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Abstract. This research investigates the feasibility and viability of applying Deep Neural Networks 
(DNN) to improve performance with respect to posture recognition based on multi-channel motion 
data from Wearable Sensors (WS).  The authors use the recognition of posture that can be linked to 
risk of Musculoskeletal Disorder (MSD)- among construction workers as the testbed. The proposed 
approach is based on the use of a DNN model integrating Convolutional Neural Network (CNN) 
and Long short-term memory (LSTM) that can achieve automated feature engineering and 
sequential pattern detection. The model performance was evaluated using datasets collected from 
four construction workers. The proposed model outperformed baseline CNN and LSTM models. 
Under the personalized modelling approach, it improved recognition performance by 3% from the 
benchmark Machine Learning models; the improvement is 2% for generalized modelling approach. 
The proposed model achieves high-performance posture recognition, which facilitates the MSD 
prevention in construction through monitoring injury-related postures. 

1. Introduction 
The authors explore the feasibility and viability of using DNN to improve performance in the 
recognition of motion data from multi-channel Wearable Sensor (WS) – this data can be treated 
as high-dimensional data streams (Plötz and Guan 2018). It has been demonstrated that Deep 
Neural Networks (DNN) models can increase performance in the recognition of objects from 
high-dimensional data streams. Successful deployments have been in application domains such 
as Computer Vision, Speech Recognition, and Natural language Processing (Plötz and Guan 
2018). Building environment examples include the use of DNN models in the automated objects 
detection, ranging from pipeline cracks for structure health monitoring (Cheng and Wang 2018) 
to workers’ behaviour monitoring (Xiaochun Luo et al. 2018b). There is an opportunity to 
deploy DNN models to the detection of awkward postures that compound the risk of workers 
developing musculoskeletal disorders (MSD) (Zhao and Obonyo 2018). Examples of closely 
related work research done by Chen et al. (2017) and Ryu et al. (2018). This study focuses 
specifically on the extent to which DNN-based models can be used to achieve high posture 
recognition performance using motion data from WS.  
An ideal solution is one that can be used to improve the accuracy with respect to the recognition 
of awkward posture without increasing the computational effort. The use of Machine-Learning 
(ML)-based models in detecting MSD-related posture from WS output has the advantages of 
robustness in challenging deployment contexts and ease of data processing (Chen et al. 2017, 
Ryu et al. 2018, Zhao and Obonyo 2018). It is important to note that conventional ML-based 
models use the “sliding-window-based analysis pipeline” (Plötz and Guan 2018). The main 
problems associated with the use of this approach include: i) heuristic engineering biases, ii) 
ignoring the sequential patterns, and iii) isolation of feature engineering and selection, as well 
as model optimization. These problems result in the model’s performance being sub-optimal. 
The authors contend that this challenge can be addressed through leveraging DNN’s deep 
hierarchical architecture - more specifically the Convolutional Neural Network (CNN) and the 
Recurrent Neural Network (RNN). CNN can extract rich features from raw output without 
manual feature engineering while the Recurrent Neural Network (RNN) can be used to improve 
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the recognition of temporal patterns (Plötz and Guan 2018). It has been demonstrated that the 
use of a deep hybrid model that integrates the CNN and RNN can result in improved 
performance with respect to detecting workers’ activities from videos (Ding et al. 2018). In the 
subsequent sections, this research investigates the feasibility of adapting and replicating this 
approach to posture recognition that can be linked to the risk of MSD among construction 
workers. The remainder of the paper is organized as follows. Section 2 briefly reviews the 
research background. Section 3 describes the proposed DNN model configuration and model 
test. The test result and discussion are reported in Section 4. The conclusion and further work 
summarized in Section 5. 

