

Distributed manufacturer services to provide product data on the web

André Hoffmann1, Anna Wagner1, Tim Huyeng1, Meiling Shi1, Julian Wengzinek2, Wendelin Sprenger2,

Christoph Maurer3, Uwe Rüppel1

1: Institut für Numerische Methoden und Informatik im Bauwesen, Technische Universität Darmstadt,

Darmstadt, Germany

2: Zentrale Technik, Direktion Digitalisierung und Software-Engineering (DS)-BIM.5D, Ed. Züblin AG,

Stuttgart, Germany

3: Department Energy Efficient Buildings, Fraunhofer Institute for Solar Energy Systems ISE, Freiburg,

Germany

hoffmann@iib.tu-darmstadt.de

Abstract. Digital planning methods are changing the needs of construction stakeholders. It should

be as easy as possible to compare product data from different manufacturers and integrate them into

the planning model without detours. Web technologies not only offer great potential to enhance

existing ways of working, but also open up new business models for product manufacturers in the

service and IOT domains. However, manufacturers have a legitimate interest to retain control over

the disclosure of their product data. Therefore, it is often only available offline and on demand. Of

technical interest are therefore solutions, in which a large part of the data autonomy and access

control remains on the side of the manufacturer, but the project planner is allowed to search the

product data of all manufacturers like an interconnected system. Frequently, such a searchability is

ensured by a uniform data schema and storage of the data in a central storage location, a so-called

data warehouse. Nonetheless, this stands in contrast to the natural interest of the manufacturer for

data sovereignty. This paper focuses on systems that can replace centralized data storage with

distributed data management on manufacturer-owned servers, without losing accessibility for

planners. Manufacturers should have as much freedom of implementation as possible when

establishing the security concept, modeling their data and integrating the proposed approach into

their operating procedure.

1. Introduction

Information silos are a source of inefficiencies (Pala et al., 2016: 897); they result in existing

solutions to problems not being found and used. Particularly in the relationship between

manufacturer and customer, both sides are affected. On the one hand, the customer cannot

identify whether an advertised product is better suited for a purchase than a comparable product

based on the provided information. Under certain circumstances, this may lead to no or an

insufficient solution being found. The manufacturer, on the other hand, loses a potential buyer.

In the construction industry, dismantling data silos of stakeholders is an important task.

Currently, suppliers and specialist engineers from various disciplines exchange geometries in

the form of 3D models enriched with semantic information (Pala et al., 2016: 900).

The quality of the data transfer although depends on the import module of the specialist

engineer’s proprietary software. The software interoperability often stands in contrast to the

interest of the software developer, who supports proprietary formats that only allow further

processing of the data with software applications from his own product catalog, if at all. One

solution to exchange building data in an open and efficient way is the Industry Foundation

Classes Standard (IFC). The IFC is supported by about 150 software applications worldwide to

enable better work flows for the AEC industry1. Additionally, ontologies are examined in

1 http://www.buildingsmart-tech.org/ (accessed: 01.04.2019)

http://www.buildingsmart-tech.org/

numerous publications to integrate data models from various areas of engineering (Pauwels et

al. 2017).

The flexibility and simplicity of the representation in the form of triples allow to model even

complex interrelationships in a human- and machine-understandable way. Therefore, this

technology presents at least a partial solution to the interoperability problem.

Another problem is the lack of a standardized dissemination process of the BIM objects.

Manufacturers often rely on isolated solutions on their own websites or prefer the path of direct

distribution. Centralized websites apparently lack manufacturer acceptance, which limits the

number of products made available. However on bimobject.com, according to its web presence

the “Worlds Leading BIM Content Platform”, product families of about 1352 brands can be

accessed2.

In this paper, an approach to distribute product data on the Web without using a central platform

and to leave the persistent product data on the side of the manufacturer is discussed. Each

manufacturer hosts their own product data service, which is linked to other product data services

by message exchange and passes on queries to all other service instances. Queries to the entire

system can be directed to any of the manufacturer services, to guarantee independence from a

central instance. The global data model is based on a product ontology and serves to compare

and link product data.

