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Abstract. In the Building Information Modeling world, compliance checking of IFC models is an 

immense challenge. Many approaches such as Hard Coded Rule Checking, Query based Rule 

Checking, Rule Checking Approaches via dedicated rule languages (SWRL, Jess, N3Logic, etc., are 

being contributed to fulfil these requirements. In this paper, we present our research and 

development of Semantic BIM Reasoner (SBIM-Reasoner) tool for measuring and ensuring 

conformance of IFC models. SBIM-Reasoner implements multi-threading approach for embedding 

semantic querying and rule based approach for developing French building code compliance system. 

Various pre-processors (IFC2RDF Converter, Geometry Extractor, Rule Evaluator, etc.) run in 

different execution threads to build the underlying semantic repository providing faster rule 

checking and information retrieval from the triple store. When it finds non-compliant objects in the 

IFC model, it presents them to the end-user. With the knowledge graph over triplets, we have the 

freedom of extending our semantic IFC model, creation of newer vocabulary and formation of newer 

rules, concatenation of triplets to build rules with conditions and constraints over IFC data, dynamic 

reasoning over the triplets based on the initial data of IFC model, etc. We present encouraging results 

by various tests which were build using online IFC test models of various sizes and designs to test 

the performance of SBIM-Reasoner.  

1. Introduction 

Buildings must conform to the building regulations (commonly known as building codes) 

which are the policies and guidelines to identify the least acceptable level of security, hazards, 

accessibility, general welfare, etc. (Rebekka and Schultmann, 2014). Through building codes 

and standards, organizations accomplish their ultimate aim to guard public health, safety and 

general welfare as they relate to the construction and occupancy of buildings. For an example 

earthquake-resistant building codes verify building structures so that they can withstand during 

the seismic activity. The purpose of verifying models is to align several specialized indexations 

of building components at both sides, assuming that they deal with the same abstract concepts 

or physical objects, but according to their distinct representation prisms (Eastman et al., 2008). 

Building Code is vital to detect non-compliance elements in the IFC model (Thein, 2011) and 

to guarantee its quality and reliability in the entire life-cycle of Building Information Modeling 

(BIM). Many approaches and tools for the compliance checking of IFC models are being 

contributed to fulfil these requirements such as; Hard Coded Rule Checking, Query based Rule 

Checking and Rule Checking via Dedicated Rule Languages (Pauwels & Zhang, 2015). During 

our research for the French building codes compliance system, we investigated deeply whether 

which approach divulges more recompenses for the compliance checking of building codes. 

According to our exploration, a hybrid approach based on semantic querying for the 

information retrieval and building rule evaluator based on the semantic rule engine produces 

good results. Therefore, we have implemented a hybrid approach for French building code 

compliance system named Semantic BIM Reasoner (SBIM-Reasoner) which reasons 

compliance of building codes via semantic reasoning over RDF Triples. Building codes are 

implemented as SPARQL (2013) queries which run on the semantic repository to verify 

correctness and consistency of IFC objects in the building model. We use both forward chaining 

and backward chaining mechanisms (where appropriate) to build our semantic reasoner. 
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Several newer concepts, SPARQL rules (statements and materialization) are applied to enrich 

the underlying semantic repository as per demand of verification rules. Use of forward chaining 

mechanisms support the dynamic semantic verification for the future checks. We build several 

test cases comprise of different queries on different sizes of IFC models to evaluate our 

semantic approach. We discuss our experimental findings on many different analysis 

parameters; such as number of RDF triples in the RDF (turtle file) equivalent to IFC model, 

number of RDF triples in the semantic model (filtered turtle file) in the triple-store, estimated 

time taken by the conversion pre-processor and geometric pre-processor, etc. From the initial 

results, we conclude that SPARQL queries are flexible for retrieving data and perform 

validation in an optimized way giving better run-time as compared to the traditional approaches. 

The rest of paper is organized as follows. Section 2 presents related work. Section 3 presents 

our research and development of Semantic BIM Reasoner and its different sub-components. 

Section 4 presents our experimental analysis via using online building models. Section 5 

concludes this paper and shows our future directions. 