2. Theoretical Background 

2.1 Posture-based MSD Assessment and Prevention 
Epidemiological studies have established that physical factors pose the highest risks for MSD 
(Nunes and Bush 2012). Workers in labor-intensive sectors such as construction routinely adopt 
awkward working postures. This exposes them to a high risk of developing MSD. Some of 
these efforts directed at addressing this problem through the development of more proactive 
safety management practices have focused on the use of emerging wearable sensor technologies 
to monitor the posture adopted by the targeted workers. Such efforts are at times leverage 
ergonomics rules to facilitate the monitoring of repetitive awkward postures. Common 
ergonomic rules include “Rapid Entire Body Assessment” (Hignett and McAtamney 2000), 
Ovako Working Posture Analyzing System (OWAS) and its extension (Kivi and Mattila 1991), 
and the ISO 11226:2000 (Normalización 2000). The use of such rules in construction relies on 
the visual assessment of superintendents – these tend to suffer from subjective biases.  

2.2 Posture Capture in Construction 
Vision-based sensing and wearable sensing techniques present an opportunity for motion data 
collection in a more effective and efficient way, compared to manual inspection (Wang et al. 
2015). Vision-based sensing has exceptionally high accuracy and often comes with powerful 
analytical tools for assessing both body posture and internal joint load (Han and Lee 2013). 
However, the vulnerability to occlusion and lighting conditions, as well as data processing 
complexity (Ding et al. 2018, Hanbin Luo et al. 2018) limits its application to construction sites. 
Wearable sensors, particularly the Inertial Measurement Units (IMU), are more applicable to 
the constraints of working in a construction job site. IMU capture streaming motion data in a 
non-intrusive, robust, and cost-effective manner (Wang et al. 2015). The raw IMU sensor output 
can be used to detect awkward posture without the need for a total reconstruction of a 3D human 
body model. Such advantages are brought by the ML-based posture recognition models. The 
robustness and flexibility of IMU sensors make them appropriate for use on the construction 
job site.  

2.3 DNN for Posture and Activity Recognition 
Conventional ML-based models suffer from three main problems when used in pattern 
recognition tasks (Plötz and Guan 2018). Firstly, heuristic feature engineering, which manually 
crafts features, is a time-consuming and biased feature construction process. Secondly, it 
separates sliding windows, isolates the consecutive sample data and assumes that the time-
series motion data are static, which neglects any existing sequential patterns. Thirdly, it 



3 
 

separates feature engineering and selection from model tuning during the training process, 
resulting in sub-optimal performance. 
DNN models can address some of these challenges. They have been used successfully in pattern 
recognition tasks in Computer Vision and Speech Recognition (Plötz and Guan 2018). The 
multi-layer CNN can automatically extract rich features with increasing complexity from raw 
data, reducing the bias in manual feature engineering. The RNN has the advantage in capturing 
sequential patterns. The integration of the CNN and RNN leverages the learning capabilities 
from both extremely complex features and sequential patterns directly from input data. This 
ultimately improves the performance of the models. 
The use of Computer Vision and DNN for posture recognition in construction research is an 
emerging area. Zhang et al. (2018) used multilayer CNN to extract view-invariant features from 
a single video camera for awkward working posture recognition, which significantly improved 
the model’s generality. Hanbin Luo et al. (2018) eliminated the need for reconstructing complex 
3D human body models in their posture recognition system, that was developed using a pre-
trained CNN model (VGG-16). Ding et al. (2018) deployed the RNN with pre-trained CNN 
model (Inception V3) to further capture the sequential patterns from the video frames. The 
resulting hybrid model outperformed the state-of-the-art heuristic feature engineering 
approaches with respect to activity recognition. In other efforts, it was demonstrated that DNN 
models can be used detect the misuse of Personal Protective Equipment from multiple workers 
in the same video scene (Fang et al. 2018a, Fang et al. 2018b). The CNN-based classifier 
(ResNet-50)  can also be used to detect construction equipment, materials, and workers, and 
recognize interactive construction activities (Xiaochun Luo et al. 2018a). Xiaochun Luo et al. 
(2018b) demonstrated the feasibility of using the CNN model to detect objects from 
surveillance cameras. These breakthroughs have been made possible because of two key 
factors: i) the existence of a robust CNN architecture (such as VGG-16, Inception, and ResNet-
50) for automated feature extraction from images and videos; ii) RNN for capturing sequential 
patterns. Notwithstanding these developments, environmental constraints and the insufficient 
data for training deep model continue to limit the real-life deployment and scaling of DNN 
models that use data from vision-based sensing (Ding et al. 2018, Hanbin Luo et al. 2018).  
This paper explores the possible strategies for addressing these challenges based on the use of 
data captured using Wearable IMU sensors. The proposed approach treats motion data from 
multiple sensor channels that has been segmented into windows of the same dimension as 2D 
“images.” This “trick” enables one to apply DNN models to WS output. A simple DNN model 
was first introduced into wearable sensing-based posture recognition in an effort to find 
discriminative features (Plötz and Guan 2018). On-going research work has achieved promising 
recognition performance (Ordóñez and Roggen 2016, Zeng et al. 2014). The DNN-based 
models have shown high-performance in recognizing human daily activities and postures from 
WS output. However, there is no universal, pretrained, and ready-to-use deep model 
architecture for different scenarios (Plötz and Guan 2018). It is, therefore, necessary to 
investigate how one can configure a DNN-based model for use in the recognition of 
construction workers’ posture. 