Decentralization and the freedom to design the implementation of manufacturer services should

increase the acceptance of manufacturers. A product ontology reduced to the essentials, which

can be linked with domain-specific ontologies if required, should guarantee searchability and

comparability.

2. Related Work

Architects and engineers have various central platforms at their disposal for the acquisition of

BIM data. When researching the availability of BIM / CAD objects via open-access portals, the

highly decentralized distribution of these objects was particularly noticeable. The number of

large portals alone, in which objects of numerous manufacturers can be found, amounts to

almost 20. If websites with manufacturer-specific content that are linked in the Autodesk BIM

blog3 are included in this estimate, more than 50 portals were identified. However, usually no

information about the topicality and completeness of the content on the portals is available.

In addition, platforms often only offer strongly limited possibilities to filter the complete data

base in search for specific objects. In most cases, such filtering is restricted to manufacturer of

the object, some BIM object types and file formats. Manufacturer-specific pages usually offer

a download of their entire library without allowing the user to select singular objects

beforehand. Apart of object platforms, platforms to facilitate the exchange of product and other

project data between suppliers and other parties involved in the construction process have

already been proposed. Vortalway is conceived to be a central cloud solution into which other

services can be integrated if required (Grilo and Jardim-Goncalves 2013). Their focus was

primarily on mapping the bidding process in order to offer or request a service or a product.

These also include ontologies at the conceptual level to solve the interoperability problem (He

et al., 2018: 18).

2 https://www.bimobject.com/en (accessed: 01.04.2019)
3https://blogs.autodesk.com/bimblog/revit-content-online-bibliotheken-mit-10-000en-familien-als-download-

beitrag-wird-regelmasig-aktualisiert/ (accessed: 01.04.2019)

https://www.bimobject.com/en
https://blogs.autodesk.com/bimblog/revit-content-online-bibliotheken-mit-10-000en-familien-als-download-beitrag-wird-regelmasig-aktualisiert/
https://blogs.autodesk.com/bimblog/revit-content-online-bibliotheken-mit-10-000en-familien-als-download-beitrag-wird-regelmasig-aktualisiert/

The networking of manufacturers to offer a service of common benefit is a research idea that

already has tradition. A so-called virtual enterprise is “a temporary alliance of enterprises that

come together to share skills or core competencies and resources in order to better respond to

business opportunities, and whose cooperation is supported by computer networks"

(Camarinha-Matos and Afsarmanesh 1999). Under this topic, the OSMOS API was proposed

in the construction industry. The OSMOS API pursued a project-related approach of

cooperation, but also relied on a centralized platform (Wilson et al. 2001).

This paper’s content overlaps also with the field of Enterprise Application Integration, which

aims to link applications on an internal or inter-company level in order to preserve resources

and knowledge that were invested in existing applications for future purposes. A number of

methods, architectural concepts and standards for fulfilling this goal are classified under as such

Enterprise Application Integration (Arndt et al. 2009).

Furthermore, concepts for describing distributed semantic web architectures have been

analyzed in the literature (Vdovjak et al. 2006). The hierarchical mediator architecture (see

Figure 1) comes closest to the approach underlying this paper (Vdovjak et al., 2006: 44-51).

The features provided in the theoretical concept could be simplified with knowledge of the

existing data model.

Figure 1: Hierarchical mediator architecture (adapted from Vdovjak et al. 2006: 45)

3. Concept

The basic idea of the approach presented in this paper is a network of manufacturer data

services. Each of the data services provides product descriptions that contain information,

which originated in the design and production phase and are therefore in the manufacturers’

responsibility. Each data service can be integrated into a manufacturer's service infrastructure,

for example via an API gateway that orchestrates requests and forwards them to the data service.

The data service has two interfaces: a network and a query interface. The network API is used

for communication with other manufacturer data services while the query API enables users

and third-party systems to send queries to the entire network of manufacturer data services. The

manufacturer data services exchange messages to answer queries like a related system. Thus,

the same comparison and search possibilities of centralized platforms should be provided. In

the context of distributed database systems, this property is referred to as network transparency

(Özsu and Valduriez, 2011: 9).

