized format to define and

exchange MVD with exchange requirements and validation Rules,” version 1.1 Final, Febrary 2016. Available at:

http://www.buildingsmart-tech.org/downloads/mvdxml /mvdxml-1.1/final/mvdxml-1-1-documentation

Eastman, C., Teicholz, P., Sacks, R., and Liston, K. (2008). “BIM Handbook: A Guide to Building Information

Modeling for Owners, Managers, Designers, Engineers, and Contractors,” Hoboken, New Jersey, Wiley, 2008.

10

Fahad, M., Bus, N., Fies, B. (2014). “Semantic BIM Reasoner for the verification of IFC Models”, eWork and

eBusiness in Architecture, Engineering and Construction: ECPPM 2017, Denmark

Friedman-Hill, E. (2003). “Jess in Action: Rule Based Systems in Java,” Manning Publications. ISBN 1-930110-

89-8, 2003

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004). “SWRL: A Semantic

Web Rule Language Combining OWL and RuleML”.

IfcDoc Tool (2012), available at: http://www.buildingsmart-tech.org/specifications/specification-tools/IfcDoc-

tool/IfcDoc-help-page-section/IfcDoc.pdf [last access: jan 2019]

Kadolsky, M., Baumgärtel, K., and Scherer, R.J. (2014). “An ontology framework for rule-based inspection of

eeBIM-systems,” Procedia Engineering. vol. 85, pp. 293-301, doi:10.1016/j.proeng.2014.10.554.

Khemlani L. (2009). “Solibri model checker,” AECbytes Product Review March 31, 2009

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., and Hendler, J. (2008). "N3Logic: A logical framework for

the World Wide Web," Theory and Practice of Logic Programming. vol. 8 (3), pp. 249-269,

doi:10.1017/S1471068407003213.

Mendes de Farias, T., Roxin, A., and Nicolle, C. (2016) “A Semantic Web Approach for defining Building Views,”

buildingSMART Summit Jeju, Korea.

Pauwels, P. and Oraskari, J. (2012) “IFC-to-RDF Converter” https://libraries.io/github/IDLabResearch/IFC-to-

RDF-converter, [last access: jan 2019]

Pauwels, P. & Zhang, S. (2015). “Semantic Rule-Checking for regulation compliance checking: An overview of

strategies and approaches”. Proc. of the 32nd CIB W78 Conference, Netherlands.

Pauwels, P., Deursen, D. Van, Verstraeten, R., Roo, J. De, Meyer, R. De, Walle, R. Van de, and Campenhout, J.

Van (2011). “A semantic rule checking environment for building performance checking,” Automation in

Construction. 20 (5), pp. 506-518.

Rebekka, J.S., and Schultmann F. (2014). "Building Information Modeling (BIM) for existing buildings—

Literature review and future needs," Automation in construction, vol. 38, pp. 109-127, 2014, doi:

10.1016/j.autcon.2013.10.023

SPARQL Query Language for RDF (2013), http://www.w3.org/TR/rdf-sparql-query/ [last access: jan 2019]

Thein, V. (2011). Industry Foundation Classes (IFC), “BIM Interoperability through a Vendor-Independent File

Format,” A Bentley White Paper, September’11.

Terkaj, W., and Pauwels, P. (2014). “IfcOWL ontology file for IFC4”. Available at:

http://linkedbuildingdata.net/resources/IFC4_ADD1.owl [last access: jan 2019]

Wicaksono, H., Dobreva, P., Häfner, P., and Rogalski, S. (2013) “Ontology development towards expressive and

reasoning-enabled building information model for an intelligent energy management system,” Proc. of the 5th

KEOD, pp. 38-47, SciTePress.

Zhang, C., Beetz, J. & Weise, M. (2014). “Model view checking: automated validation for IFC building models”.

In Mahdavi, ed. eWork and eBusiness in Architecture, Engineering and Construction: ECPPM’14.

