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Abstract. The Davis-Putnam-Robinson theorem showed that every par-
tially computablem-ary function f(a1, . . . , am) = c on the natural num-
bers can be speci�ed by means of an exponential Diophantine formula
involving, along with parameters a1, . . . , am, c, some number κ of ex-
istentially quanti�ed variables. Yuri Matiyasevich improved this theo-
rem in two ways: on the one hand, he proved that the same goal can
be achieved with no recourse to exponentiation and, thereby, he pro-
vided a negative answer to Hilbert's 10th problem; on the other hand,
he showed how to construct an exponential Diophantine equation speci-
fying f which, once a1, . . . , am have been �xed, is solved by at most one
tuple 〈v0, . . .vκ〉 of values for the remaining variables. This latter prop-
erty is called single-foldness. Whether there exists a single- (or, at worst,
�nite-) fold polynomial Diophantine representation of any partially com-
putable function on the natural numbers is as yet an open problem. This
work surveys relevant results on this subject and tries to draw a route
towards a hoped-for positive answer to the �nite-fold-ness issue.

Key words. Hilbert's 10th problem, exponential-growth relation, �nite-
fold Diophantine representation, Pell's equation.

Introduction

The celebrated Davis-Putnam-Robinson theorem of 1961 ensures that every com-
putable function F from a subset of Nm into N = {0, 1, 2, . . . } can be speci�ed as

F(a1, . . . , am) = c⇐⇒ (∃x1 · · · ∃xκ) ϕ(
variables︷ ︸︸ ︷

a1, . . . , am, c︸ ︷︷ ︸
parameters

, x1, . . . , xκ︸ ︷︷ ︸
unknowns

) , (†)

for some formula ϕ that only involves:
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versità degli Studi di Catania, Piano della Ricerca 2016/2018 Linea di intervento 2�.



� the shown (pairwise distinct) variables,
� positive integer constants,
� addition, multiplication, and exponentiation operators,1

� the logical connectives & , ∨, ∃ v, = .

Two major improvements to this result were achieved by Yuri Matiyasevich.
In [15] he showed that (†) can be set up without exponentiation; in [16], while
retaining exponentiation in it, he boiled ϕ down to the format

ϕ( a1, . . . , am, c , x1, . . . , xκ) :=

P ′ (a1, . . . , am, c, x2 , . . . , xκ) = 4x1 + x1 + P ′′(a1, . . . , am, c, x2 , . . . , xκ),

where κ > 0 and P ′ and P ′′ are polynomials with coe�cients in N, devoid of
occurrences of x1 , such that no two tuples

〈a1, . . . ,am,v0,v1, . . . ,vκ〉 , 〈a1, . . . ,am,u0,u1, . . . ,uκ〉

on N exist satisfying ϕ(a1, . . . ,am , v0, . . . ,vκ) & ϕ(a1, . . . ,am , u0, . . . ,uκ).
Thus, every tuple 〈a1, . . . ,am〉 on N either admits no continuation 〈v0, . . . ,vκ〉
satisfying ϕ�and then 〈a1, . . . ,am〉 does not belong to the domain of F�or
exactly one, and then v0 is precisely the value F(a1, . . . ,am).

By introducing a little terminology�rather common in recursion theory, cf.
[4]�we will be better-o� in what follows. A set R ⊆ Nm, with m > 0, is called

recursively enumerable (or, shortly, r.e.): when it is the domain of a partially
computable function F taking m arguments (see, e.g., [7, Sect. 2.4]);

exponential Diophantine: when it can be speci�ed as

R(a1, . . . , am)⇐⇒ (∃x1 · · · ∃xκ) ϕ(
variables︷ ︸︸ ︷

a1, . . . , am︸ ︷︷ ︸
parameters

, x1, . . . , xκ︸ ︷︷ ︸
unknowns

) , (∗)

for some formula ϕ involving the syntactic means listed at the beginning;
Diophantine: when it can be speci�ed in the form (∗), with ϕ involving the

syntactic armory just recalled, save exponentiation.

