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Abstract. In this paper we present a methodology for introducing cus-
tomizable metalogic features in logic-based knowledge representation and
reasoning languages. The proposed approach is based on concepts of in-
trospection and reflection previously introduced and discussed by various
authors in relevant literature. This allows a knowledge engineer to specify
enhanced reasoning engines by defining properties and meta-properties
of relations as expressible for instance in OWL. We employ meta-level
axiom schemata based upon a naming (reification) device. We propose
general principles for extending the semantics of “host” formalisms ac-
cordingly. Suitable pre-defined libraries of properties can be made avail-
able, while user-defined new schemata are also allowed. We make the spe-
cific case of Answer Set Programming (ASP), where such features may
be part of software engineering toolkits for this programming paradigm.
We show how to extend the Answer Set Programming principles and
practice to accommodate the proposed methodology, so as to perform
meta-reasoning within the plain ASP semantics (where we mention and
discuss approaches where significant extensions are required).

Keywords: Web-ontologies · Meta-reasoning · Answer Set Program-
ming

1 Introduction

The OWL ontology language [1, 2] provides a powerful data modeling language,
and automated reasoning abilities based upon Description Logics [3]. There are,
as is well known, different versions of OWL depending upon the kind of reasoning
one wishes to use and can computationally afford; in fact, such versions range
from polynomial-time complexity, with reasoning capabilities equivalent to SQL,
to very complex reasoning capabilities even leading to undecidability. Relevant
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aspects concerning knowledge representation and reasoning that can be found
in OWL are: (i) properties of relations: e.g., symmetry/asymmetry, transitivity,
functionality, reflexivity/irreflexivity, domain/range; (ii) relations between rela-
tions (meta-properties): e.g., inverse-of, equivalence, disjointness, subclass; (iii)
cardinality of relations.

Such features have widely demonstrated their usefulness in the definition and
use of ontologies in the Semantic Web, and in our opinion they would find useful
application in many knowledge engineering and automated reasoning languages.
In fact, ontologies are pervading many areas of knowledge and data representa-
tion and management, and a lot of effort has been spent on the development of
sufficiently expressive languages for the representation and querying of ontolo-
gies.

In this paper we present a methodology for introducing OWL-like features
in logic-based knowledge engineering, representation and reasoning languages.
In fact, ontology languages such as OWL have been devised in the context of
the Semantic Web to help automated processes (“intelligent agents”) to access
information in a uniform and principled way [1]. Therefore ontologies (expressed
in such languages) are expected to provide structured vocabularies and defini-
tions that specify the relationships between terms and properties, thus allow-
ing intelligent agents (and, possibly, also humans) to interpret their meaning
flexibly yet unambiguously. This, however, is useful and important also within
knowledge representation languages that define knowledge bases which are at
the “core” of intelligent systems and support their reasoning processes. Thus,
here we introduce an approach based on concepts of introspection and reflection
discussed, among others, in [4–6]. In order to implement an engine realizing prop-
erties and meta-properties of relations inspired by those expressible in OWL, we
employ meta-level axiom schemata based upon a naming (reification) device.
We propose a method for extending the semantics accordingly. Practically, such
schemata should be added by default to any program/theory. We do not claim
to reproduce all OWL features and maybe not even most of them. In fact we
could not, as we stay within decidable frameworks based upon CWA (Closed-
World Assumption). However, the features that we reproduce are widely used,
and they are useful in many practical contexts. Moreover, we improve over OWL
as user-defined new properties are allowed in our proposal.

As a proof of concept we consider Answer Set Programming (ASP, cf. [7] and
the references therein), where the proposed techniques can be seen as a software
engineering method to be employed, together with others, in the development of
ASP programs. The ASP programming paradigm in fact, though general, pow-
erful and widely used, is at present employed in a quite basic way. The available
software engineering constructs include aggregates and weight and cardinality
constraints (discussed below in the section on ASP), and tools for modularity
of ASP programs (cf. [8, 9] and the references therein) and for “templates” [10],
where one can define subprograms/macros. We will try to demonstrate that our
techniques can usefully enrich the available toolkit.