3. DNN-based Model Development and Test 

The DNN models were implemented using Keras (TensorFlow GPU backend). The model 
development, training, and testing were done on a Windows 10 PC (Intel Core i7-7700 CPU@ 
2.8 GHz, 16GB RAM, NIVIDA GeForce GTX 1060 GPU@16GB RAM). The authors 
experimented with the use of a DNN-based posture recognition model, which combines CNN 
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and Long short-term memory (LSTM) into a Convolutional-LSTM Network (CLN). The 
LSTM extends the conventional RNN’s ability to capture longer temporary patterns. The CLN 
was evaluated using both non-recurrent CNN and non-convolutional LSTM as baseline models. 
The difference between CLN and CNN is the topology of fully connected dense layers, the 
CLN uses LSTM units as dense layers. The LSTM model uses raw sensor output without 
features learned from CNN. In this case, the difference in model performance can be attributed 
to the architecture of the model – the performance is not driven by optimization, pre-processing 
or ad hoc customization (Ordóñez and Roggen 2016). 

3.1 Components in DNN-based Model Architecture 

A CLN model example using one-layer CNN and one-layer LSTM is shown in Figure 1. 

 
Figure 1 Simple CLN Model Example 

Model Input: Model input is segmented by a sliding window. The raw sensor output is 
normalized for each channel. After segmentation, it can be treated as a 2D image of “S” by “D” 
(e.g. 60 by 30 in Figure 1), where S is timesteps, and D is the number of sensor channels in a 
window. All sensor channels are treated as one layer, resulting in an input depth of 1-layer. 

Batch and Epoch: The entire dataset for the DNN is divided into multiple (non-overlapping) 
groups of equal size. One can then feed each group into the model for training. Each group is 
also referred to as a batch (e.g. 10 in Figure 1) for effective model training. One epoch of 
training means all batches of training data pass both forward and backward through the model 
for once. Multiple epochs can be used for parameter optimization when training data is limited. 

Convolutional Layer: A convolutional layer computes the output that is connected to the local 
region of each sample in the input. The stride (e.g. 1 by 1 in Figure 1) quantify the movements 
of the convolutional kernel along with the vertical or horizontal direction. Zero-padding of the 
input data avoids losing information on the border of 2D input. The reference to “n” 
convolutional kernels, identifies the number of feature maps (e.g. 20 in Figure 1). This creates 
an additional dimension of depth for the convolutional layers. A Flatten Layer is used to 
establish a full-connected dense layer. It converts each sample’s feature maps into a one-
dimensional vector representing one sample to be classified. 

LSTM Layers: Flattening the CNN output ignores temporal dependencies between different 
time steps. LSTM can address this problem. Figure 1 shows only the feature maps along the 
depth dimension are flattened. The vertical time step dimension is reserved for capturing the 
sequential pattern. Each slice over the time step has a dimension of 600 (features) × 10 (batch 
size). Samples in a batch fully connect with 64 neurons in LSTM layer. The LSTM neurons are 
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then fully connected with the softmax layer. This is used to predict the class of each sample in 
a batch. The LSTM gives a prediction for every time step “t” in sequence. However, the 
memory of LSTM units tends to become more informed with more time steps pass. This is 
because the activation information in LSTM neurons at each time step is passed on to the next. 
This implies that the more time steps LSTM neurons have “seen”, the more informative the 
model can be (Ordóñez and Roggen 2016). Class probability distribution at the last time step 
“T” is used as a recognition result, when the full sequence in the window have been observed. 