The users and applicatons, that query the network, should not have to deal with the internal

architecture and the exact location of the product data. To ensure this transparency, queries to

one data service must be forwarded to all other data services relevant to the queries. This must

be realized on horizontal and vertical level (see Figure 2). For query distribution on horizontal

level, all data services that contain the desired product type must be queried, and the results of

the query passed on to the user. On the other hand, parts of the affected queries must also be

passed on vertically: Construction products consist of materials and parts from suppliers and

should therefore be regarded as assemblies. Suppliers can themselves operate data services in

which they provide information on their products. Ergo, queries about specific products can

also refer to data stored on the suppliers’ data services. In order for the data service to know

which data services can be found at which addresses and what type of information they contain,

a data catalog must exist that stores such information on each data service and must be

synchronized if changes are made. The data service can be integrated into the manufacturer's

own infrastructure to offer additional services. For example, the data can be preprocessed by a

company's own web services depending on the use case. If, for example, a certain format is

required, the web service responsible for processing sends the request to an interface to the

overall system.

Figure 2: Vertical and horizontal query distribution

4. Data model

To enable communication of distributed and possibly not uniformly designed systems,

machine-understandable data schemes are required. This also applies to the cross-platform

product searches presented in this paper. It is therefore required for product data to be described

using Building Product Ontology4 (Wagner, A. 2019).

The BPO provides concepts for describing the basic structure of products, while additional

information – such as the geometric description or classification of components, products and

properties – is connected by other ontologies. For manufacturers, the property of BPO that

products can be described in their composition in the form of components and assembly

compounds is particularly interesting. Especially the latter enables manufacturers to reuse

already existing descriptions of components that are parts of their products. For example, a

manufacturer can link directly to the supplier's description of a screw or even complex

components such as a door handle or window frame instead of remodeling it based on

information received from suppliers in their own data environment.

Such linking functions by the property of the Semantic Web that all objects are occupied by a

Unified Resource Identifier (URI) and can be accessed over this also from outside of the

original graph to the objects either directly or by performing queries on the graph’s database.

In the BPO, the assembly connection relevant for this is implemented with the predicate

bpo:consistsOf, which connects an assembly with any (also external) component and suggests

that the component is installed as part of the product. An exemplary graph for the visualization

of such a connection is shown in Figure 3.

Figure 3: Example Relation between Products and Components

5. Dataservice: Components and processes

An data service consists of two functional components. One component is the so-called query

federator, that applies the requested product data types to the data catalog to check which data

service should be considered for querying. The query federator also forwards user queries to

the corresponding data services identified in the previous step, and returns the summarized

result to the user.

The second component is the query responder, which checks requests from other instances to

identify whether data from suppliers is required to answer the requests and distributed the part

of the query to all instances needed to fully describe the relevant product. The queries addressed

to the APIs are formulated in the query language SPARQL. Alternatively, a format can be used

that is transformed to a SPARQL query.

4 https://w3id.org/bpo, accessed 31.05.2019

https://w3id.org/bpo

Figure 4: Architecture of a data service

5.1 Data catalog and synchronising

The data catalog is stored locally in each data service. It contains addresses of all data services

and the product data types that are stored on them according to the buildingSMART Data

Dictionary (bSDD). This metadata can be used to identify and request data services that are

relevant for a query. If a new data service is added to the overall system or if a change is made

to the product data types provided at a data service, a synchronization process must start. Such

a process could be executed either traditionally by sending corresponding messages or - in case

additional security is desired, that the data catalog is not manipulated and at every manufacturer

the same – by implementing the data catalog synchronization with a blockchain. In essence, a

blockchain is a chain of chronological blocks which is maintained by the nodes of a public or

permissioned distributed network. By design, it is well suited for systems that require integrity,

transparency and immutability (Wüst and Gervais 2018).

