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ABSTRACT 
We argue in this position paper that simulation is an important 
tool to support the design of technology to support lifelong 
learning. We discuss various roles that simulation can play in 
helping the design of technology for lifelong learning, and then 
present some issues that must be dealt with in building 
simulations in this context along with some preliminary insights 
into how to deal with these issues. We illustrate our discussion 
using SimDoc, a simulation we have developed of a doctoral 
program, a real world longer-term mentoring environment. 
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1 Supporting Lifelong Learning with Technology 
The ubiquitous nature of technology means the time is ripe to 

use technology to support lifelong learning [1]. Lifelong learning 
has been considered as part of continuing education [2] and adult 
learning [3]. According to Cropley [4] and Bagnall [5], lifelong 
learning happens throughout a person’s life involving all three 
kinds of education: formal, non-formal and informal. 

Technology can already support lifelong learning. One way is 
via collaborative learning environments aimed at design tasks and 
information sharing [6]. Another is through mobile technology 
that has the capacity to enable learners to access learning material 
from any location while at the same time facilitating 
communication between learners and their peers or their 
instructors (mentors) [7]. Technology has been designed that can 
help learners of all ages to participate in lifelong learning through 
seeking help and social support, following up recommendations 
about content, scaffolding of learning, and finding mentors. 
However, most advanced learning technology research and most 
educational institutes’ use of technology to support learning have 
focused on shorter term learning episodes [8]. Such research has 
led to the development of various systems that are helping 
thousands of learners in numerous learning contexts and domains. 

Perhaps the most ambitious approach to developing 
technology to support learning is in the area of artificial 

intelligence in education (AIED), with its focus on 
personalization, deep modelling, and innovative pedagogical 
approaches. There have been many successes in AIED, but, again, 
mostly in restricted domains and shorter term learning contexts. 
As AIED has begun to venture into lifelong learning, it has faced 
new challenges. Two of these challenges concern the design and 
evaluation stages of AIED systems meant to support lifelong 
learning. Design is costly [9], and it is often impossible to run 
closely controlled experiments [10]. 

Given these design and evaluation challenges, it is important to 
find a cheaper, faster, and more flexible approach for evaluating 
design decisions underlying AIED systems for supporting lifelong 
learning. Simulation is a promising approach, analogous to the use 
of wind tunnels to evaluate the aerodynamics of various airplane 
components [11]. Simulation presents an opportunity to 
experiment with design decisions that explore various hypotheses 
about learning and pedagogical support in a more cost-effective 
and faster way than using human learners. 

Use of simulation within AIED research is not a new idea. In 
the mid-1990s VanLehn, Ohlsson, and Nason [12] asserted that 
technological advances had made it possible to create simulated 
pedagogical agents that could exhibit human-like behavior. They 
identified three main uses of simulation in learning environments: 
(i) simulation can provide an environment for human instructors 
to practice their teaching methods; (ii) simulation can present an 
environment for evaluating different pedagogical instructional 
designs; (iii) simulated learners can act as learning companions 
for human learners. Our use of simulation is of type (ii), which 
has not had nearly as much research as type (iii). However, there 
has been some type (ii) research, including the development of 
complex simulation models such as SimStudent [13], simple 
model simulations such as [14], and medium complexity model 
simulations such as those provided in [15], [16]. 

2 Potential Roles of Simulation in Exploring 
System Design Issues 
As in the development of AIED systems themselves, most 

simulations supporting the design of learning technology are 
focused on short learning episodes (measured at most in months) 
and covering well-defined subject matter [14]. There is a lot of 
knowledge and experience on how these subjects are taught and 
learned that can be drawn upon to inform a simulation [13]. It is 
therefore often possible to anticipate potential learning outcomes. 
In a lifelong learning context simulation would enable advanced 
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learning technology researchers to conduct experiments and shed 
light on AIED systems that are otherwise impractical to 
investigate because of the nature of the environment, in particular 
the lengthy time scales involved [17]. Simulation can be used to 
replicate lifelong learning by modeling a domain’s key 
characteristics and behavior over a span of time [15]. Further, 
simulation makes it possible to evaluate AIED systems for 
supporting lifelong learning without having to wait a lifetime for 
results [16]. Such evaluation is crucial in determining the 
implications of using a lifelong learning system.  

2.1 Exploring Design Issues 
When using simulation to explore design issues in building 

systems to support lifelong learning, system designers need to 
make decisions as to what system components to include in the 
final system design, and they need to explore various options in 
how these components behave [15], [18]. With simulation, 
designers can use simulated learners embedded in a simulated 
version of the desired system, exploring the impact of various 
components and discovering implications of various design 
decisions [17]. Further, designers can examine the impact of 
including or excluding certain learner attributes by creating 
simulated learners with various characteristics, and by 
manipulating the distribution of the learner population in various 
ways [16]. In addition, simulation enables system designers to 
inform various system parameter values [14].  