Fully-Connected Layer:  In the non-recurrent CNN model, all elements in the vector generated 
by Flatten Layer will connect with neurons in a subsequent fully-connected layer. The last fully-
connected layer has an equal number of neurons to the number of class labels. The softmax 
function is used to deliver a class probability distribution of samples in the batch. Each sample 
can be classified by the class label with the highest probability. 

3.2 Model Architecture  

CLN Model: The proposed CLN model uses four convolutional layers to extract complex 
features. Each layer has 64 kernels with a size of 5 by the number of sensor channels, 1×1 stride, 
and zero-padding. Karpathy et al. (2015) and Ordóñez and Roggen (2016) recommend the use of a 
two-layer LSTM. Each LSTM layer has 128 units. The output from the LSTM is used by the softmax 
layer for prediction. This model can be expressed as 𝑪𝑪(𝟔𝟔𝟔𝟔) − 𝑪𝑪(𝟔𝟔𝟒𝟒) − 𝑪𝑪(𝟔𝟔𝟔𝟔) − 𝑪𝑪(𝟔𝟔𝟔𝟔) − 𝑹𝑹𝑹𝑹(𝟏𝟏𝟏𝟏𝟏𝟏) −
𝑹𝑹𝑹𝑹(𝟏𝟏𝟏𝟏𝟏𝟏) − 𝑺𝑺𝑺𝑺 (Pigou et al. 2018), where the 𝑪𝑪(𝒏𝒏𝒄𝒄) denotes a convolutional layer with nc features, 
𝑹𝑹𝑹𝑹(𝒏𝒏𝒓𝒓) denotes a recurrent LSTM layer with nr units, Sm is the softmax classification. The hyperbolic 
tangent function was used in the proposed model to activate neurons in each layer of CNN and LSTM. 

Baseline Models: The baseline CNN model was developed by substituting the LSTM layers with two 
128-unit dense layers in CLN. The CNN model can be expressed as 𝑪𝑪(𝟔𝟔𝟔𝟔) − 𝑪𝑪(𝟔𝟔𝟔𝟔) − 𝑪𝑪(𝟔𝟔𝟔𝟔) −
𝑪𝑪(𝟔𝟔𝟔𝟔) − 𝑫𝑫(𝟏𝟏𝟏𝟏𝟏𝟏) − 𝑫𝑫(𝟏𝟏𝟏𝟏𝟏𝟏) − 𝑺𝑺𝑺𝑺, where 𝑫𝑫(𝒏𝒏𝒅𝒅) denotes a dense layer with nd units. The baseline 
LSTM model can be represented as 𝑹𝑹𝑹𝑹(𝟏𝟏𝟏𝟏𝟏𝟏) − 𝑹𝑹𝑹𝑹(𝟏𝟏𝟏𝟏𝟏𝟏) − 𝑺𝑺𝑺𝑺. It uses normalized sensor output in 
each window as model input – it does not use feature engineering. 

3.3 Data Collection and Preparation 

Four subjects were recruited from nearby construction projects. Five IMU sensors (Mbinet Lab 
Meta Motion C) were deployed at the hardhat, upper arm, chest center, right thigh, and right 
calf (Figure 2) by sticking on cloth. After acquiring the workers’ consent using Institutional 
Review Board (IRB)- approved protocols, each subject was asked to perform their routine tasks 
for 30 minutes. Their activities were recorded for cross-referencing. The data collected are 
summarized in Table 1. 