In this section the suitability of applying blockchain technology to data catalog synchronization

will be analyzed. On implementing the data catalog which exists locally in distributed data

services, following requirements must be fulfilled: First, data catalogs that are stored in distinct

sites should be in a consistent state. That means changes in data catalog that are made locally

must be synchronized in all other data services through the internet. In database management

system these changes are documented as transaction logs. The synchronization process through

multiple data services can be performed by the broadcast function of blockchain. Transaction

logs will be wrapped up in a block and sent to all data services to synchronize; Second,

unintended changes, including data altering with malicious intent and hardware breakdown,

must be detected and avoided to guarantee data integrity. With suitable consensus mechanism

manufacturer can give their approvals or rejections to a transaction log in data catalog so that

unintended changes can be obviated; Third, information needs to be available when it is queried

from outside of a data service. Blockchain is an art of distributed ledger that is maintained in

every data service. If one data service falls down, queries can be sent to other data services. For

the above mentioned reasons, blockchain is suitable to store an immutable record of transaction

logs for distributed database (Sutton and Samavi 2017) (Aniello et al. 2017) that keeps the

product data catalogs integral and available.

Apart from the requirements which are mentioned above, following aspects should also be taken

into account. If multiple manufacturers update their catalogs simultaneously, all changes must

be synchronized without high latency. Besides, executions – including meta data as author and

timestamp – should be documented and traceable to avoid allegations in case of hostile

alterations in the database. Furthermore, manufactures should only have writing access to their

own product data catalog entries. To fulfill those requirements, a concept for deploying product

data catalog synchronization with blockchain is presented (see Figure 5).

Figure 5: Concept for synchronization with blockchain

Similar to (Gaetani et al. 2017), we propose to use the mining rotation consensus to “mine”

(generate) a block: First, a timespan will be defined to be round for generating one block. Each

round, a miner is chosen by a pseudorandom generator. During the round, all executed

transactions that are stored locally in “Cache Logs”, including their timestamps, are sent to the

“Miner Service” of miner this round. At the end of each round, the miner confirms all received

transactions by signing with his digital private key and wrapping them with the cryptographic

hash of the previous block as well as the timestamp of the round in a new block. Afterwards, a

new hash is generated from this new block and is added to itself. After this mining process, the

miner broadcasts the newly generated block to all nodes to verify its correctness. As soon as all

nodes have confirmed the block with their individual digital cryptographic signature, the block

can be appended to the original local blockchain “Blockchain Log” and execute the transaction

logs in local “Product Data Catalog”. The blockchain being maintained by a distributed instead

of a centralized network also improves database security; if one node crashes or is attacked the

transactions will not get lost. To ensure manufactures being restricted to edit their own product

data catalog entries only, a smart contract can be applied. Smart contracts are part of the

blockchain protocol and define who can update which entries in the product catalog.

5.2 Distributing queries vertically

The following section describes the algorithm for processing requests that require information

about components originating from the supplier’s data service. For example, queries of products

may refer to specific properties that might be part of a subcomponent’s description which is

provided by the supplier's data service . To address the complete query, the part of the query

that refers to the subproduct must be identified and processed accordingly. The results of both

queries can be temporarily merged to answer the original query.

The separation can be realized by using the analogy of data model and data service structure.

Products are linked to their subcomponents with the predicate bpo:consistsOf. In order to find

queries that relate to several data service, a first step is to check whether the query can be

answered completely by the data available on the current data service. If this is not the case, the

query is shortened by the triples that use the object of the last bpo:consistsOf relationship as

subject until the query can be resolved. The response of the shortened query is checked for

references to other data services. Since Linked Data uses URIs as identifier for individual

objects, the location of an object’s description is stored in the data model. This allows the data

service of a product to be identified directly from the result of a query.

The triples that could not be resolved in the original query can now be passed on to the

referenced data services as a construct query. SPARQL construct queries allow the extraction

of a subgraph that corresponds to the template specified within the query in the form of triples.

The resulting subgraph of this construct query can be merged with the triples that match the

solvable triples of the local triple store, forming a graph which has all information to answer

the original incoming query. The complete process can be seen in Figure 6. The construct query

itself is treated as an incoming query by the supplier data service, in which the same process is

repeated. In this way, requests of this type are answered recursively by all concerned data

services. The process only has to take place if the query is fed by the query federator of another

data service. The module responsible for this is called query responder.

