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Abstract. Building Information Modeling is growing more relevant as digital models are not only 

used during the construction phase but also throughout the building’s life cycle. The digital 

representation of geometric, physical and functional properties enables new methods for planning, 

execution and operation. Digital models of existing buildings are commonly derived from 

surveying data such as laser scanning which needs to be processed either manually or 

automatically throughout various steps. Aligning point clouds along a coordinate system’s main 

axes is a common manual task benefitting subsequent manual and automated processing steps. 

With the intention of automating the alignment task, we hereby present an enhanced approach 

based on point density histograms. Our results show that this approach is computationally cheap, 

robust towards non-uniform point cloud resolutions and clutter as well as easy to integrate into 

existing BIM modelling software. 

1. Introduction 

The rise of Building Information Modeling (BIM) in recent years has led to a gradual 

paradigm shift in the AECO industry. With BIM providing a digital representation of all 

geometrical, physical and functional characteristics of buildings and constructions, it offers 

the opportunity of sharing information and tracking object states throughout the building life 

cycle. Therefore, object-oriented models, so called BIM models, are used. Up to now BIM 

has been predominantly used during the planning phase. However, solutions for using BIM 

during the execution and operation phase gain an increasing relevance. The benefits of using 

them e.g. for facility management (FM) or building preservation has earned BIM methods 

wide-spread interest. Problematically, creating BIM models from existing buildings without 

the existence of digital data or even digital models from planning is a costly procedure and 

requires trained staff. For this purpose, recent surveying techniques such as laser scanning or 

photogrammetry promise a lot of potential for as-is/as-built data capturing since they allow 

reality capturing with a high spatial resolution in a short period of time. However, laser 

scanning results in huge amounts of data in the form of point clouds which have to be 

analyzed for BIM modeling in a time-consuming process that is still characterized by much 

manual work. This has led to increased interest in techniques which either fully or partially 

automate the modeling process from point clouds. 
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The process of automatic BIM model generation from point clouds (scan to BIM) can roughly 

be subdivided into the phases preprocessing, segmentation, classification and BIM model 

fitting as outlined in the adapted Figure 1 following Loges & Blankenbach (2017). Data 

preprocessing generally represents the point cloud processing step performed immediately 

after data capturing. The general goal of preprocessing is to denoise the point cloud by 

removing outliers, smoothing out noise and possibly downsampling and transforming it into a 

suitable format for later computations. Furthermore, this step can also be beneficial for 

manual modelling and visualization, as preprocessed data eases the modeling of structures, 

reduces the risk of potential errors and is generally more pleasant to deal with.  

In this work, we focus on point cloud alignment, as it is most often the first operation done in 

manual modeling and carries great importance in automated reconstruction. Aligning a point 

cloud or pose normalization refer to rotating the point cloud such that at least one of the 

dominant building axes  captured with it, is oriented along one of the global coordinate 

system axes. In the field of automation, the benefits of the alignment process lie in the fact 

that most data structures which ease point neighborhood lookups during point cloud 

processing such as voxel grids and octrees use boundary volumes oriented along the global 

coordinate system axes. Therefore, axis-aligned point clouds ensure optimal compactness and 

therefore usage of these structures. An example on how proper alignment reduces aliasing 

artifacts which might otherwise occur for voxel-based feature extraction is illustrated in 

Figure 2. Whereas in the aligned point cloud edges derived from the voxel-wise scatter values 

are clearly visible, edges in the unaligned point cloud are harder to identify and suffer from 

visible noise. This problem is commonly caused by planar surfaces which are not properly 

aligned with the axis-aligned voxels of the used grid.  

Aside from benefits for data structures and some feature extraction techniques, many 

successful methods for segmentation and analysis make use of the Manhattan World 

assumption, which assumes structures contained in the point cloud to be oriented along a 

rectangular grid. Determining the global orientation of the grid and rotating the point cloud to 

match this grid thus represents an important precondition for such algorithms to work 

properly. 