 
Figure 2. Subjects Working with Sensors (the sensors blocked are not circled) 

The output was down-sampled to 40 Hz from all the sensors’ channels for S2, S3, and S4. The 
data for S1 was collected at 25 Hz and down-sampled to 20 Hz. Each record was labelled with 
video reference. This research used a 1-second window with 50% overlap for segmentation. 
Each window was labelled using the majority label in the window. 
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Table 1 Description of Field Dataset (Detailed description provided in Appendix 1) 

Subjects Activities Labels with Proportion Label Explanation 

S1 Masonry BT (14.7%), KN (2.0%), LB (12.3%), 
OW (7.2%), ST (52.4%), WK (3.4%) 

BT-Static bending and minor movement with 
bending, and short-term pick up. KN-Kneel on 
one leg and both legs OW-Overhead Work with 
one arm or both arms SQ- Squatting, ST-Standing, 
LB-Literal Bend. NULL-transit movements. 
The posture data without video reference (due to 
block) was not labelled, resulting in labelled 
postures not adding up to 100% 

S2 Demolition  BT (72.9%), NULL (4.3%), ST 
(12.5%), WK (9.1%) 

S3 Electrician BT (13.6%), KN (46.7%), 
NULL(15.0%), SQ (3.0%), ST (22.0%) 

S4 Electrician BT (12.3%), ST (71.5%), WK (12.3%) 

3.4 Set-up for the Model Training and the Model Implementation 

Dataset Splitting for Model Training and Testing: Stratified random shuffle was used to split 
the dataset. This ensured that the same class distribution was maintained in both train and test 
data. 8:2 ratio is the recommended “rule of thumb” for splitting the datasets in related studies 
(Ordóñez and Roggen 2016). This set-up was used to fully train the DNN models. The ratio 
used for the training and validation was set at 9:1 (higher than the recommended ratio). The 
splitting was repeated five times using different random state. This minimized bias in dataset 
splitting and improved the reliability of model evaluation. 

Model Performance Evaluation Metric: The construction workers’ postures are highly 
unbalanced between classes. This reflects the natural human postures. The classification 
accuracy is insufficient for measuring model performance - a naive model would achieve high 
accuracy by classifying every sample as the majority class. The authors used the Macro F1-
score to account for this imbalance. The F1-score for each label was acquired using the 
harmonic mean of Precision and Recall. By giving equal weights to the majority and minority 
labels when evaluating overall performance for all labels, the model can be trained to achieve 
high-performance for recognizing all postures. The Macro F1-score is calculated in Equation 
(1) using an unweighted average. “N” in the equation denotes the number of class labels. High 
Macro F1- scores reflect high classification performance. 

                                                             Macro F1 = 1
N
∑ 2 Precisioni×Recalli

Precisioni+Recallii                                 Equation (1) 

Checkpoint in Model Training: The model performance does increase consistently after every 
epoch during the training process. The models were trained until their performance ceased to 
improve. This occurred after 300 epochs. The model training checkpoint was set to save the 
trained model with improved performance in an “overwritten” way. It saved the DNN models 
with the best performance after all epochs. A dropout operation (50%) was used before fully-
connected layers to control model overfitting.  

4. Result and Discussion 

4.1 Model Performance Evaluation 

The evaluation was based on the use of conventional ML-based models as the benchmark on 
the same dataset. The features used in the benchmark models were the same as the authors’ 
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previous experiments (Zhao and Obonyo 2018). Classification algorithms in ML-based models 
include Support Vector Machine (SVM), K-Nearest-Neighbour (KNN), Naive Bayes (NB), 
Decision Tree (DT), and Random Forest (RF) as an ensemble model. The differences between 
DNN and ML models are features constructed and classification models used. The ML models 
were implemented using Scikit-learn (Pedregosa et al. 2011). Results are given in Table 2.   

Table 2 Performance Evaluation of Deep Architectures (Macro F1 Score as a metric)1 

Models S1 S2 S3 S4 

CLN 0.872 0.784 0.898 0.846 

CNN 0.872 0.783 0.891 0.771 

LSTM 0.826 0.772 0.880 0.855 

Best Benchmark 0.869 0.664 0.840 0.823 

The recognition model’s performance for each subject reflects the “personalization” 
capabilities of the proposed approach, which can be used to capture individual posture 
idiosyncrasy (Plötz and Guan 2018). Table 2 shows the proposed CLN model consistently 
outperformed the benchmarking models by an average of 3%. However, CNN and LSTM 
models were outperformed by the benchmarking model for S4 and S1. This supports the 
hypothesis that the CLN model can leverage the advantages from both the CNN and LSTM 
layers. The result is consistent with previous work which integrated CNN and RNN models in 
vision-based (Ding et al. 2018) and WS-based (Ordóñez and Roggen 2016) studies.  