The possibility of improving knowledge engineering capabilities by means of
metaprogramming and metareasoning has been explored in the past [11]. In logic
settings such as Prolog [12] the aim was to enlarge representation and reasoning
possibilities while avoiding to resort to a higher-level setting, mainly by using
meta-interpreters [13] and trying to equip them with a logical semantics [14,
15], or by devising specialized language extensions [16, 6]. Recently, the Rulelog
language [17] features some seemingly higher-order characteristics inspired by
the HiLog second-order language [18], though transposed into a simple (though
limited under the point of view of reasoning capabilities) first-order representa-
tion.

The mechanisms that we propose allow programmers to define relations (also)
in terms of their properties and meta-properties; this on the basis of metalevel
definitions that should be part of any program using them. Many such defini-
tions (namely, those concerning the most commonly-used properties) might be
predefined and imported by a program upon need, e.g. via libraries. However,
the approach also allows programmers to define their own new (meta) proper-
ties. So, the average programmer does not define and does not need to see the
definition of properties of relations, but rather just uses predefined ones though
the skilled programmer may optionally define new properties.

So, a given knowledge representation language becomes in fact extensible,
where an extension finds an immediate semantic and computational counterpart.
We stay within the realm of knowledge representation languages based upon
computational logic and logic programming [12], syntactically based upon some
first-order language. Among them are Prolog, ASP, and many agent-oriented
programming languages [19]. As mentioned we discuss in particular the case
of ASP, which is at present a well-known successful logic programming and
knowledge representation language paradigm. For ASP, we will show in detail
how the approach might be practically and easily implemented.

The paper is organized as follows. We first shortly summarize the basic prin-
ciples of the OWL language in Section 2, and we recall the concept of reification
(naming) of first-order terms and atoms (Section 3). Then, we present our ap-
proach in Sections 4-5. Later, after shortly recalling ASP (Section 6), in Section 7
we show (also by exploiting significant examples) how the approach can be cus-
tomized to the case of ASP. Finally, in Section 8 we discuss related work on
meta-reasoning in ASP and draw conclusions.

2 Background: OWL

OWL is a language for the definition of ontologies (the reader may refer to
www.w3.org/TR/2012/REC-owl2-primer for an introduction). The term ontology
has a complex history in Philosophy, and recently in Computer Science. In
Knowledge Representation, an ontology is a set of formal statements aimed to
describe some part of the world (often referred to as the “domain of interest” or
the “subject matter” of the ontology). Precise descriptions satisfy several pur-
poses, among which: they prevent misunderstandings in human communication



and they ensure a better software behavior, especially when different software
modules interact.

In order to precisely describe a domain of interest, the OWL language is
based upon a vocabulary. The meanings of terms is established by stating how
each term is interrelated to the other terms (and similarly for classes, proper-
ties, and individuals). A terminology, providing a vocabulary together with such
interrelation information constitutes an essential part of an OWL ontology. Be-
sides this “terminological” knowledge, usually called TBOX, an ontology might
also contain so called “assertional knowledge” (ABOX) that introduces concrete
objects of the considered domain. The TBOX part is the analogous of the set of
rules of a Prolog program, while the ABOX is the analogous of the set of facts.

OWL 2 is not a programming language, rather it provides a declarative way
to describe knowledge in a logical way. For the decidable fragments of OWL, ap-
propriate tools (so-called reasoners) can then be used to infer further information
from a given TBOX+ABOX description. How these inferences are realized al-
gorithmically depends on the specific implementations and on the fragments of
OWL considered. Still, the correct answer to any of such question is predeter-
mined by the OWL formal semantics.

In OWL it is possible to define classes of objects/individuals, membership to
classes, class inclusion, equivalence and disjointness, class hierarchies. Concern-
ing object properties, they correspond to binary predicates, i.e., to relations, and
are expressed concerning specific objects which are related by each property. It is
also possible to express negative assertions, concerning individuals not enjoying
some property. It is possible to specify hierarchies of properties (e.g., to state
that some properties are sub-properties of other ones) and to define domain
and range of each property. Among the “Advanced Use of Properties”, one can
state that certain properties are reflexive or irreflexive, symmetric or asymmet-
ric, transitive, equivalent to some other properties, or disjoint from them. It can
be stated that a property is functional, or that its inverse is functional.