Figure 6: Algorithm to dissolve queries to subcontractors

5.3 Integration into the manufacturer’s infrastructure

The presented service can be implemented with the help of a microservice architecture and can

also be integrated into existing systems. Microservices are small processes that communicate

with other processes via HTTP or a REST API (Dragoni et al. 2017). With microservices, a

large application can be broken down into small applications that can be combined

independently. These smaller applications can be used or replaced flexibly and organized as

containers. Overall, the architecture of microservices is more complex than one of a monolithic

system, but the scalability and flexibility of this approach outweigh the disadvantage. In the

context of the presented work, flexibility is an advantage, since the presented decentralized data

storage should be gradually integrated into existing manufacturer systems.

Of importance for the decentralized structure is a clear definition of interfaces between the

individual services. Communication could be implemented via HTTP requests or other

protocols and must be protected from external attacks.

One way of securing the individual services is an API gateway. Such gateways serve as entry

points for a number of microservices, e.g., from manufacturers (see Figure 7). The gateway can

authenticate a request with the help of an authentication service and distribute it to the

corresponding services. As seen in Figure 7 microservices can also communicate with other

services outside of their system. Therefore, it is recommended to use the API gateway from the

other manufacture. If requests within one system occur, they can be processed either via the

gateway or directly from service to service.

Figure 7: Micro-Service architecture, distribution via API gateways

Thanks to the microservice architecture, the integration of the dataservice into existing systems

as well as maintenance and utilization for companies are simplified. Smaller companies, that

cannot – or do not want to – provide all necessary services because of their internal structure,

can also use and integrate other services. For example, computational services could be

outsourced to a specialist who has optimized the specific service. Based on outsourcing

processes, a new line of business can emerge, since high-performance services from other

manufacturers could be used and the use of the service can be sold. However, data encryption

must be ensured for enhancing acceptance and trust between individual stakeholders.

5.4 Authentification

An important component for increasing the confidence of manufacturers and users in micro-

services is the authentication of partners. Since the concept proposed in this paper stores the

data decentrally, it is essential to ensure unique identification. For this an authentication service

is proposed, which can be outsourced to an own microservice if desired by the manufacturers.

This would enable central registration and prevent unwanted multiple logons to the various

services and manufacturer instances. There are several possibilities for authentication: In

addition to a single sign-on implementation, it is also possible to perform authentication with

client certificates, API keys or a public and private keypair. Authorization can be connected to

this service or can also be performed on any data service. Here, the individual manufacturers

could assign rights to the respective users.

Another advantage of using microservices is the freedom of implementation. A free choice of

programming languages as well as packages increases the potential to advance the

manufacturers' own developments. In addition, the independent microservices can be deployed

more easily and efficiently as containers. Current technologies, such as dockers, are available

for this purpose (Stubbs et al. 2015).

6. Conclusion and Perspective

So far, parts of the functionalities have been implemented in an experimental manner in order

to become familiar with the technologies and to gain an overview of the conceptual

requirements for the architecture of the system. As a result of this effort, in the present paper, a

concept for a distributed network of manufacturer services was presented, which enables

stakeholders to search product data of all manufacturers as if it was a centralized system. One

advantage of this decentralized data management is its reproduction of the natural distribution

and thus guarantees manufacturers data autonomy. If interested, manufacturers can set up data

services and integrate them into their own infrastructure. Thus, the overall system and the

internal database of a manufacturer can grow modularly. Here, no single point of failure exists,

since the entire network can be accessed via any manufacturer data service and all data services

are to be regarded as equivalent. The hierarchical query processing results from the assembly

structure of the product data model and, thereby, fits into the decentralized system architecture.

Two sources of inefficiencies in the hierarchical mediator architecture should be mentioned

(Vdovjak et al., 2006: 49-51), which also apply to the proposed approach: If, for example, a

product is a subcomponent of more than one product, the information of the subcomponent is

queried several times. Even if subcomponents refer to products that lie further up in the

component hierarchy, inefficiencies can occur. The transition to a cooperative mediator

architecture , which introduces additional communication channels between the data services,

could create remedy here. The architecture of the communication channels could be justified

by certain product data types on the data services and functional domains. In addition to the

data services themselves, further microservices are to be created in the context of the research

project SCOPE. Those services are to be understood as blueprints for various tasks in civil

engineering and include, for example, processing routines for data from the BPO data model in

planning software formats.