Confusion matrixes are constructed to assess model errors (Appendix 2). LSTM models make 
most classification errors when distinguishing postures between bent, working overhead, and 
standing (S1). The models also make errors in recognizing transitional postures (S2 and S3). 
This may be due to the lack of convolutional layers, which limits the LSTM models in learning 
complex features. The sequential patterns alone are not enough for effective postures 
recognition. The authors contend that proper feature engineering can be used to improve the 
models’ performance. The proposed CNN model’s low performance for S4 stems from the high 
recognition errors associated with walking posture. This may be caused by data imbalance. S4 
contains least postures types and an imbalanced postures distribution. The imbalanced dataset 
may lead to the overfitting for majority postures and low performance for recognizing minority. 

Improved recognition performance contributes to the reliability of posture-based MSD risk 
assessment. The frequency of awkward postures can be detected more accurately, which 
enhances the validity of MSD risk level assessment using OWAS. The recognition accuracy 
greatly influences the ease with which postures can be detected continuously (Ordóñez and 
Roggen 2016). Improved accuracy can help avoid problems such as false alarm and missing 
real-time posture assessment. In subsequent research efforts, the authors will investigate these 
potential improvements further. 

4.2 Analysis of Model Generalization  

The use of the deep learning model makes it possible for one to generalize deployment of the 
author’s proposed posture recognition approach to new individuals (Plötz and Guan 2018). 
Datasets S2 and S4 were downsampled to 20 Hz and combined with S1 as S52. The generalized 
models used were based on the architecture described in Section 3.2 (see the 4 convolutional 

                                                 
1 The detailed evaluation result of models is provided in Appendix 3 and Appendix 4. 
2 S2 was not used as it did not contain sensor output from arm. 
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layers in Figure 4). As shown in Table 3, the CLN model consistently outperformed the baseline 
DNN models. The best benchmarking model’s performance also improved by over 2%. This 
supports the hypothesis that CLN model can successfully extract common subject-invariant 
features from different subjects. The observations also indicate that the performance of the 
model was better than what is observed when the heuristic features engineering approach is 
used. The baseline performance for DNN models was higher than that for the generalized 
approach (compare Table 2 and Table 3). This can be attributed to increased training data size.  

Table 3 Performance Evaluation of Generalized Model (Macro F1 Score) 

 CLN CNN LSTM Benchmark (SVM3 ) 

S5 0.852 0.813 0.827 0.835 

The generalized models’ confusion matrices (Figure 3) depicts how the CLN model improves 
the benchmarking model (SVM). CLN and SVM give a comparable performance in recognizing 
common postures from multiple subjects (BT, KN, ST, WK). The CLN model exhibited a more 
superior performance when the recognized postures were limited to only one subject (LB, NON, 
OW, SQ). The CLN outperformed the benchmarking model by 28% when detecting transitional 
postures (NULL). This may be explained by the CLN’s ability to capture sequential data 
patterns and identify dynamic postures. The results also show that the CLN model can be used 
to effectively detect an individual’s unique postures even where there is less data.  

 
Figure 3 Confusion Matrices for CLN and Benchmarking SVM 

4.3 Analysis of Fusing Multi-Sensor Channels 

The output from different sensor channels was fused directly based on an assumption that they 
were similar to pixels in images. The validity of this assumption was assessed using the CLN 
model’s performance when fusing different sensor channels on the S5 dataset. It was established 
that modifying the convolutional kernel sizes can allow the direct fusion. The performance 
increased by 1.9% when fusing two types of channels. These findings suggest fusing motion 
data across channels is an appropriate strategy for proposed CLN model. Accelerometers 
contribute more to increased recognition performance. Table 4 shows that the model using data 
from the accelerometer resulted in superior performance than that based on data from the 
gyroscope. These findings are consistent with observations form Ordóñez and Roggen (2016). 