Moreover, a representation of R in the form (∗) is said to be

single-fold or univocal : when each tuple 〈a1, . . . ,am〉 of natural numbers has
at most one continuation 〈v1, . . . ,vκ〉 such that ϕ(a1, . . . ,am,v1, . . . ,vκ);

�nite-fold : when each tuple 〈a1, . . . ,am〉 of natural numbers has only �nitely
many continuations 〈v1, . . . ,vκ〉 such that ϕ(a1, . . . ,am,v1, . . . ,vκ) holds.

Let us sum up, utilizing these notions, the important results mentioned above,
along with two open issues raised many years ago, which still motivate us here:

Dpr61 [6], known as DPR: Every r.e. set is exponential Diophantine.

1 We name exponentiation the dyadic operation 〈r, p〉 7→ rp (occasionally, also p 7→ 2p).



Mat70 [15], known as DPRM: Every r.e. set is Diophantine.

Mat74 [16]: Every r.e. set admits a univocal exponential Diophantine representation.

Dmr76 [5]: Does every r.e. set admit a univocal Diophantine representation?

Mat10 [14]: Does every r.e. set admit a �nite-fold Diophantine representation?

A positive answer to Dmr76 would combine together both of Matiyasevich's
improvements to DPR, namely Mat70 and Mat74; in [14], Matiyasevich argues
on the signi�cance of this combination, and on the di�culty (as yet unsolved)
of this reconciliation. In [17, p. 50], after discussing the issue again, he ends up
by saying: �This relationship between undecidability and non-e�ectivizability is one

of the main stimuli to improve the DPRM-theorem to single-fold (or at least to �nite-

fold) representations and thus establish the existence of non-e�ectivizable estimates for

genuine Diophantine equations�.

The derivation of DPRM from DPR required that exponentiation itself were
proved to be Diophantine. A result by Julia Robinson, which we recapitulate in
Sect. 2, played historically a key role in this arduous task: she had reduced the
task to the quest for a Diophantine relation of exponential growth (a notion to be
recalled soon here); and, indeed, Matiyasevich found a polynomial Diophantine
representation of a speci�c exponential-growth relation.

After Matiyasevich [14], we have some hope that a positive answer to Mat10
can likewise be obtained by proving two facts:

� there exists a relationM(p, q), sharing with the relation 2p = q (seen as the
set {〈p , 2p〉 | p ∈ N}) a certain special property (see Fig. 12), that admits a
�nite-fold Diophantine representation;

� consequently, via a reduction technique reminiscent of J. Robinson's one,
exponentiation will have a �nite-fold Diophantine representation. (Hence, via
Mat74, every r.e. set will inherit the �nite-fold Diophantine representability.)

Concerning the former goal, [1,2] propose four exponential-growth relations
as candidate M's; moreover, [2] proves that one of them enjoys the �special
property� shown in Fig. 1. It is hard to establish whether any of these candidates
is Diophantine; clearly enough, though, if any of them is indeed Diophantine,
then it has a �nite-fold representation.

Concerning the latter goal, in order to convince ourselves (as well as our
readers) that the sought �reduction technique reminiscent of J. Robinson's one�
does exist, and to get closer to it, we undertake in this paper a comparison
among various published versions of Robinson's technique, discussing how her
idea evolved over the years from its original formulation of 1952 towards simpler
implementations, one of which might �t our needs.

In preparation for some conclusive answer to Mat10�be it positive or neg-
ative�, this paper brings together scattered notes on �nite-fold Diophantine
representability. The forthcoming material is organized as follows.

2 Notice that in the case of the relation 2p = q we could take α = β = δ = γ/2 = 2
and then p = w + 2, q = 2w+2.



There exist integers α > 1 , β > 0 , γ > 0 , δ > 0 such

that to each w ∈ N other than 0 there correspond p , q
such thatM(p, q), p < γ wβ, and q > δ αw hold.