3 Background: Naming Mechanisms

A reification mechanism, also known as “naming relation”, is a method for rep-
resenting within a first-order language expressions of the language itself, without
resorting to higher-order features. Naming relations can be introduced in sev-
eral manners. For a discussion of different possibilities, with their advantages
and disadvantages, see, e.g., [20–23]. However, all of them are based upon intro-
ducing distinguished constants, function symbols (if available) and predicates,
devised to construct names. For instance, given atom p(a, b, c) a name might be
atom(pred(p′), args([a ′, b′, c′]) where p′ and a′, b′, c′ are new constants intended
as names for the syntactic elements p and a, b, c and notice that: p is a predicate
symbol (which is not a first-class object in first-order settings), atom is a dis-
tinguished predicate symbol, args a distinguished function symbol and [. . .] is a
list.



More formally, let us consider a standard first-order language L including sets
of predicate, constant and (possibly) function symbols, and a (possibly denumer-
able) set of symbols of variables. As usual, well-formed formulas have atoms as
their basic constituents, where an atom is built via the application of a predi-
cate to a number n (according to the predicate arity) of terms. The latter can
be variables, constants, or compound terms built by using function symbols (if
available). We augment L with new symbols, namely a new constant (say of the
form p′) for each predicate symbol p, a new constant (say f ′) for each function
symbol f , a new constant (say c′) for each constant symbol c, and a denumerable
set of meta-variables, that we assume to have the form X ′ so as to distinguish
them syntactically from “plain” variables X. The new constants are intended to
act as names, where we will say that, syntactically, p′ denotes p, f ′ denotes f and
c′ denotes c, respectively. The new variables can be instantiated to meta-level
formulas, i.e., to terms involving names, where we assume that plain variables
can be instantiated only to terms not involving names. We assume an underlying
mechanism managing the naming relation (however defined), so we can indicate
the name of, e.g., atom p(a, b, c) as p′(a′, b′, c′) and the name of a generic atom
A as ↑A.

4 Metalogic for Properties of Relations

In this paper we mainly consider rule-based languages, where rules are typically
represented in the form Head ← Body where ← indicates implication; other
notations for this connective can alternatively be employed. In Prolog-like lan-
guages, ← is indicated as :−, and Body is intended as a conjunction of literals
(atoms or negated atoms) where ∧ is conventionally indicated by a comma.

We will represent properties of relations in OWL style by means of metalevel
rules. To define such rules, we assume to augment the language L at hand not
only with names, but with the introduction of two distinguished predicates, solve
and solve not . An atom A is a base atom if it does not involve names and its
predicate is neither solve nor solve not . Distinguished predicates will allow us to
respectively extend/restrict the meaning of the other predicates in a declarative
way. In fact, solve and solve not take as arguments (names of) atoms (involving
any predicate excluding themselves), and thus they are able to express sentences
about relations. Names of atoms, in particular, are allowed only as arguments
of solve and solve not . Also, solve and solve not can occur in the body of a
metarule only if the predicate of its head is in turn either solve or solve not .

So, metalevel rules in general allow arguments of predicates to be names of
predicates, function symbols and constants. A particular kind of metarules, that
we call metaevaluation rules, have distinguished predicates solve and solve not
in their head, and possibly also in their body, taking as argument names of
atoms.

Below is a simple example of the use of solve to specify which properties a
reflexive predicate meets. Namely that p(a, a) can be derived for any element
a belonging to the predicate domain; here, this is elicited from a occurring in



the extensional definition of p. The first rule is a metaevaluation rule, featuring
predicate solve in its head, taking as argument the name of an atom; the latter
two rules are ‘simple’ metalevel rules not involving either solve or solve not , and
taking as arguments metalevel constants.

solve(P ′(X ′, X ′)) :−reflexive(P ′), in domain(P ′,X ′).
in domain(P ′,X ′) :−solve(P ′(X ′,Y ′)).
in domain(P ′,X ′) :−solve(P ′(Y ′,X ′)).

Our objective is to make it automatic to derive p(a, a) whenever a program
includes this definition, a fact reflexive(p′) occurs in the program, and a is in
the domain of p. Vice versa, we can define:

solve not(P ′(X ′, X ′)) : −irreflexive(P ′).

with the aim to prevent the derivation of p(a, a) for any predicate p which have
been declared to be irreflexive (i.e., for which a fact irreflexive(p′) occurs in the
program).

Following [24], in general terms we understand a semantics SEM for logic
knowledge representation languages/formalisms as a function which associates
a theory/program with a set of sets of atoms, which constitute the intended
meaning. When saying that Π is a program, we mean that it is a program/theory
in the (here unspecified) logic language/formalism that one wishes to consider.