Table 4 Performance Evaluation of Fusing Multi-Sensor Channels (Macro F1 Score) 

 Accelerometers Gyroscopes  Accelerometers+ Gyroscopes 

Convolutional Kernel 20Hz*15channels 20Hz*15channels 20Hz*30channels 

CLN Performance 0.836 0.592 0.852 

                                                 
3  The benchmarking model is SVM with 90 features selected using Recursive Feature Elimination. 
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4.4 Analysis of Hyperparameter  
Convolutional layers’ depth influences DNN models’ ability to learn complex features. The authors 
compared the performance of baseline CNN model with varying depths using dataset S5. The goal was 
to evaluate influences from convolutional layers without considering the influence of the LSTM layers. 

 
Figure 4 Analysis of Convolutional Layer Depth 

As shown in Figure 4, increasing the depth of the convolutional layer from one to three significantly 
improves the model’s performance. There is a plateau when convolutional layer depth reaches four, after 
which the model’s performance starts to decrease. Without the convolutional layers, the tested CNN 
model becomes a Multilayer Perceptron (MLP) model (𝑫𝑫(𝟏𝟏𝟏𝟏𝟏𝟏) −𝑫𝑫(𝟏𝟏𝟏𝟏𝟏𝟏) − 𝑺𝑺𝑺𝑺). The CNN model’s 
performance is no better than the MLP model when only one convolutional layer is used. These results 
suggest that the convolutional layers can be used to extract features effectively as long as the optimal 
depth has been identified. The improper feature representation from one shallow convolutional layer 
can have an adverse impact on the model’s performance. As show in Figure 4, too deep of an architecture 
can decrease the model’s performance. Besides the problem of overfitting, the deep architecture can also 
result in a “varnishing gradient” problem, that is, when the model’s performance decreases because of 
the architecture becoming too complex. Additionally, the model training time increases significantly 
when it goes deeper. It is necessary to tune the depth for balancing complexity and performance. 

5. Conclusion and Future Work 
The proposed use of a CLN model can improve the performance of recognizing construction workers’ 
postures based on the use of data obtained from wearable IMU sensors. The consistently high-
performance of the CLN model supports that the author’s position that: i) the integrated CLN model can 
take advantage both CNN and LSTM models’ power to further improve the DNN-based model 
performance; ii) an automated feature extraction approach can reduce engineering bias in the heuristic 
feature engineering process, thus resulting in improved recognition performance. 

The CLN model can capture both the “subject-invariant” common features and unique features of a 
specific subject. This outcome cannot not be easily achieved when using the heuristic feature 
engineering approach. The CLN model can be a promising approach to balance generalization and 
personalization (Plötz and Guan 2018). This is an important goal in ML-based posture recognition. The 
CLN model can also be applied directly to output from WS. The deployed CLN model can learn complex 
features directly from the raw sensor output. CLN model performance tends to increase with more sensor 
channels. However, it is recommended to tune the convolutional layer depth as a hyperparameter for 
DNN-based models. The learning power may not be fully leveraged in shallow and overly deep models. 

The authors have extended the application of DNN-based models beyond vision-sensing to multi-
channel motion sensing data. The proposed approach was validated using the need for accurate posture 
recognition in MSD risk assessment based on the use of data derived from WS. In subsequent efforts, 
the authors will refine the DNN models’ hyperparameters and deploy ensembled DNN models for 
performance improvement. The developed model will be reconfigured for deployment on mobile 
devices in real-time. The authors will also investigate the CLN performance on “unseen” subject’s data. 
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Appendix 
Appendix 1 Description of Collect Dataset  