Fig. 1. A property (elicited in [14]) which, if enjoyed by a relation M ⊆ N × N ad-
mitting a �nite-fold Diophantine representation, would ensure existence of a �nite-fold
Diophantine representation of exponentiation.

Sect. 1 reports the construction of a univocal exponential Diophantine rep-
resentation of any given r.e. set R. Out of a formally speci�ed register machine
that reaches termination on the tuples belonging to R�and only on those�, the
proposed construction technique generates a formula ϕ such that (∗) holds. By
and large, singlefold-ness results from the determinism of the device emulated
by the exponential constraints embodied into ϕ.

Then Sect. 2 discusses two ways of reducing exponentiation to any exponential-
growth dyadic relation J (p, q); both techniques are due to Julia Robinson, who
proposed them in 1952 and 1969 respectively. They ensure that if a (polyno-
mial) Diophantine representation for J is found, then it can be converted into
a Diophantine representation of exponentiation, and hence of any given r.e. set.
Appendix A expounds the original correctness proof regarding the result of 1969.

Sect. 3 reports three ways, devised by Davis, Matiyasevich, and J. Robinson,
of reducing exponentiation to the sequence

〈
yi(a)

〉
i∈N of solutions to the special-

form Pell equation (a2 − 1) y2 + 1 = � with a > 1.3 Appendices B and C dwell
upon the techniques by which those three reductions were obtained.

1 Univocal exponential representation of any r.e. set

Where does singlefold-ness of the exponential representation of an r.e. set R ⊆
Nm whatsoever stem from? In [16], where it was �rst achieved, such a represen-
tation took the form

R(a1, . . . , am)⇐⇒ (∃x1 · · · ∃xκ∃ y ∃w)
[
2y = w &
D( a1, . . . , am , x1, . . . , xκ, y, w ) = 0

]
,

where D is a polynomial in the variables a1, . . . , am , x1, . . . , xκ, y, w with inte-
gral coe�cients; this was then rewritten, by exploiting an idea of Hilary Putnam,
as

R(a1, . . . , am)⇐⇒ (∃x1 · · · ∃xκ∃ y ∃ z ∃u) 4u + u =[
y + (y + z)2

] [
1−D2( a1, . . . , am , x1, . . . , xκ, y, y + z )

]
.

3 `Q = �' means that the value of Q must be a perfect square.



This format is very elegant,4 but the proof of the associated representability
result less transparent than later single-fold-representability proofs where ex-
ponentiation was employed more liberally. Various proofs referred to register
machines, a popular model of abstract computing device, to which James P.
Jones and Yu. V. Matiyasevich resorted in three papers (see, e.g., [8]). We rely
upon Martin Davis's account [4, Chapter 6] of the Jones-Matiysevich's approach
in carrying out our considerations below.

A register machine π consists of a list =0, . . . ,=` of instructions; any execu-
tion of π begins with instruction =0 and, unless it goes on forever, it terminates
with =`. Finitely many program variables, R0,R1, . . . ,Rm, . . . ,Rr, called regis-
ters, occur in π; of these, R0 will hold the result a0 of the computation upon
termination, if execution does reach =`. At the outset, the registers R1, . . . ,Rm
must hold the respective input values a1, . . . ,am, while the values of all remain-
ing registers are supposed to be 0. Here, w.l.o.g., we shall require that a0 = 0.

There are instructions of �ve types:

Rj ← Rj + 1 increment

Rj ← Rj − 1 decrement

IF Rj = 0 GOTO k conditional branch

GOTO k unconditional branch

STOP halt

Suitable programming rules enforce that: (0) STOP only appears at the end of
π, namely as =`; (1) the number k that follows GOTO in a branch instruction
always belongs to the interval 0, . . . , `; (2) it never happens that a decrement
Rj ← Rj−1 is reached when the current value of its register Rj is 0; (3) when�if
ever�the instruction =` is reached, each one of (R0,) R1, . . . ,Rr has value 0.