We start with the following restriction on sets of atoms that should be con-
sidered for the application of SEM . First, as customary, we only consider sets of
atoms I composed of atoms occurring in the ground version of Π. The ground
version of program Π is obtained by substituting in all possible ways variables
occurring in Π by constants also occurring in Π. In our case, metavariables
occurring in an atom must be substituted by metaconstants, with the follow-
ing obvious restrictions: a metavariable occurring in the predicate position must
be substituted by a metaconstant denoting a predicate; a metavariable occur-
ring in the function position must be substituted by a metaconstant denoting a
function; a metavariable occurring in the position corresponding to a constant
must be substituted by a metaconstant denoting a constant. According to well-
established terminology [12], we therefore require I ⊆ BΠ , where BΠ is the
Herbrand Base of Π, given previously-stated limitations on variable substitu-
tion. Then, we pose some more substantial requirements. As said before, by ↑A
we intend a name of base atom A.

Definition 1 Let Π be a program. I ⊆ BΠ is a potentially acceptable set of
atoms iff for every base atom A which belongs to I, solve(↑A) also belongs to I.

Definition 2 Let Π be a program, and I be a potentially acceptable set of atoms
for Π. I is an acceptable set of atoms iff I satisfies the following axiom schemata
for every base atom A:

A← solve(↑A)
¬A← solve not(↑A)



We restrict SEM to determine acceptable sets of atoms only, modulo bijec-
tion: i.e., SEM can be allowed to produce sets of atoms which are in one-to-one
correspondence with acceptable sets of atoms. In this way, we obtain the im-
plementation of properties of relations that have been defined via solve and
solve not rules without modifications to SEM for any formalism at hand. For
clarity however, it is convenient to filter away solve and solve not atoms from
acceptable sets. Thus, given a program Π and an acceptable set of atoms I for
Π, the Base version IB of I is obtained by omitting from I all atoms of the
form solve(↑A) and solve not(↑A).

Procedural semantics and the specific naming relation that one intends to
use remain to be defined. In fact, it is easy to see that the above-introduced
semantics is independent of the naming mechanism. For approaches based upon
(variants of) Resolution (like, e.g., Prolog) one can extend the procedure so as
to be allowed to use rules with conclusion solve(↑A) to resolve a goal A and,
vice versa, rules with conclusion A to resolve solve(↑A); if a goal G succeeds in
this way with computed answer θ, then solve not(↑Gθ) should be attempted:
if it succeeds, then G should be forced to fail; otherwise, success of G can be
confirmed.

5 Expressing OWL-Like Properties of Relations

In the previous section we have shown the use of metalevel definitions involving
solve and solve not to define what it means of a predicate to be reflexive or, vice
versa, irreflexive. These metalevel definitions are declarative yet executable, in
that they suitably enlarge or restrict the involved predicates’ extension. In this
section we show the metalevel representation of other properties of relations that
can be expressed in OWL. We concentrate in particular on properties which are
relevant and widely used. The objective is to convince the reader that most such
properties can be represented in our approach without resorting to the powerful
though complex Description Logics.

Symmetry can be simply defined as follows:

solve(P ′(X ′, Y ′)) :−symmetric(P ′), solve(P ′(Y ′, X ′)).
symmetric(friend ′).

This rule specifies in fact the meaning of symmetry for any predicate, stating
(via the predicate solve applied over a generic atom name) that p(X,Y ) can
be derived if p(Y,X) holds; notice that in this rule predicate solve occurs not
only in the head but also in the body of the rule. The fact symmetric(friend ′)
specifies that predicate friend is symmetric, via its name.

So, a programmer/knowledge designer behaves very much like in OWL, save
that properties of relations must be specified on the names of the predicates.
Notice that different metaevaluation rules (with their auxiliary metalevel rules)
can be defined and expressed in a modular way, and they naturally interact and
compose with each other.



Below we consider transitivity, that can be simply expressed in the following
way:

solve(P ′(X ′, Y ′)) :−transitive(P ′), solve(P ′(X ′, Z ′)), solve(P ′(Z ′, Y ′)).

This rule specifies the meaning of transitivity for any predicate, where a
fact of the form transitive(P ′) declares that the predicate p′ is transitive. The
definition actually allows new facts to be derived. For example, if we have the
following facts:

transitive(same age′).
same age(ann, alice).
same age(alice, chris).

via the previous rule we can derive same age(ann, chris). A possible variation
is the transitive closure.