2. Related Work 

Many approaches and tools are being contributed to fulfil these requirements. Primarily Hard 

Coded Rule Checking mechanisms via MVDs are used where building codes are assimilated 

inside the application for the conformance checking of IFC models (Zhang et al., 2014). Tools 

such as Solibri Model Checking (Khemlani, 2009), IfcDoc (2012), etc. are contributed are 

examples of this approach. There are many drawbacks of mvdXML for extracting building 

views such as: lack of logical formalisms, solely consideration of IFC schema and MVD-based 

view constructors are not very flexible and dynamic (Mendes de Farias et al., 2016). The subset 

of the IFC schema needed to satisfy one or many Exchange Requirements of the AEC industry 

is called Model View Definition (MVD) and mvdXML is an open standard used to publish the 

concepts and associated rules (Chipman et al., 2016). It can be used with the BIM Server or 

IfcDoc tool developed by the buildingSMART International to read and write mvdXML and to 

provide a graphical user interface for defining all content within mvdXML. Due to the 

limitation of MVD and mvdXML, semantic web technologies have seen as an option which is 

regarded as a good compromise between development efforts and possibilities. Therefore 

Query based Rule Checking mechanisms are emerged, where BIM model is interrogated via 

conformance rules that are formalized directly into SPARQL queries. The contribution from 

Bouzidi et al. (2012) is regarded as Rule-checking by querying. They transform building model 

into RDF, create rules as SPARQL queries, and finally interpret query result to visualize the 

result. Recently Rule Checking Approaches via dedicated rule languages were developed for 

the rule-based inspection of IFC models for the conformance checking. Most recent 

contributions use rule languages such as; Wicaksono et al. (2013) based on SWRL rules 

(Horrocks, 2004), Pauwels et al. (2001) based on N3Logic rules (Berners-Lee, 2008) and M. 

Kadolsky et al. (2014). We have implemented a hybrid approach (SPARQL + Rule Engine) for 

French building code compliance system named Semantic BIM Reasoner (SBIM-Reasoner) 

which reasons compliance of building codes via semantic reasoning over RDF Triples. Our 

work is similar to these proposals as we also make advantage of semantic web technologies, 

but, we also consider geometric aspects, with focus on optimization and performance. We 

presented first version of our developed semantic reasoner which was without multi-threading 

approach (Fahad et al., 2017). This paper presents our optimized solution using multi-threading 

approach. We build several test cases comprise of different queries on different sizes of IFC 

models to evaluate our semantic approach. The only overhead is the conversion from an IFC to 

RDF and then storage of RDF triples into triple store which takes time. In a long run, once the 



3 

 

triplestore is loaded with the data, querying is much faster to validate IFC models and detect 

inconsistent non-compliant IFC elements in the building model. 

3. Multi-Threaded Semantic Approach for the Conformance Checking of BIM 

The main contribution in this paper is about the research and development of Semantic BIM 

Reasoner (SBIM-Reasoner) tool for measuring and ensuring conformance of IFC models. The 

idea is to formulize building code rule as a SPARQL query and then execute it on the building 

model, which is formulated as triplestore via forward/backward chaining mechanisms, to check 

the possibility of non-compliant elements in the building model. Figure 1 illustrates the top 

level architecture of SBIM-Reasoner. SBIM-Reasoner implements multi-threaded approach for 

embedding semantic querying and rule based approach for developing French building code 

compliance system. The main thread gets desired IFC models as input and triggers the Parallel 

Execution of Pre-Processsors for the execution of different tasks. Primarily it has three pre-

processors, i.e., IFC to RDF Converter, Geometry Extractor, and Semantic Preprocessor which 

has further sub-components named IfcOWL Ontology sub-graph, SPARQL Rules, SPARQL 

Queries and TripleStore. Finally rule evaluator executes queries over semantic repository to 

checking and report the conformance report of IFC objects. 