The behavior of π when its execution is triggered with input values ai loaded
in its input registers R1, . . . ,Rm should be readily grasped by any person familiar
with procedural programming. In order to describe that functioning, we must
specify by means of exponential Diophantine constraints how the values of the
registers evolve over time and which instruction is about being e�ected at each
of the discrete time instants beating the execution.

An unknown, s, representing the overall number of execution steps, will play
a crucial role; in fact, we are interested in the r.e. set R consisting of those tuples
〈a1, . . . ,am〉 which, when fed into π, lead π to termination. Unless execution
terminates, no natural number s should be an acceptable value for s under the
constraints to be associated with π; on the other hand, when a tuple leads
to termination, an acceptable value s for s must exist and it must be unique,
because the abstract computing device which we are modeling is deterministic.

4 Notice that the polynomial y+(y+ z)2 belongs to Kosovski��'s family of polynomials
x1 + (x1 + x2)

2 + (x1 + x2 + x3)
3 + · · ·+ (x1 + · · ·+ xn)

n de�ning, for each n ∈ N,
an injective function of Nn into N�see [9].



In the latter case, the course of values of each register Rj (j = 0, . . . , r) can be
modeled as the sequence 〈rj,0, . . . , rj,s〉 formed by its initial value rj,0 and by its
subsequent values rj,t with t > 0, where rj,t is the value held by Rj right after the
execution of the t-th step. Notice that if execution terminates in s computation
steps, no register will ever hold a value exceeding the quantity a1+ · · ·+am+s;
therefore we can represent the course of values of each Rj by a single unknown,
rj , designating the amount

∑s
t=0 rj,t Q

t, where Q > a1 + · · · + am + s is a
base for the positional encoding of numbers large-enough in order that every
rj,t acts as a digit. Since s is a priori unknown, Q must in its turn show as an
unknown, Q, in the constraints specifying π. Out of practical concerns, it turns
out convenient to subject Q, along with a buddy unknown [, to the conditions

2[ 6 (2 a1 + · · ·+ 2 am + 2 s) max (`+ 1) < 2[ · 2 = Q ,

ensuring its uniqueness�and thus, thanks to the determinism of π, also the
uniqueness of r0, . . . , rr.

Additional unknowns l0, . . . , l` are needed to describe which instruction is
executed at each instant: li designates the amount

∑s
t=0 li,tQ

t, where li,t = 1 if
the instruction to be executed at time t is =i, and li,t = 0 otherwise. One �nal
unknown, I, is required to satisfy the equations

1 + (Q− 1) I = Qs+1 =
∑̀
i=0

li ,

so that I designates
∑s

t=0Q
t. Thus, with respect to the bases Q and 2, I reads

1 . . . 11︸ ︷︷ ︸
s+1

and 0 . . . 0︸ ︷︷ ︸
[

1 . . . 0 . . . 0︸ ︷︷ ︸
[

1︸ ︷︷ ︸
s+1

and the equation on the right re�ects the fact that exactly one instruction is
executed at each step. Putting

∆j,i =
Def

{
0 when =i does not a�ect Rj , else
±1 according to whether =i is Rj ← Rj ± 1 ,

we must then require, for j = 0, . . . , r that

rj =
(
rj +

∑`
i=0∆j,i li

)
Q+

{
aj if 0 < j 6m ,
0 otherwise,

to state how the course of values of each variable is ruled by the execution steps.5

5 Rather than presupposing that the value a0 of the output register be 0 at
the end, here we could have modi�ed the condition associated with R0 into

r0 =
(
r0 +

∑`
i=0∆0,i li

)
Q−Qs+1 a0 , thus capturing the graph 〈a0,a1, . . . ,am〉�

an r.e. set on its own right�of the function computed by π instead of its domain.