Another very useful feature, that increases flexibility to a great extent, is
equivalence between properties, obtained by the following definition.

solve(P ′(X ′, Y ′)) :−equivalent(P ′,R′), solve(R′(X ′, Y ′)).

This rule defines two relations as equivalent if they have the same extension.
For example, stating that predicate friend is equivalent to predicate amico (the
latter is the translation into Italian of the former):

equivalent(friend ′, amico′).
friend(ann, alice).
symmetric(equivalent ′).

we can easily see that it becomes possible to derive amico(ann, alice). The meta-
meta statement symmetric(equivalent ′) allows the translation to be applied in
both ways. The concept of equivalence can be customized via other meta-rules.

Focusing the attention on the concept of inheritance, we may have the fol-
lowing:

solve(P ′(X ′, Y ′)) :−hereditary(P ′,R′),
solve(R′(X ′, Z ′)), solve(P ′(Z ′, Y ′)).

meaning that property P ′ is hereditary with respect to a relation R′ if whenever
an element of the domain of R′ has property P ′ then also all the other elements
have the same property. For example:

hereditary(polygon ′, kind of ′).
polygon(quadrilateral , four).
kind of (square, quadrilateral).

Where polygon(quadrilateral , four) indicates that a quadrilateral is a kind of
polygon that has the property of having four sides; instead, kind of (square, quadrilateral)
indicates that a square is a kind of quadrilateral. Thanks to the hereditary rule
we can derive polygon(square, four). Other OWL properties, e.g., subclasses etc.,
can be represented in a similar way.

It is important to notice that in the present setting new properties of rela-
tions can be defined upon need and immediately employed, in combination with
already existing ones, and meta-meta properties can be also expressed.



6 Background: Answer Set Programming

Answer Set Programming (ASP), is a well-known successful logic programming
paradigm (cf. [7] and the references therein). Roughly speaking, an ASP pro-
gram is a declarative Prolog-like (executable) specification of a problem to be
solved. Such a program may have several “models”, called “answer sets” (or also
“stable models”), each one representing a possible interpretation of the situa-
tion described by the program (and, usually, encoding a solution to the problem
at hand). ASP has been successfully applied in practice in many application
domains.

An answer set program Π (or simply “program”) is a finite collection of
rules of the form H ← L1, . . . , Ln. where H is an atom, n ≥ 0 and each literal
Li is either an atom Ai or its default negation notAi. The left-hand side and
the right-hand side of rules are called head and body, respectively. A rule can
be rephrased as H ← A1, . . . , Am, notAm+1, . . . , notAn. where A1, . . . , Am can
be called positive body and notAm+1, . . . , notAn can be called negative body.
Analogously to Prolog, practical programming environments often offer :− as a
glyph for the symbol←. A rule with empty body (n = 0) is called a unit rule, or
fact (vs. non-unit rules). A rule with empty head, of the form ← L1, . . . , Ln., is
a constraint. It states that the literals L1, . . . , Ln cannot be simultaneously true.
A rule head can be a disjunction and a “classical negation” is provided; for lack
of space we do not consider here such improvements to the basic paradigm.

A program may have several answer sets or may have no answer set (while in
many semantics for logic programming a program admits exactly one “model”,
however defined). Whenever a program has no answer sets, we say that the
program is inconsistent; so, checking for consistency means checking for the ex-
istence of answer sets. Answer sets of Π, if any exists, are consistently supported
minimal classical models of the program (interpreted in the obvious way as a
first-order theory).

In practice, answer sets can be found via inference engines called ASP solvers
[25]. Several solvers have became available, each of them being characterized by
its own prominent valuable features. As is well-known, most of the commonly
available ASP solvers produce the grounding of the given program as a first step,
as they are able to find the answer sets of ground programs only.

The ASP programming methodology can be called GCO, for “Guess & Check
& Optimize”, where: (i) Guess implies generating potential solutions via rules
and cycles (ii) Check implies selecting admissible ones by defining suitable con-
straints; (iii) Optimize implies specifying preference criteria by exploiting weak
constraints, indicated by connective :∼, that select among the admissible solu-
tions those that satisfy such constraints at best.