 

Figure 1:   Top level architecture of SBIM-Reasoner  

3.1 IFC2RDF Conversion Pre-processor 

First thread executes conversion pre-processor to build the initial semantic repository based on 

RDF triples equivalently converted from an IFC model. Figure 2 shows partial RDF triples of 

an IfcDoor object.  IFC-to-RDF is a set of reusable Java component that allows parsing IFC 

files and converts them into RDF graphs. Our implementation deploys modified version of IFC-

to-RDF conversion plug-in provided by Pauwels & Oraskari (2012). After conversion, 

underlying RDF semantic model acts as a foundation stone to execute all the verification rules. 

We also need to apply filtration to get an RDF equivalent compact triple file to avoid several 

IFC elements, such as Person, Address, Material-List, etc. Therefore, the same thread did 

filtration to get only relevant RDF triples from the IFC model. 

3.2 Geometric Pre-processor 

Second thread executes geometric pre-processor to extract geometric related data from an IFC 

model. It employs Geometry Render Engine to extract geometric information and stores them 
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as RDF triples in the semantic repository. Figure 2 illustrates the output triples corresponding 

to bounding box values of an IfcDoor object. Mainly there are two geometry render engine 

plugins available with the BIM Server named IFCOPENSHELL and IFC Engine DLL. These 

are helpful to extract geometry data about the IFC objects. The outputs of this preprocessor are 

the RDF triples which are formed from the extracted geometry data of relevant IFC objects. 

These two pre-processors are executed in parallel to gain time. The advantage of their parallel 

execution is that none of the threads wait for each other, their functionality is different so they 

can efficiently utilize the server processor to achieve their desired tasks. These threads 

propagate their results to the next thread. Once all RDF triples (i.e., Filtered RDF file of an IFC 

model and RDF triples corresponding to Geometry data) are generated by first and second 

threads, third thread gets and loads these RDF triples into the triple store for the fast querying, 

searching, and analyzing of RDF triples.  

 

Figure 2:  RDF triples corresponding to an IfcDoor object 

3.3 Semantic Pre-processor 

Third Thread executes to build the semantic repository (i.e., triplestore) with the output of 

previously discussed two pre-processors. It waits till it is triggered by the outputs of Converter 

thread and Geometry Extractor thread. It will not start until both the threads finish their 

execution completely and generate RDF triples. It uploads all the RDF triples to the triplestore. 

All types of inference and reasoning mechanisms for the semantic verification are applied over 

this semantic RDF repository to meet the requirements of compliance checking, and in addition 

to discover additional information that is not explicitly stated in the initial data of the IFC 

model. We have integrated both forward chaining and backward chaining mechanisms (where 

appropriate) to build our semantic repository. Several newer concepts, SPARQL rules 

(statements and materialization) are applied to enrich the underlying semantic repository as per 

the demand of verification rules. Use of forward chaining mechanisms support the dynamic 

semantic verification for the future checks. The following are its sub-components. 

TripleStore – Stardog.  Although IFC is an open standard; its complex nature makes 

information retrieval difficult from an IFC model when the size of IFC model grows. Therefore, 

we have used Stardog as a triplestore to build our semantic model so that querying semantic 

model is faster and gives a good run-time. When the application starts, an end-user provides an 

IFC model and the set of SPARQL queries which are the verification rules for checking code 

compliance of desired IFC model. As a result, our system converts an IFC file into filtered RDF 

model. It loads that converted-filtered IFC equivalent RDF into stardog. After RDF triples 

concerning geometry are added to capture geometrical information in the triplestore. Then the 

semantic model is enriched with IfcOWL basic vocabulary, i.e., sub-graph of IFC ontology. 

Then, it adds SPARQL rules into the triplestore. Finally, it executes our project specific forward 
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chaining SPARQL queries which creates high level vocabulary and builds further RDF graphs 

over the existing triplets.  

IfcOWL ontology sub-graph. As the standard IfcOWL ontology (Terkaj & Pauwels, 2014) 

has a very large set of IFC elements, therefore, we deal with the sub-graph to achieve better 

processing and querying performance. 

SPARQL Rules – Statements. We have created a large set of SPARQL rules, i.e., statements. 