To perfect the constraint-based description of the execution of π, we shall
resort to the dominance relation a v b that occurs between a =

∑k
h=0 ah 2

h

and b =
∑k

h=0 bh 2
h, with a0, b0, . . . , ak, bk ∈ {0, 1}, if and only if ah 6 bh

holds for h = 0, 1, . . . , k. Since
(
0
1

)
= 0 and 1 =

(
0
0

)
=
(
1
0

)
=
(
1
1

)
, the Lucas's

congruence
(∑k

h=0 bh 2h∑k
h=0 ah 2h

)
≡
∏k

h=0

(
bh
ah

)
(mod 2) yields that a v b holds if and

only if
(
b
a

)
is odd. Hence dominance is exponential Diophantine; in fact, thanks

to the binomial theorem, a v b holds if and only if the remainder of the integer

division of
⌊(
2b+1 + 1

)b
/ 2b a+a

⌋
by 2b+1 is odd. The �nal constraints needed

are, for j = 0, 1, . . . , r and i = 0, 1, . . . , `:

• rj v bQ/2− 1c I and li v I, 1 v l0, l` v Qs;
• Q li v li+1 when =i is an incre-/decre-ment instruction;
• Q li v lk when =i is an unconditional branch instruction GOTO k;
• Q li v li+1 + lk and Q li v li+1 +QI − 2 rj when =i is a conditional branch

instruction IF Rj = 0 GOTO k.

Example 1 (Adapted from [5]). Goldbach's conjecture, stating that every even
integer greater than 2 is the sum of two prime numbers, can be formulated in a
�rst-order arithmetic of natural numbers by the sentence

∀ a∃ p∃ q∀u∀ v
((

( p = u·v ∨ q = u·v ) =⇒ (u = 1⇐⇒ v 6= 1 )
)
& a+a+4 = p+q

)
.

Thanks to DPR, the conjecture can also be formulated with no quanti�er
alternations, by means of a sentence of the form

¬(∃x0 · · · ∃xκ) γ( 0 , x0 , x1, . . . , xκ ) ,
where γ is a quanti�er-free exponential Diophantine formula enforcing that

G(a) = c⇐⇒ (∃x1 · · · ∃xκ) γ(
variables︷ ︸︸ ︷

c , a︸︷︷︸
param's

, x1, . . . , xκ︸ ︷︷ ︸
unknowns

) ,

holds, where

G(a) =
Def

1 if there are prime numbers p, q
such that a+ a+ 4 = p+ q ,

0 otherwise.

Such a γ can be built by conjoining together all constraints that specify the
behavior of a register machine γ computing G , in the manner discussed above.6

2 Two admirable ways of specifying exponentiation in
terms of a relation of exponential growth

In the seminal paper [18] published in 1952, Julia Robinson discusses�among
many things�how to specify the graph of exponentiation, namely the triadic

6 Bear in mind, here, the remark made in the preceding footnote.



relation bn = c, in the format

bn = c⇐⇒ (∃x1 · · · ∃xκ) ϕ(
variables︷ ︸︸ ︷

b, n, c︸ ︷︷ ︸
param's

, x1, . . . , xκ︸ ︷︷ ︸
unknowns

) (‡)

closely analogous to (†), with permission to employ in the construction of ϕ,
instead of exponentiation, a dyadic relation J which is of exponential growth in
the following sense:

i) J (p, q) implies q < pp ;
ii) for each ` > 0, there are p and q such that J (p, q) and p` < q .

The essence of such a speci�cation is best explained in terms of a polynomial
which, chronologically (see [12, p.531]), made its �rst appearance long after 1952:

Lemma 1. There is a polynomial Q in two variables with coe�cients in N such
that (using τ = � as a short for ∃ q ( τ = q2 ) ):

� Q(w, h) = � =⇒ h > ww;
� to every w, there correspond h's such that Q(w, h) = �.

Proof (just a clue). It su�ces to take Q(w, h) := (w + 2)3 (w + 4) (h+ 1)2 + 1.