ASP has been equipped in time with several additional features, representable
via non-trivial ASP subprograms, and implemented directly in ASP solvers.
One of these is the so-called Cardinality Constraints of the form (that we show
for simplicity for the case of binary predicates, though it can be extended to
predicates of any arity):



n{p(X,Y ) : d(X)}m :−q(Y )

meaning that for every (constant value of) Y for which q(Y ) holds, every answer
set must include no less than n and no more than m (where n ≤ m) atoms of
the form p(X,Y ) where d(X) holds (of the constant value assigned to X). Given
the possible answer sets originating from the basic definition, those that do not
meet such a constraint are discarded. Below is an example of use, stating that
every person takes residence in exactly one municipality:

1{residence(X ,Y ) : municipality(X )}1 :−person(Y ).

Cardinality constraints can be seen as special cases of aggregates, which have
the form

n op [L1 = w1, . . . , Ln = wn]m

where the Li’s are literals, the wis are numerical weights, op is an operator (e.g.
sum, average, min, max) to be applied to the weights of literals that are true
in given set of atoms; in any answer set, the result of the application of the
operator must stay within the bounds. For cardinality constraints, the weight
of literals is implicitly set to 1 and the operator is implicitly set to sum. Car-
dinality constraints can reproduce some of the cardinality features of OWL; in
particular they can represent the functional property of a predicate, basically
(like in the above example) by enforcing the predicate to assume only one value
by setting both n and m to 1. However, ASP has virtually no software engineer-
ing construct beyond such constraints; in particular other properties of relations
should be specified, if needed, in an “ad hoc” manner, according to the skills of
a programmer.

In the rest of the paper, we will discuss how to incorporate into ASP the
mechanisms for definition and use of properties of relations that we have outlined
before. In this way, predefined definitions are available to every ASP user, while
the skilled one can represent her/his favorite new properties.

7 Properties of Relations in ASP

In order to be able to represent knowledge in ASP more easily and in a more
understandable and flexible way, the methodology introduced in Sections 4-5 can
be usefully employed. However, since ASP is not resolution-based, the methodol-
ogy must be applied in a different way. In this section, we propose in particular,
to compile a set S of metalevel and metaevaluation rules into a form that can be
seamlessly added to a given ASP program Π, whose rules can also undergo some
easy modifications; we thus obtain an augmented program ΠS where the require-
ments of Definitions 1 and 2 are satisfied in the answer sets of ΠS , which means
that properties of relations specified in S are properly applied. The procedure is
defined as follows.



Definition 3 Given ASP program Π and a set of metalevel and metaevalua-
tion rules S, and assuming that the metalevel constants occurring in S refer to
(are names of) predicates and constants occurring in Π, we obtain a new ASP
program ΠS from Π and S via the following steps (transformation τS).

(i) For every atom of the form solve(P ′(Args)) or solve(p′(Args)), where Args
denotes the set of arguments according to the cardinality of the predicate(s)
the atom refers to, such atoms must be transformed into the form solve(P ′,Args)
or solve(p′,Args) respectively. The same is done for solve not, where we ob-
tain solve not(P ′,Args) or solve not(p′,Args).

(ii) All metavariables are substituted with plain variables, and all metaconstants
which are names of constants with the corresponding constants. Metacon-
stants which are names of predicates are kept untouched. All metarules and
solve rules thus obtained are added to ΠS.

(iii) For every predicate p different from solve and solve not occurring in Π such
that p′ also occurs in Π, the following pair of rules is added to ΠS:

p(X1, . . . , Xn) :−solve(p′, X1, . . . , Xn),
not solve not(p′, X1, . . . , Xn). (1)

solve(p′, X1, . . . , Xn) :−p(X1, . . . , Xn),
not solve not(p′, X1, . . . , Xn). (2)

where X1, . . . , Xn are variables, n being the arity of predicate p.
(iv) All facts (unit rules) of Π are added to ΠS. For every non-unit rule in Π

of the form
p(X1, . . . , Xn) :−Body .

the rule is replaced in ΠS by the modified version:

p(X1, . . . , Xn) :−Body , not solve not(p′, X1, . . . , Xn).

Remark 1. The above transformation may need to add auxiliary predicates to
ensure safety of rules, which is a technical condition required by ASP solvers
in order to make the grounding of programs easier. This aspect presents no
conceptual or practical problems and so, for the sake of simplicity, is not treated
here. �

We are able to prove the following:

Theorem 1 The answer sets of ΠS correspond to acceptable sets of atoms for
ΠS.