In fact, these statements are shortcuts overs the long chain of triplets to enable simplicity. For 

instance, we created ‘intersects’ shortcut over the RDF triplets corresponding to bounded box 

values of IFC elements (see Figure 3). These statements promote readability, understandability 

and enable simplicity when creating SPARQL rules and queries. Otherwise the chain of triplets 

make things complex and ambiguous.  

 

Figure 3:   Intersect relation between two IFC objects 

SPARQL Queries - Materialization. During the analysis of rules specification, we come 

across various types of vocabulary (introduced by regulatory texts) during building code 

compliance application. This vocabulary is composed of high level concepts present in business 

rules and regulation texts which are familiar by the stakeholders of BIM. There are two methods 

to build such vocabulary of newer high-level concepts, i.e.; via forwarding chaining and/or 

backward chaining. Based on the SPARQL rules, we have built SPARQL queries to introduce 

high level concepts based on the primary IFC vocabulary by using both forward and backward 

chaining where applicable. Figure 3 shows high level concepts ‘intersects’ in our case study of 

building French code compliance via forward chaining. Backward chaining consists of 

ontology statements that align IFC concepts with regulatory concepts, whereas forward 

chaining consists of insert statements that create supplementary triplets. Forward chaining is a 

good at an implementation stage to save memory and CPU resources. From the machine point 

of view, backward chaining is processed each time a semantic query is submitted whereas 

forward chaining is executed each time the data changes. At this stage, this choice is a 

compromise between effective queries (forward chaining is more appropriate for complex and 

numerous queries) and model update frequency (backward chaining is more appropriate when 

data changes frequently). We can even say that it is a compromise between the amount of triplet 

(considering triplet generated by forward chaining statements) and the ontology complexity. 

Therefore, we have mixed both approaches backward and forward chaining to provide the 

optimal setting that minimizes response time and maximizes ontology consistence. With the 

help of these techniques, we have simplified several IFC patterns such as classifications, 

predefined types, properties, geometry, topology, etc. 

3.4 Rule Evaluator - Compliance Checker 

Fourth Thread executes rule evaluator also called compliance checker as it performs the 

fundamental task of evaluating building model against building codes. It waits till it is triggered 
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by the outputs of third thread that builds semantic repository to fast access triples to fetch data 

and validate IFC models. It performs SPARQL queries over the semantic repository for the 

verification and code compliance of an IFC model. An end-user may apply SPARQL ASK and 

DESCRIBE queries to retrieve relevant information regarding the verification rules. Instead of 

using IfcDoc tool where there is no intermediate state and no explanation for the reason of non-

compliance, we use SPARQL DESCRIBE Queries. The SPARQL DESCRIBE query does not 

actually return resources matched by the graph pattern of the query, but an RDF graph that 

"describes" those resources. It is up to the SPARQL query service to choose what triples are 

included to describe a resource. Therefore, SPARQL queries serve best by concatenating 

desired triplets for building verification rules to check the code compliance. Figure 5 shows an 

example of SPARQL query to detect whether an ‘Alarm’ is installed at some space in the 

building. This query is based on semantic rules ifcowl:in and ifcowl:inStorey which are also 

shown below the query. Once, it finds an IFC model which is not instatlled with an Alarm (in 

this example) or non-compliant objects in the IFC model (in other cases), it presents them to 

the end-user as inconsistent elements in the building model. With the knowledge graph over 

RDF triples, we have the freedom of extending our semantic IFC model, creation of newer 

vocabulary and formation of newer rules, concatenation of RDF triples to build rules with 

condition and constraints over IFC data, dynamic reasoning over the RDF triples based on the 

initial data of IFC model, etc. 

 

Figure 4: SPARQL Query build on several shortcuts 

4. Implementation and Testing 

The following sub-sections elaborate implementation and testing details of SBIM-Reasoner.  