2.2 Exploring Evaluation Issues 
The initial exploration of design decisions is a kind of 

formative evaluation in that it involves examining the behaviour 
of various versions of an AIED system being developed to detect 
potential issues and opportunities before actually deploying the 
real system. But, it is also a kind of summative evaluation in that 
the outcomes of a particular simulation design are analyzed after 
the simulation runs. The patterns detected then inform decisions in 
the next iteration of simulation design. Real world learning 
environments also use the summative evaluation of one version of 
a learning system to inform the next, but the design cycles are 
much longer than in a simulation, the factors at play are much 
more numerous and interdependent, and there is often little 
flexibility in what changes can be made in a system design. 
Simulation thus provides an opportunity to explore formative and 
summative evaluation and to find interesting connections between 
the two. We return to this when exploring simulation lifecycle 
issues below. 

There are other research issues associated with formative 
evaluation such as exploring ways of hooking simulated learners 
to other systems to explore those systems’ functionality. Such 
systems might be recommender systems, help systems, or 
mentoring systems. In addition, examining how simulation can 
draw from existing learning management systems (LMSs like 
BlackBoard or Moodle), or online courses like MOOCs (which 
have large amounts student data) is an opportunity to explore how 
real world data and simulation data can be mutually informative. 

Finally, simulation enables the capturing of fine grained 
simulation data that allows exploration of many aspects of 
learning and teaching by data mining the simulation data for 
interesting patterns. Because by definition the simulation is a 
simplified model of the complex real world, these patterns can 
often emerge more clearly than in the real world where noise and 
the interactions of thousands of variables can obscure important 
relationships. Of course, it must be kept in mind that any 
simulation is merely a prediction for the real world and any 
patterns found in simulated data eventually need confirmation 
with actual data gathered in a real life learning scenario. 

2.3 Exploring “What If” Scenarios 
There are many other factors that affect learning outcomes beyond 
system design, pedagogical instructional design, and learning 
content. An example is the social interaction aspect of learning. 
Simulation enables experimentation with different pedagogical 
approaches and interaction patterns among learners and teachers 
to see the impact on learning outcomes. In particular, with 
simulation it is possible to explore hypothetical “what if” 
scenarios. These hypothetical scenarios can include situations 
where there is, as yet, no real world data; situations where it 
would take too long to get real world data (a standard feature of 
lifelong learning contexts); artificial configurations of (simulated) 
learners and (simulated) teachers that could never occur in the real 
world but that bring out various patterns that could be 
illuminating; learning environments where certain kinds of 
support tools are posited (even if not yet built) to see their effect; 
and so on. The ability to create “what if” scenarios is a major 
advantage that simulation provides. 

3  Factors That Must be Considered in Using 
Simulation for System Design 
Before using simulation to explore questions concerning 

supporting lifelong learning, a system designer must take into 
account several important factors, which we will discuss in this 
section. In section 4 we will then illustrate our discussion with 
lessons drawn from SimDoc, a simulation of a doctoral program, 
designed by the first author in his Ph.D. thesis [19]. We first 
discuss important issues to consider when designing and building 
a lifelong learning simulation model. We then end this section by 
providing a description of SimDoc, a model of a longer-term 
learning environment, the doctoral program. 

3.1 Simulation Model Fidelity 
Simulation model fidelity refers to the degree of similarity 

between a simulation model and the real world phenomena under 
study. Different researchers have demonstrated that it is possible 
to use different levels of model fidelity to gain insight into various 
pedagogical research issues. While Champaign and Cohen [14] 
used a very low fidelity model, Matsuda et al. [13] used a 
simulation model with high cognitive fidelity to explore the 
impact of personalized learning experiences. Medium fidelity 
simulation modelling has been used in [15] to uncover interesting 
results.  
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A system designer must consider the level of model fidelity 
they want to use before starting the simulation study. This is 
particularly important because the level of simulation fidelity 
affects the interpretation of the simulation results. The fidelity 
should be detailed enough to allow appropriate exploration of the 
research issues the designer is investigating using the simulation 
model. 

3.2  Informing a Simulation Model 
To successfully use simulation to explore issues concerning 

supporting lifelong learning, a system designer must have clear 
research questions. This requires a system designer to think 
critically about the focus of the research and the design of 
expected simulation experiments. This will allow the system 
designer to more fully understand the structure of the target 
learning environment. Knowing the questions of interest also 
allows the designer to decide on which elements of the 
environment and learners to model, as well as the level of 
simulation model fidelity. Ultimately, this will direct the system 
designer’s search for data to use to inform the simulation model’s 
attributes, parameters, key assumptions, and algorithms.  