Proof (sketch): All rules in S occur inΠS , though in a format suitably modified
so as to be compatible with ASP syntax and semantics. Apart from the modified
notation, the addition of rules (1) guarantees the satisfaction, in every answer
set, of the condition specified in Definition 1; the addition of rules (2) and of the
additional condition solve not(p′, X1, . . . , Xn) in all the other rules enforce the
satisfaction, in every answer set, of the conditions specified in Definition 2. �



For the sake of clarity let us apply the above definition to the previous ex-
ample (also considering symmetry). To summarize, the set S is the following:

solve(P ′(X ′, X ′)) :−reflexive(P ′), in domain(P ′,X ′).
in domain(P ′,X ′) :−solve(P ′(X ′,Y ′)).
in domain(P ′,X ′) :−solve(P ′(Y ′,X ′)).
solve(P ′(X ′, Y ′)) :−symmetric(P ′), solve(P ′(Y ′, X ′)).
solve not(P ′(X ′, X ′)) : −irreflexive(P ′).
reflexive(same age ′).
irreflexive(friend ′).
symmetric(friend ′).

Program Π is simply the following:

friend(george, ann).
same age(ann, alice).

From steps (i) and (ii) we obtain the following S′:

solve(P,X,X) :−reflexive(P), in domain(P ,X ).
in domain(P ,X ) :−solve(P ,X ,Y ).
in domain(P ,X ) :−solve(P ,Y ,X ).
solve(P,X, Y ) :−symmetric(P), solve(P, Y,X).
solve not(P,X,X) : −irreflexive(P).
reflexive(same age ′).
irreflexive(friend ′).
symmetric(friend ′).

Finally, we obtain S′′ by adding the following rules to S′:

same age(X ,Y ) :−solve(same age ′,X ,Y ),
not solve not(same age ′,X ,Y ).

solve(same age ′,X ,Y ) :−same age(X ,Y ),
not solve not(same age ′,X ,Y ).

friend(X ,Y ) :−solve(friend ′,X ,Y ),
not solve not(friend ′,X ,Y ).

solve(friend ′,X ,Y ) :−friend(X ,Y ),
not solve not(friend ′,X ,Y ).

ΠS is obtained by adding the rules in S′′ to the given program Π, that in
this case does not need modifications, as it is composed of facts only. It can
be verified, by running ΠS via any ASP solver, that its answer sets bring the
desired results (to perform experiments, metaconstants of the form p′ must be
given a syntax compatible with ASP solver, for instance p1). The resulting (in
this case unique) answer set is:



{in domain(same age ′, alice), in domain(friend ′, ann),
in domain(same age ′, ann), in domain(friend ′, george),
symmetric(friend ′), irreflexive(friend ′),
reflexive(same age ′), solve(friend ′, george, ann),
solve(same age ′, ann, alice), solve(friend ′, ann, george),
solve(same age ′, ann, ann), solve(same age ′, alice, alice),
same age(ann, alice),
same age(alice, alice), same age(ann, ann),
friend(george, ann), friend(ann, george)}

Let us notice explicitly that the above formulation is applicable to every
program Π, not just to programs composed of facts only, but to any program,
even including cycles, and thus featuring several answer sets. For example, if we
add to the above sample program the rules and facts:

friend(X ,Y ) :−nice(Y ), not enemy(X ,Y ).
enemy(X ,Y ) :−not friend(X ,Y ).
nice(alice).
irreflexive(enemy ′).

The resulting program, as it is easy to verify, has several answer sets, where
george, ann and alice are either mutual enemies or friends of alice, the only one
declared to be nice; however, due to the stated irreflexivity of predicate enemy
(in addition of what already done for friend) none of them three is either friend
or enemy of her/himself.

We introduce a simplified version for the answer sets of ΠS :

Definition 4 Given an ASP program Π, a set of metalevel and metaevalua-
tion rules (meta-definitions) S and the program ΠS obtained from the former
according to Definition 3, the Base version IB of an answer set I is obtained by
omitting from I all atoms of the form solve(p′,Args) or solve not(p′,Args).

As for the modality of use of the approach, a user should write program Π,
and declare the desired properties of relations to exploit (in the previous ex-
ample, facts reflexive(same age ′), irreflexive(friend ′), and symmetric(friend ′))
that by abuse of notation might be expressed directly on predicate names, with
a pre-processor to be responsible of re-arranging the notation. A smart pro-
grammer/knowledge engineer might enrich the predefined set S by writing new
metalevel and metaevaluation rules, in the user-friendly form illustrated in pre-
vious sections, where ΠS would then be generated by a pre-processor.