4.1 SBIM-Reasoner as a Semantic Service 

We have developed SBIM-Reasoner as a semantic service inside a KROQI platform. As it is 
developed especially for the French building code compliance, therefore our web interface is 
also in French targeting French community. When the application starts, an end-user has to 
configure IFC input model by clicking under the synchronization button on the very first tab 
‘Maquette’. Then an end-user selects the set of rules to be verified on this input model by 
selecting/browsing their set of rules on the second tab ‘Protocoles’. Then our web service starts 
by calling semantic reasoner which computes the set of rules and redirects to the result page 
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‘Résultats’. Each of the rule is highlighted as green or red color depending on its status of 
compliance (see Figure 5a). When SBIM-Reasoner detects non-compliant objects (in case of 
red status), an end-user can further analyze them by clicking on the corresponding row. It 
displays the list of IFC non-compliant objects containing Name, GUID and Type of each IFC 
object (see Figure 5b). One can also export PDF and BCF files to analyze their results in detail. 

 

Figure 5:  (a) Final output of SBIM-Reasoner, (b) Showing details of inconsistent IFC objects  

4.2 Experimental Finding on SBIM-Reasoner  

We deployed SBIM-Reasoner service on a cluster kubernetes of 3 nodes (1 node = 1 VM), 
where each node has 4 vCPUs, 26 GB memory and type of Intel(R) Xeon(R) CPU @ 2.30GHz. 
We choose several IFC models (see Table 1.) from the online repository to test our Semantic 
BIM Reasoner such as; Chanteloup (17 Mb), AC9R1-Haus (4 Mb), BIM-EM (2 Mb), Candidat 
(29 Mb), HITOS (63 Mb), and LcD (32 Mb), etc.  

Table 1:  Size of an IFC model and corresponding number of triples 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

IFC model 
IFC Size 

(Mb) 

No of Triplets 

RDF Equiv IFC RDF – Filtered ttl 

HITOS 62.5 5,054,202 205,631 

AC9R1-Haus 4.4 490,961 10,982 

BIM_EM 1.9 275,927 2,138 

Candidat-23_04 28.9 694,709 132,115 

Chanteloup 17.1 807,250 142,668 

LcD 32.4 1627,750 132,845 

Bat_CSTB 14.9 1047,216 13,973 

Maq Test Checker  11.2 1,572,792 100,230 

HAixFlowCtrl 13.1 1,970,366 21,549 

Liberty_V3 12.2 1,760,207 86,545 
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These IFC models vary in size, number of IFC objects, free spaces, etc. We have also used four 
IFC models developed at our CSTB enterprise named Bat_CSTB (14.9 MB), HAixFlowCtrl 
(13.1 MB), Maquette Test Checker (11.2 MB) and Liberty (12.2 Mb). Tables 1 shows the size 
of these IFC models, the number of triples in the RDF equivalent to the original IFC model and 
the filtered model by IFC2RDF pre-processor. We took many different analysis parameters 
such as number of RDF triples in the RDF (turtle file) equivalent to IFC model, number of RDF 
triples in the semantic model (filtered turtle file) in the triple-store, estimated time taken by the 
conversion pre-processor and geometric pre-processor, etc. We have measured time taken by 
different preprocessors that produce desired output in Table 2. Our first version implementation 
is without multi-threading where pre-processors run sequentially. Our system gets input of an 
IFC model along with the rule set to be verified on the building model. It invokes conversion 
pre-processor, and loads the equivalent RDF triples into triple store. Then it runs the geometric 
pre-processor and gets the bounding box values (i.e., min/max values X, Y and Z coordinates) 
and updates the triple store with the geometric RDF triples. Finally Rule Evaluator runs the 
SPARQL queries to verify the compliance of building codes.  

Table 2: Time taken by different Pre-Processors of SBIM-Reasoner 

 

Later in our implementation which is the contribution of this paper, we adopted multi-threaded 

approach where geometric and conversion pre-processors run parallel to produce output RDF 

triples. In our test experiment, there are IFC models of various sizes and structures. An IFC 

model named HITOS is the largest building model which has 62.5 Mb size with 205,631 

number of RDF triples and BIM_EM is the smallest building model which has 1.9 Mb size with 

only 2,138 number of RDF triples.  When we see the time graph, we observe that SBIM-