A key issue to focus on here is the availability of data, which 
can be a big challenge in lifelong learning contexts. A system 
designer needs to consider beforehand if there are data concerning 
the phenomena under investigation. Are the data easily 
accessible? If yes, are the data from a single source or multiple 
sources? If multiple sources, how do we integrate data from 
different sources? What is the alternative if data is not accessible: 
can information be derived from known policies or procedures in 
the target environment, from related empirical research, from 
“commonsense” considerations? If data is available, a system 
designer needs to consider what approaches to use in identifying, 
collecting, and analyzing the data. After identifying research 
questions and sources of data, a system designer can then 
formulate a conceptual model and build the system incrementally 
until it behaves like the real world system being modelled. 

3.3 Calibrating a Simulation Model 
Often a simulation model will have parameters whose values 

cannot be directly derived from available raw data. There are at 
least two ways to determine the parameter values for the missing 
data. One approach is to use commonsense assumptions. Another 
way is to use calibration to systematically derive the values for the 
missing data. Calibration is the process of adjusting numerical 
parameters in the computational model for the purpose of 
improving the match between the simulation output and data from 
the real world system [20]. While performing calibration, a 
system designer can only vary attributes and parameters that are 
not yet assigned values from other sources (which is why 
calibration is another way of informing a simulation). Calibration 
helps build a well-informed simulation model whose behaviour is 
statistically like the real world to a designer’s desired level of 
significance.  

One open research issue concerning calibration is how a 
system designer handles multiple sources of data: is it better to 

choose one source, to compute an average across multiple 
sources, or to run multiple versions of the same simulation, each 
with a different source? 

3.4 Validating a Simulation Model 
Once calibration has been performed to tune the parameters, it 

is important for the system designer to validate the resulting “best 
tuned” simulation model. Validation involves checking that a 
calibrated simulation model’s output and behavior are statistically 
like the output and behavior of the real world system under study 
[21]. This process necessitates prudent experimentation in order to 
ascertain that the model works as expected. A single simulation 
run is adequate when the simulation is based on a deterministic 
model. However, when the simulation model contains stochastic 
elements, many runs of the simulation model are needed that yield 
outputs that are both relatively stable but also have appropriate 
variability. “Stability” means that over time the average of the 
aggregate outputs of the simulation runs are statistically like the 
outputs of the real world system. “Appropriate variability” means 
that the simulation outputs of the various runs vary enough that 
overfitting hasn’t occurred. A key research issue here is 
determining how many such simulation runs are necessary in 
order to consider a simulation model validated. Another issue is 
how often should validation be done. We suggest that validation is 
necessary whenever a simulation model is revised.  

3.5 Use and Reuse of a Simulation Model 
Once a system designer has built, calibrated, and validated a 

simulation model, multiple experiments can be run in a relatively 
short amount of time. In addition to this advantage of time saving, 
a researcher can create hypothetical experimental setups to 
explore “what if” questions, as discussed above.  

Once the simulation experiments are finished, the next 
question is, can the simulation be reused to explore new 
questions? Research issues that a researcher needs to address 
when reusing a simulation concern identifying the exact focus of 
the reuse. Is it based on improving the simulation model’s fidelity 
level such as adding new data derived from the literature, or 
further probing of the real-world setting, or adding new data 
derived from insights learned from observing the results of the 
first simulation experiments? Is the emphasis on change in the 
simulation model itself, which might involve adding or 
subtracting parameters, learner model attributes, or the number of 
agent types? Is it necessary to rebuild the simulation from scratch 
or is it possible to build on the existing model? At the very least, 
the next iteration of the simulation can draw on lessons gleaned 
from the previous iteration(s), but any new simulation, even if 
built on an existing model, almost certainly requires performing 
anew the steps of informing, calibrating, and validating the model.  

4 SimDoc Case Study 
In this section we will discuss how the factors introduced in 

section 3 played out in the design of our SimDoc simulation of a 
doctoral program [16], [18], [19]. We designed SimDoc to explore 



SLLL’19, June, 2019, Chicago, Illinois USA D.E.K. Lelei and G. McCalla 
 

 
 

issues in Ph.D. students’ time in program and dropout rates. We 
decided on a medium fidelity simulation since we wanted to 
model a number of real world attributes (more than low fidelity 
models that explore interactions of one or two parameters as in 
[14]), but we didn’t have access to vast amounts of fine-grained 
data (as in [13]) that would have allowed high fidelity modelling.  

Here is a very brief overview of SimDoc’s conceptual model. 
SimDoc has five key components: agents, normative rules, 
dialogic rules, events, and scenes based on features for building an 
electronic institution proposed by Esteva et al. [22] as illustrated 
in Figure 1. We modeled SimDoc’s entities following the agent-
based modeling (ABM) [23] technique. Using ABM enables 
modelers to capture and represent characteristics of modeled 
elements on an individual basis.  