Remark 2. Transformation τS over program Π and set S of meta-definitions
adds two new rules for each predicate p occurring in Π such that p′ occurs in
S. This would at worst multiply by three the size of Π when computing S′′,
and consequently also the size of the corresponding grounded program. This is
however a pessimistic esteem, because an “ad hoc” definition of properties such
as symmetry, transitivity, etc. for specific predicates would in any case imply
adding at least one additional rule per property per predicate. Thus, there is



indeed an increase in size w.r.t. given program, but it is not dramatic and can
be considered as a reasonable drawback in exchange for the extra expressiveness.
Complexity remains the same, so there is no additional computational burden
due to the approach. �

8 Related Work and Conclusions

It is worth considering if the metaevaluation part S of given program, or more
precisely the ASP transposition S′ obtained according to Definition 3, might
be encapsulated within either a template [10] or a module [8, 9]. This can be
possible only if the specific approach to modular/template ASP allows recursive
(direct or indirect) call of templates/modules because metalevel properties can
be combined: see, e.g., the example where a symmetric predicate is equivalent
to another one, where equivalence is itself symmetric. To the best of our un-
derstanding, [10] would require the specific definition of each predicate with its
properties and their specification to be enclosed into a template. [8] would allow
to augment the definition of a predicate via a module defining the specific met-
alevel part; [9] allows instead predicates as module arguments, so there might
be a unique common definition.

The HEX framework [26, 27] allows to combine ASP with Description Log-
ics (or other formalisms). Clearly, external reasoners and knowledge bases are
assumed to be available. For properties of relations, their reification approach
would require one so-called ‘HEX rule’ for each predicate p with arity n which
might enjoy some properties, of the form: p(T1, . . . , Tn) :−&ext[p](T1, . . . , Tn).
Then, for the external evaluation of “&ext[p]”, one should resort to an OWL ex-
ternal ontology where to define the properties of p and of other predicates. The
HEX approach is certainly very useful for integrating various forms of knowl-
edge representation and reasoning. For properties of predicates such as those
discussed here it appears however over-dimensioned and certainly less efficient
(having to resort to an OWL reasoner) than our simple implementation.

Moreover, in all the above-mentioned frameworks it would be required to
know in advance if some properties can be applicable to a predicate, so as to
invoke the relative module(s) or to write the related HEX rule. Instead, if S′ is
imported as a library and an associated pre-processor generates S′′, metalevel
properties smoothly enlarge/restrict the extension of each predicate to which
they are applicable. Different properties are combined automatically with no
effort required to the programmer.

In conclusion, we have introduced a methodology based on naming and
metareasoning for enriching logic-based formalisms with the possibility of ex-
pressing and using metalevel properties of relations similarly to what done in
the OWL ontology language. Computationally, the methodology has the advan-
tage of not requiring higher-order features. From the knowledge representation
point of view, it allows the introduction of both predefined and user-defined prop-
erties, so it can increase the usability and flexibility of virtually any knowledge
representation and reasoning architecture at very little cost for implementation,



and little burden for knowledge engineers. We have shown that the methodology
is usable in both resolution-based frameworks but also in formalisms such as
ASP which are based on a very different computational engine.

Related work exists about ontologies and ASP. [28] shows that RDF(S)
ontologies can be expressed, without loss of semantics, into Answer Set Pro-
gramming. Then, based on a previous result showing that the SPARQL query
language (a candidate W3C recommendation for querying ontologies) can be
mapped to a rule based language with stable model semantics, it shows that
efficient querying of big ontologies can be accomplished within an extension of
the well known ASP system DLV [25]. The difference with our work is that we
do not intend to query external ontologies, rather we show that ontological rea-
soning can be accomplished within a logic program. The DLVHEX system [29]
is a logic-programming reasoner for computing the models of so-called HEX-
programs. In this approach ASP programs are extended to become higher-order
logic programs, which accommodate meta-reasoning through higher-order atoms,
and with external atoms for software interoperability. For instance, a rule may
look like the following one, with variables ranging over predicates:

C (X ) :−subClassOf (D ,C ),D(X ).

Although we are not able to query external ontologies (so far, as we might adopt
for instance the method of [28]), we are able to perform the same kind of meta-
reasoning within the traditional ASP semantics, which is in our opinion an added
value.
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