Scan to BIM process 

 

Data capturing 
and preprocessing 

- Registration 

- Filtering 

- Downsampling 

- Axis-Alignment 

 

Segmentation 

- Separation into 
Regions of Interest 

- Rooms/Sections 

- Elements 

 

Classification 

- Feature Extraction 

- Object Classification 

- Object Registration 

 

BIM model fitting 

- Component 
Identification 

- Component 
Creation 

Figure 1: Stages of the “Scan to BIM“-process. 
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2. Related Work 

The problem of pose normalization for 3D shapes and meshes has been extensively discussed 

in other works. However, publications in this field for point clouds are either sparse or 

concerned with solving different, related problems. Many works in the field of pose 

normalization commonly deal with alignment as a preprocessing step for shape matching or 

discuss it in context of feature extraction. Lian et al. (2010) defined a metric for 3D mesh 

rectilinearity which was dependent on the mesh’s pose. Since their metric would measure the 

projected area of a mesh in relation to the total area, it could also be used to find suitable 

mesh orientations. An adaptation of their algorithm for point clouds does not exist though. 

Works done by Podolak et al. (2006), Paquet et al. (2000), Chaouch and Verroust-Blondet 

(2008)  and Kazhdan et al. (2003, 2007) indicate that both symmetry and the presence of 

reflection planes help estimate correct rotation and object poses, however, laser scans of entire 

buildings rarely follow these assumptions. 

Many of aforementioned works compared the pose normalization problem together with the 

principal component analysis (PCA). Most often the PCA is being used for feature extraction, 

but also represents a common way for calculating an object’s principal axis. This is achieved 

by constructing the covariance matrix of a point set, followed by an eigenvalue decomposition 

of this matrix resulting in an orthogonal basis of principal axes. These principal axes, 

however, are often sensitive to noise and local sampling such that only the most dominant 

principal axis ends up being useful for shape alignment. In their publications, Kazhdan et al. 

(2007) compared multiple feature-based 3D pose retrieval methods for meshes using PCA as 

the baseline for evaluating their experiments. As pointed out and thoroughly discussed in their 

works, PCA does not represent a viable way of aligning objects along the axes of a global 

coordinate system. In context of point cloud processing, Okorn et al. (2010) used point 

density histograms for the segmentation of floor and ceiling planes and to estimate dominant 

orientations of cross sections of single rooms rather than entire point clouds. Aside from the 

limitation to single rooms which requires said rooms to be presegmented, this method requires 

the selected cross sections to be free of clutter. The method thus requires careful selection of a 

suitable cross section, limiting it even further to a handful of scenarios. 

  

Figure 2: Impact of axis-alignment on voxel-based calculations. Left: Original point cloud. 

Center: Scatter values per voxel of un-aligned point cloud (contrast enhanced for visibility). 

Right: Scatter values per voxel of axis-aligned point cloud (contrast enhanced for visibility). 
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Combining the ideas of both, symmetrical properties and dominant planes, Fu et al. (2008) 

presented an approach which would construct a convex hull from an input mesh and identify 

the dominant plane of the hull polygon. Due to the reliance on a convex hull, this method 

could be adapted for use with point clouds and furthermore indicates that the detection of 

planes in man-made structures plays an integral role in object alignment. 

3. Methods 

Our approach to point cloud alignment makes use of point density histogram to identify 

dominant wall segments, but contains multiple analysis steps shown in Figure 3. We initially 

start by defining a vector pointing “upwards” as our rotation axis and selecting an axis for 

alignment (which is oriented orthogonally to the upwards vector). This vector is typically 

chosen to be the global z-axis which is usually fixed in case of point cloud data captured with 

a terrestrial laser scanner in static mode. Afterwards, we incrementally rotate the point cloud 

and construct the density histograms. These histograms are created by counting the number of 

points falling into a specific range along the alignment axis. The shape of these histograms 

strongly depends on the chosen rotation, a behaviour explored further in Figure 3. As point 

densities are larger along planar surfaces such as walls, clearly identifiable peaks will emerge 

if a viable rotation angle for alignment has been chosen. Contrary, an unsuitable rotation 

angle results in a rather flat distribution in the density histogram. Based on this observation, 