 

Figure 1. SimDoc’s Conceptual Framework 

In SimDoc, we modeled two types of agents representing 
students and faculty supervisors. Each of these agent types plays 
different roles within SimDoc. We use the normative model to 
capture the complex characteristics of a doctoral program that 
result from various interactions that happen between different 
doctoral program elements. These normative rules inform the 
behaviour and evaluation functions at an appropriate level of 
fidelity for the research issues we wish to investigate. The 
dialogic model represents the interaction strategies used within 
SimDoc. We used the notion of a scene to capture a single 
interaction that happens between two agents (such as a supervisor 
and student). To capture the various events that take place within 
the doctoral program (e.g. taking comprehensive exams or 
defending thesis proposals), we used an event model. These 
events trigger action and reactions by agents. 

In SimDoc we wanted to investigate ways of improving 
student outcomes (shorter time in program, fewer dropouts) 
through exploring a variety of supervisor-student mentoring 
relationships. We therefore informed SimDoc appropriately first 

by obtaining 10-years’ worth of raw data gathered about student 
progress in the University of Saskatchewan doctoral program (the 
“UofS dataset”). We augmented this “baseline” data with 
information derived from milestones and policies of the 
University of Saskatchewan doctoral program and with 
information derived from research studies identifying supervisor 
and student types. 

We then used system calibration processes (described in 3.3) 
that allowed us to determine values of several otherwise 
unassigned parameters in the model. Specifically, we calibrated 
the system to match the progress of students in the baseline UofS 
dataset. In our SimDoc simulation the calibration process resulted 
in a tuning of parameters that matched the UofS dataset with 93% 
confidence. 

We then moved on to validate this “best matching” model, to 
determine that it was, over time, statistically consistent with the 
UofS baseline dataset (it had stability), but also had statistical 
variability to ensure that it wasn’t overfitted (it had appropriate 
variability). To do this validation, we devised an algorithm that 
uses Levene, Chi-Square, and ANOVA tests cumulatively on a set 
of simulation runs and stops when the appropriate statistical 
properties of the simulation runs have been fulfilled (see [24] for 
more details). This algorithm stops after a certain number of runs 
n, which in our SimDoc model turned out to be 100 runs. 

We then used this number (100) as the appropriate number of 
runs that we should make for each simulation experiment, as we 
explored various supervisor-student interactions as they affected 
time in program and drop out rates in various “what if” scenarios. 
We could not do a new validation to determine the number of runs 
appropriate for each experiment since each “what if” scenario was 
purely hypothetical where all supervisors were of one type and all 
students of another (to help expose interesting patterns), not 
situations with any real world baseline data. In the end, we ran 
over two dozen experiments. This resulted in over 2400 runs, each 
a small mini-experiment, that shed interesting light on supervisor-
student interactions and their effect on time in program and 
dropout rates. For extensive details on these experiments (and all 
other aspects of SimDoc) see [19]. 

5 Future Research Directions 
An open issue associated with using simulation to understand 

system designs for supporting lifelong learning is identifying the 
contexts where the use of simulation is advantageous. What 
learning environment features are favorable for the use of 
simulation? One important aspect is the availability of some 
baseline data to inform the simulation. Another seems to be 
having relatively unambiguous questions to be answered. What 
other factors are important? 

Another issue is to determine when a simulation is accurate 
enough to be believed. We have identified two features: stability 
and appropriate variability of the outputs from run to run of the 
simulation. But, there must be other factors too. The ultimate 
‘reality check’ is that designs of lifelong learning support tools 
arising from simulation studies actually work in the real world. 
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Ultimately, a simulation is not a one-off. In most design 
scenarios there will be an iterative design/experiment cycle with 
simulation in the loop. The initial iteration is instrumental in 
determining what aspects of the model to focus on and probably 
what facets to discard. It is hoped that over successive generations 
of simulation design (with possible real world spin off 
applications along the way), the simulation can move gradually 
from medium to high fidelity as data is gathered during each cycle 
and new capabilities are integrated into the simulation model. 
Moreover, going forward there should an increasing number of 
datasets gathered over longer-term use (in MOOCs, in forums 
such as stack overflow and in other online learning contexts) that 
would inform a simulation model and provide baseline data for 
calibration and validation. Exploring how a simulation model 
evolves through many cycles is an important direction for 
simulation research. 

In conclusion our overall proposition is that simulation should 
be an essential tool in a lifelong learning system designer’s 
toolkit. Simulation can be used to explore various aspects of 
learners’ knowledge acquisition and development, the effects of 
possible changes in a learning system’s design, the implications of 
various types of learner interactions with different people and 
learning environments as they go through life, even hypothetical 
“what if” scenarios that cannot exist in the real world but 
nevertheless shed light on issues in lifelong learning. 
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