Subjects Tasks Collected Data Used Data  Dataset Size 

S1 Masonry Bricklaying 
30.75min 
@25Hz @30 channels 

30.27min 
@20Hz@30 channels 

33260 rows by 30 
columns .CSV file 
6.54 MB 

S2 Demolition  
Ground 
Guardrail 
Installation 

30.64min 
@50Hz@30 channels 

30.27min 
@40Hz@24 
channels4 

65200 rows by 24 
columns .CSV file 
10.0 MB 

S3 Electrician 

Ground 
Electrical 
Conduit 
Installation 

26.94min 
@50Hz@30 channels 

18.50min 
@40Hz@30 channels 

44080 rows by 30 
columns .CSV file 
8.51 MB 

S4 Electrician Wire Pulling 
28.48min 
@50Hz@30 channels 

18.50min 
@40Hz@30 channels 

51960 rows by 30 
columns .CSV file 
10.0 MB 

Appendix 2 Performance Evaluation of Deep Architectures 

 
Model Setup 

Model Setup 
Ave_F1 Epoch_time (s) Exe_time (s) 

S1 

CLN 0.872 3.096 1.137 20Hz*30Channels 
333 examples in test dataset CNN 0.872 2.400 0.730 

LSTM 0.826 0.682 1.339 

Best Benchmark 0.869  

S2 

CLN 0.784 3.821 1.385 

40Hz*24Channels 
326 examples in test dataset 

CNN 0.783 2.563 1.056 

LSTM 0.772 1.272 1.974 

Best Benchmark 0.664   

S3 

CLN 0.898 3.006 2.750 

40Hz*30Channels 
220 examples in test dataset 

CNN 0.891 2.097 0.324 

LSTM 0.880 1.070 1.185 

Best Benchmark 0.840   

S4 

CLN 0.846 3.600 2.251 

40Hz*30Channels 
260 examples in test dataset 

CNN 0.771 2.356 0.330 

LSTM 0.855 1.997 2.894 

Best Benchmark 0.823   

                                                 
4 The arm sensor came across malfunction during data collection, the six channels from arm sensor was not 
considered. 
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Appendix 3 Performance Evaluation of Benchmarking ML-based Models. FF represent full features, 
SF represents features selected through Recursive Feature Elimination 

 

Key Model Parameters Setup 

Ave_F1 Train Time (s) Test Time (s) 
 

FF SF FF SF FF SF 

SVM 

S1 0.858 0.811 2.912 0.077 0.278 0.007 Kernel: Radial Basis Function 
Kernel Coefficient: 1/features 
Multi-Class: One-vs-one 
Penalty Parameter C: 1 

S2 0.633 0.606 1.307 0.338 0.098 0.026 

S3 0.826 0.786 1.924 0.033 0.181 0.003 

S4 0.820 0.809 1.286 0.103 0.088 0.009 

KNN 

S1 0.836 0.807 0.053 0.003 0.702 0.014 
K: 75 
Distance Metric: Euclidean  
Weight: uniform weight 

S2 0.664 0.582 0.038 0.011 0.485 0.100 

S3 0.785 0.779 0.038 0.005 0.362 0.007 

S4 0.830 0.799 0.054 0.010 0.697 0.048 

NB 

S1 0.568 0.680 0.026 0.002 0.005 0.000 Prior probabilities: classes proportion 

S2 0.622 0.592 0.036 0.008 0.004 0.001 

S3 0.720 0.758 0.021 0.004 0.002 0.000 

S4 0.726 0.773 0.050 0.004 0.009 0.010 

DT 

S1 0.776 0.707 2.042 0.060 0.001 0.000 Criterion: Gini index 
Min Samples for Split: 2 
Max Depth: No limits 
Max Leaf Nodes: No limits 

S2 0.643 0.549 0.813 0.360 0.001 0.000 

S3 0.779 0.667 0.713 0.023 0.001 0.000 

S4 0.760 0.778 0.920 0.085 0.001 0.000 

RF 

S1 0.869 0.782 4.181 0.513 0.011 0.007 Ensemble Method: Bootstrap 
Number of Estimators: 100 
Estimator: DT 
Estimator Setup: Same as DT 

S2 0.648 0.600 2.564 1.107 0.009 0.007 

S3 0.840 0.794 1.859 0.262 0.008 0.006 

S4 0.822 0.823 1.918 0.483 0.008 0.006 

 

  

                                                 
5 Parameter tuning from cross-validation. 
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Appendix 4 Confusion Matrix for DNN Models on Each Subject. For each subject, all the three DNN 
models used are those giving median performance among the five trained models with stratified shuffle 
splitting 
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