Acknowledgements

This work is part of the research project EnOB: SCOPE, founded by the German Federal

Ministry for Economic Affairs and Energy (BMWi).

References

Aniello, L., Baldoni, R., Gaetani, E., Lombardi, F., Margheri, A. and Sassone, V. (2017). A

Prototype Evaluation of a Tamper-Resistant High Performance Blockchain-Based Transaction

Log for a Distributed Database. 2017 13th European Dependable Computing Conference

(EDCC). pp. 151–154.

Arndt, C., Hermanns, C., Kuchen, H. and Poldner, M. (2009). Best Practices in Der

Softwareentwicklung.

Camarinha-Matos, L.M. and Afsarmanesh, H. (eds.) (1999). The Virtual Enterprise Concept.

Infrastructures for Virtual Enterprises. Boston, MA: Springer US.

Coelho, N. (2018). Security in Microservices Architectures.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R. and Safina,

L. (2017). Microservices: Yesterday, Today, and Tomorrow. In: Mazzara, M. and Meyer, B.

(eds.). Present and Ulterior Software Engineering. Cham: Springer International Publishing,

pp. 195–216.

Gaetani, E., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A. and Sassone, V. (2017).

Blockchain-based database to ensure data integrity in cloud computing environments. Italian

Conference on Cybersecurity (20/01/17).

Grilo, A. and Jardim-Goncalves, R. (2013). Cloud-Marketplaces: Distributed e-procurement

for the AEC sector. Advanced Engineering Informatics 27(2):160–172. doi:

https://doi.org/10.1016/j.aei.2012.10.004.

He, D., Li, Z., Wu, C. and Ning, X. (2018). An E-Commerce Platform for Industrialized

Construction Procurement Based on BIM and Linked Data. Sustainability 10(8):2613. doi:

https://doi.org/10.3390/su10082613.

Özsu, M.T. and Valduriez, P. (2011). Principles of Distributed Database Systems. 3rd ed. New

York: Springer Science+Business Media.

Pala, M., Edum-Fotwe, F., Ruikar, K., Peters, C. and Doughty, N. (2016). Implementing

commercial information exchange: a construction supply chain case study. Construction

Management and Economics 34(12):898–918. doi:

https://doi.org/10.1080/01446193.2016.1211718.

Pauwels, P., Zhang, S. and Lee, Y.-C. (2017). Semantic web technologies in AEC industry: A

literature overview. Automation in Construction 73:145–165. doi:

https://doi.org/10.1016/j.autcon.2016.10.003.

Stubbs, J., Moreira, W. and Dooley, R. (2015). Distributed Systems of Microservices Using

Docker and Serfnode. 2015 7th International Workshop on Science Gateways. pp. 34–39.

Sutton, A. and Samavi, R. (2017). Blockchain Enabled Privacy Audit Logs. In: d’Amato, C.,

Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., et al. (eds.).

The Semantic Web – ISWC 2017. Springer International Publishing, pp. 645–660.

Vdovjak, R., Houben, G.-J., Stuckenschmidt, H. and Aerts, A. (2006). RDF and Traditional

Query Architectures. In: Staab, S. and Stuckenschmidt, H. (eds.). Semantic Web and Peer-to-

Peer: Decentralized Management and Exchange of Knowledge and Information. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 41–58.

Wagner, A., Rüppel., U. (2019). BPO: The Building Product Ontology for Assembled Products.

7th Linked Data in Architecture and Construction Workshop. Lisbon: PT. in press.

Wilson, I., Harvey, S., Vankeisbelck, R. and Kazi, A.S. (2001). Enabling The Construction

Virtual Enterprise: The Osmos Approach. Journal of Information Technology in Construction

6(Special issue Information and Communication Technology Advances in the European

Construction Industry):83–110.

Wüst, K. and Gervais, A. (2018). Do you Need a Blockchain? 2018 Crypto Valley Conference

on Blockchain Technology (CVCBT). pp. 45–54.