Theorem 1. Let Q be as in Lemma 1. The following bi-implication then holds
if J meets the exponential-growth requirements i) and ii).

bn = c⇐⇒ (∃w , h , a , d , ` , u , v , s , q)
[
(c− 1)2 + b+ n = 0 ∨

(c+ b = 0 & n > 1) ∨(
b > 1 & c > 1 & d > ` & J (a, d) &

`2 =
(
a2 − 1

) [
n+ (a− 1) s

]2
+ 1 &

w > b maxn & Q(w , h) = q2 & a > hmax (c+ 1) &

u2 = (a2 b2 − 1) v2 + 1 & c = bu/`c
) ]

.

This rule, if there exists a Diophantine relation J satisfying i) & ii), provides a
Diophantine representation of exponentiation.

Proof. Proving the stated bi-implication is not a simple matter: we refer the
interested reader to [2, Appendix A] for details on this.

Concerning the second part of the claim, we must show that certain relations
are Diophantine; namely: x > y ⇔ ∃ v (x = v + y), x > y ⇔ x > y + 1,
x = y max z ⇔ (x = y > z ∨ x = z > y), x = by/zc ⇔ ∃ q

(
q z 6 y < (q+1) z

)
.



In [19, p. 109 and p. 112], J. Robinson simpli�es the above construction and
proof, getting:

Theorem 2. Suppose that J is an exponential-growth relation such that J (p, q)
implies p > 1, and let Q be as in the proof of Lemma 1. Then the bi-implication

bn = c⇐⇒ (∃ a , d , ` , s , x , h)
[
(c− 1)2 + n = 0 ∨

(n > 1 & c+ b = 0) ∨(
n > 1 & b > 1 & J (a, d) & d > ` & a > b+ n &

`2 = (a2 − 1)
[
n+ (a− 1) s

]2
+ 1 & Q(b+ n− 2, h) = x2 &

2 a b− b2 − 1 >
[
(b+ n+ 1) x

]
max

(
c+ 1

)
&

2 a b− b2 − 1 | `−
(
a− b

) [
(a− 1) s+ n

]
− c

) ]
holds, which gives us a Diophantine repr. of exponentiation if J is Diophantine.

Proof. A proof of the stated bi-implication is provided in Appendix A; clearly
divisibility is Diophantine, since x | y ⇔ ∃ v (y = v x).

3 Three ways of specifying exponentiation in terms of the
sequence of solutions to a special-form Pell equation

Pell equations of the special form x2−(a2−1) y2 = 1 , with a > 1, have peeped in
in the preceding section. Through one such equation we enforced a relationship
between ` and r :=

(
n + (a − 1) s

)
in Theorems 1 and 2. Constraints involving

the tricky polynomial Q(w, h) have also shown up; as one sees, Q(w, h) = q2 can

be put in the said Pell format, becoming q2−
[
(w+3)2−1

][
(w+2) (h+1)

]2
= 1.

Generally speaking, the Pell equation x2− d y2 = 1 in the unknowns x, y has
in�nitely many solutions in N, provided that the parameter d (also in N) is not
a perfect square. In the special case when d = a2 − 1 with a > 1, the increasing
sequence

〈
〈xi(a) , yi(a)〉

〉
i∈N of its solutions satis�es the double recurrence

y0(a) = 0 , y1(a) = 1 = x0(a) , a = x1(a) ,
yi+2(a) = 2 ayi+1(a)− yi(a) ,
xi+2(a) = 2 axi+1(a)− xi(a) .

We summarize in Fig. 2 the combinatorial interplay among items in this sequence
yielded by their generating rules (see, e.g., [18, pp. 439�440] and [12, pp. 527�
528]).