the alignment problem is reduced to finding dominant peaks in the density histogram as their 

presence indicates that walls are aligned with the main axes. As a fast and robust metric for 

detecting histograms related to the desired rotation angle, the per-bin standard deviation 𝑠𝐻 of 

the point distribution histogram is being calculated. Afterwards, the histogram bins falling 

into an upper quantile are being removed. In case of histograms related to suitable angles, this 

operation removes peaks and in consequence greatly reduces the standard deviation of the 

point density distributions. The difference 𝛿𝑠 between the original standard deviation 𝑠𝐻 and 

the new standard 𝑠′𝐻 deviation is used as an indicator for the desired histogram and therefore 

the desired rotation angle. The desired rotation angle in the search space thus maximizes the 

calculated difference 𝛿𝑠 of the standard deviations: 

𝛿𝑠 = max⁡(|𝑠𝐻 −⁡𝑠𝐻
′ |) 

Rotate cloud by 𝛼𝑖 
along up-axis 

For all rotation 
angles 𝛼𝑖 = 0…𝑛 

Calculate point histogram 
and the related standard 

deviation 𝑠𝐻  

Remove upper quantile from 
histogram and recalculate 
standard deviation as 𝑠′𝐻. 
Calculate 𝛿𝑖 = |𝑠𝐻 −⁡𝑠𝐻

′ |. 

Set 𝑎∗ = 𝛼𝑖 
and 𝛿∗ = 𝛿𝑖 

Report 𝑎∗ as best 
rotation angle 

If 𝛿𝑖 > 𝛿∗ 

false 

true 

Figure 3: Workflow diagram of our point cloud alignment method. 
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Even though searching for the largest peak in the density histograms seems like a simpler 

option, we decided to use aforementioned method as it has proven to be more robust towards 

local point density variations and clutter. If desired, this alignment step may be repeated for 

the remaining axes. To ensure that the point cloud is still roughly located at the same position, 

all rotations are performed around the point cloud’s centre of gravity. 

The described algorithm depends on three parameters which are the resolution of the rotation 

angle, the number of histogram bins and upper quantile size. 

Figure 4: Comparison of density histograms for point cloud with 1,629,143 points. 

Left column: Top view of unaligned point cloud and correspong density histogram. 

Right column: Top view of aligned point cloud and correspong density histogram. 

Note how histogram peaks are more dominant in the aligned point cloud, with 

noticable flat regions. 
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In case of the number of histogram bins, it is advisable to choose their amount such that the 

resulting bin sizes roughly correspond to a wall’s thickness. The size of the rotation angle 

increments on the other hand has an impact on the size of the search space and therefore on 

the algorithm’s running time. In case of the point cloud with 1,629,143 points in Figure 4, we 

observed an overall execution time of around 8.408s for an angular resolution of 1 degree, but 

a significantly reduced execution time of 1.762s for an angular resolution of 5 degrees. The 

accuracy also depends on the upper histogram bin quantile, for which we found a value of 

90% to be adequate for our experiments. In our example, removing this upper quantile from 

the histogram results reduces the overall standard deviation of the remaining histogram bins 

by 6,313.613 points. 

Figure 5: Top view of cross sections of original unaligned and axis-aligned point clouds. Top left: 

Original point cloud. Top right: The PCA-based alignment method is fast (approx. 0.116s), but fails to 

find the desired rotation angle. Alignment may even tilt the cloud, as apparent by the floor points which 

have been moved into the displayed cross section plane. Bottom left: Alignment with the histogram-

based method. Using 10 bins results in a minor error. Bottom right: Using 100 bins for the histogram-

based method provides excellent accuracy. 
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4. Results 