Reasoner took less than a minute by both the pre-processors to achieve their objectives when 

the size of IFC model is under 15 MB. But when the size of IFC model is 62 MB (in case of 

huge IFC model Hitos) then it took almost 3.4 minutes to convert and filter, and more than 5 

minutes to extract geometry data. Here, we also mention that although pre-processors took time 

to build semantic model at the first time, but querying for the verification of IFC models are 

processed fast and a good run-time is achieved. On the other hand on traditional IFC model, it 

takes much time to verify each of the individual rule. In addition, we are not able to execute all 

types of rules as per our desire due to narrow scope of IFC tools available online. This is only 

with the semantic model that we are flexible enough to fetch any triplets and build rules 

according to our will for the verification of IFC models. We revealed encouraging results via 

IFC model 

IFC 

Size 

(Mb) 

IFC-to-RDF 

Conversion 

(sec) 

Geometry  

Extraction 

(sec) 

Semantic 

Pre-Proc. 

(sec) 

Rule 

Evaluator 

(sec) 

Total 

(sec) 

version 1 

Total (sec) 

Multi- 

Threading 

HITOS 62.5 205 308 40 10 563 358 

AC9R1-Haus 4.4 17 10 9 8 43 33 

BIM_EM 1.9 16 10 7 7 40 30 

Candidat-23_04 28.9 48 65 27 10 150 102 

Chanteloup 17.1 41 31 18 10 100 69 

LcD 32.4 97 103 31 9.5 241 144 

Batiment_CSTB 14.9 40 27 11 9 87 60 

Maq.Test Checker 11.2 32 19 8 8 67 48 

HAixFlowCtrl 13.1 39 22 14 9 84 62 

Liberty_V3 12.2 38 23 12 9 82 59 
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several tests from the initial version of SBIM-Reasoner. The results of SBIM-Reasoner are 

checked manually to access the correctness of SBIM-Reasoner for each of the building models 

and they were 100% correct. On the basis of this analysis, we conclude that semantic model 

serves best for the verification of IFC models. We conclude that for such modules where 

execution can be done separately, multi-threading can benefit and gain time. It is highly visible 

when an IFC model is large (in the case of HITOS IFC model), parallel processing and CPU 

utilization reveals these pre-processors to execute simultaneously resulting the whole process 

take lesser time to achieve the whole functionality. 

5. Conclusion 

In the context of BIM when the question about the evaluation of an IFC model appears, the 

implementation of compliance checking of IFC models is vital to address. It is necessary to 

detection inconsistent and non-compliant IFC objects to ensure quality and reliability of an IFC 

model in the entire life-cycle of BIM. Compliance checking is an exhaustive process which 

cannot be done manually, in addition requires revolutionized advanced technology to process 

due to complex inherent nature of an IFC model itself. There are many techniques for the 

automatic verification of IFC models, but, still there are many open challenges. In this paper, 

we evaluated the idea to formulize building code rule as a semantic SPARQL query and then 

execute it on the building model to check the possibility of non-compliant elements in the 

building model. We have built a research prototype named SBIM-Reasoner which employs 

semantic approach for the building code conformance checking. We have tested and concluded 

that our approach based on semantic queries and rules can be easily extended, configured and 

deployed for the dynamic and changing BIM environment having broad spectrum of 

functionalities for the conformance checking of IFC models. We have also analyzed how multi-

threaded approach can benefit our solution by comparing run-time of our two implementations 

with and without threading.  We demonstrated several test models on SBIM-Reasoner and 

presented its efficiency and efficacy with empirical results. We conclude that the semantic 

model based on the semantic web technology is a good compromise between development 

efforts and opportunities. The graphical representation of RDF allows rules to be more intuitive 

and more efficient to reason and execute. Concatenation of triplets allows flexibility of making 

wide range of verification rules with condition and constraints at ease. SPARQL has a global 

scope with larger visibility of querying with the built-in functions and support of intermediate 

calculations for the validation of IFC models.On the basis of several analysis parameters, we 

have shown encouraging results by several tests on the SBIM-Reasoner. We have also found 

that multi-threading based approach served best and provided faster computation for the 

conformance checking of IFC models. 
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