We evaluated our method on various data sets (further examples shown in figure 6) and found 

that it performs desirably for evenly sampled point clouds. In direct comparison, it performs 

considerably better than an alignment based on the principal component analysis (PCA). For 

evaluation purposes, we implemented our algorithm and a PCA-based alignment algorithm as 

command line tools and subsequently embedded them both into Autodesk Revit as plugins, 

making them available inside a BIM-enabled modeling environment. It is important to point 

out that our experiments in Autodesk Revit were limited to 1,000,000 points due to API 

restrictions, while the command line tool has no such point count limits. Figure 5 displays the 

result of our algorithm in Autodesk Revit and compares it to the results of PCA-based 

alignment. As displayed in the figure, our method is capable of identifying the desired 

rotation angle even for point clouds where the PCA-based method struggles. Not only are 

point clouds being rotated as intended, but the algorithm is also capable of dealing with the 

uneven sampling mentioned earlier. Aligning subsampled point clouds also gives satisfactory 

results, meaning that accelerating the alignment by using subsampled data sets of the original 

point cloud is a viable option. Moreover, we found the algorithm capable of dealing with 

scans spanning along multiple floors. We also evaluated our method on point clouds acquired 

from different sensors with results being listed in Table 1. All show an uneven resolution with 

locally high point densities. 

The PCA-based alignment method on the other hand merely calculates a local frame for a 

point cloud and aligns it with the global frame. This method is significantly faster in 

comparison, often finishing in less than a second, but delivers poor results as regions with 

high point densities will have a higher impact on the rotation. Another problem arises from 

laser scans where only one section of the building has been captured. In these cases, the 

scanned rooms have a bigger influence on the calculation of the principal axis than sparsely 

scanned corridors. 

  
  

Figure 6: Visual comparison of point clouds used for evaluation (high-resolution versions of 

these images are shown in the appendix). Left: Single office captured with Google Tango 

device. Notice the low spatial resolution and rather even point distribution. Center: Multiple 

offices captured with Riegl VZ400 laser scanner. Overall scan resolution is high, and very 

dense close to the scanning device. Right: Point cloud reconstructed from image matching. 

Characteristics are the strong noise and fluctuation point densities. 
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Table 1: Execution times for PCA- and histogram-based algorithms with an angle resolution of 1° for 

various point clouds. The first cloud was acquired with a Google Tango device, while “Riegl1” and 

“Riegl2” have been captured with a geodetic laser scanner (Riegl VZ400); both show an uneven point 

distribution characteristic for TLS. The final cloud has been captured via image matching.  

Point Cloud Number of Points Time (PCA) [s] Time (Histogram) [s] 

Tango 1,629,143 0.031 0.874 

Riegl1 5,702,432 0.203 8.408 

Riegl2 (original) 17,934,986 3.558 93.393 

Riegl2 (Revit) 1,000,000 0.116 5.326 

Image Matching 4,579,656 0.515 23.743 

5. Conclusion and Outlook 

We presented an enhanced method for the automated alignment of point clouds to a global 

coordinate system. Our method has proven to be fast and robust towards uneven sampling and 

delivers more precise results than the PCA-based method. Although we have already carried 

out extensive test runs with various point clouds of building, we intend to evaluate our 

method also with point clouds of engineering structures (e.g. bridges). With the algorithm 

being based on point density histograms, our brute-force algorithm could be optimized further 

by means of using more sophisticated optimization methods such as gradient descent, Monte 

Carlo methods or genetic algorithms. Large point clouds in particular would benefit from this 

extension. Modifying the algorithm to use histograms based on voxels rather than points 

might be an option to make it more robust towards densely sampled regions. 

Interestingly, first trials of our command-line tool indicated that pose normalization with 

respect to multiple axes seems possible as well, with the alignment being performed 

successively for each axis. However, further evaluations need to be performed to verify this 

assumption. Aside from these technical aspects, an option for automated parameter selection 

would be useful to simplify user input and manual parameter selection. 
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7. Appendix 

 

Figure 7: Point cloud acquired with Time-of-Flight camera of Google Tango device. Point 

distributions are even, but very coarse. 

 
Figure 8: Point cloud reconstructed from multiple registered scans captured with a Riegl 

VZ400 laser scanner. The overall resolutions is very fine, but suffers from density 

fluctuations close to the scan positions.  



11 

 

 
Figure 9: Reconstructed point cloud created through image matching. Point densities vary 

greatly with points scattered along their respective surfaces. Heavy noise and low point 

densities in regions such as the ceiling are quite characteristic. 