Many of the facts in Fig. 2 are needed, of course, in order to detail the proofs
of Theorems 1 and 2. They also enter Davis's proof [3] of the following:



1. (2 a)i > yi+1(a) > yi+1(a) /a > yi(a) > i and yi+1(a) > (2 a− 1)i;

2. xi+1(a) > xi+1(a)/a > xi(a) > ai > i and

a2 i+2 > (2 a)i+1 > xi+1(a), xi+2(a) > ai+2;

3. xi(a)− (a− b) yi(a) ≡ bi (mod 2 a b− b2 − 1);
4. yi(a) ≡ i (mod a− 1);
5. (b > 1& a > bn) =⇒ [ bn = c⇐⇒ c xn(a) 6 xn(a b) < (c+ 1) xn(a) ];
6. (b > 1& a > bn) =⇒

[
xn(a) 6 xm(a b) < a xn(a) ⇐⇒ m = n

]
;

7. yn(a) | y`(a) if and only if n | `; if y2
n(a) | y`(a), then yn(a) | `.

Fig. 2. The wealth of interplay among solutions to the Pell equation x2−(a2−1) y2 = 1 .

Theorem 3. The bi-implication

bn = c⇐⇒ (∃ a , ` , r )
[
(c− 1)2 + b+ n+ a+ `+ r = 0 ∨

(n > 1 & c+ b+ a+ `+ r = 0) ∨(
b > 1 & ` = xn(a) & r = yn(a) &

a = xb+n(b+ n+ 1) & b+ n | yb+n(b+ n+ 1) &

2 a b− b2 − 1 > c &

c ≡ `− (a− b) r ( mod 2 a b− b2 − 1 )

) ]
holds, where a, `, and r are uniquely determined. This gives us a Diophantine
representation of exponentiation, whichever way we manage to get a Diophantine
representation of the triadic relation yi(a) = y (whose arguments are: i, a, y).

Proof. A proof of the stated bi-implication results from Appendix B; clearly
congruency is Diophantine, since x ≡ y (mod z) ⇔ ∃ v

(
v2 z2 − (x− y)2 = 0

)
.

What we are seeing here is, in essence, a singlefold representation of expo-
nentiation in terms of the triadic relation yi(a) = y.7 In fact, for any triple
b, n, c of natural numbers: if bn 6= c, the shown system in the unknowns a, `, r
etc. has no solution; if bn = c, then it has exactly one solution. Matters change
if we specify the relation yi(a) = y by polynomial Diophantine means (which is

7 To see this more clearly, one should set aside various eliminable constructs. E.g.
`|', along with xb+n(b+ n+ 1), can be eliminated by rewriting the fourth line of
the above speci�cation as a constraint involving a new unknown w, as: (b+ n)w =

yb+n(b+ n+ 1) &
[
(b+ n+ 1)2 − 1

] [
(b + n)w

]2
+ 1 = a2. Likewise, ` = xn(a)

becomes (a2 − 1) r2 + 1 = `2, and three unknowns will result from elimination of
>, >, and ≡.



doable�see, e.g., [3] and [12]); for, then, additional unknowns enter into play,
which lead to in�nitely many solutions when any solution exists.

As stressed in [17, pp. 43�44], all today known methods of constructing
a polynomial Diophantine representation (‡) are in fact based on the study
of the behavior of recurrent sequences like the famous Fibonacci progression
〈0, 1, 1, 2, 3, 5, 8, . . .〉, or a sequence 〈y0(a) ,y1(a) ,y2(a) , . . .〉, �taken some mod-

ulo; clearly, this behavior is periodic and as a consequence each known Diophantine

representation of exponentiation is in�nite-fold�.

The situation does not improve, as for the �nitefold-ness issue, even if we
resort to the elegant speci�cation of exponentiation proposed in [13] by Matiya-
sevich, who considers the sequence 〈m0(a),m1(a),m2(a), . . .〉 with a ∈ N\{0, 1}
characterized by the recurrence

m0(a) = 0 , m1(a) = 1 , mi+2(a) = ami+1(a)−mi(a) .

The distinguished scholar achieves a singlefold representation of exponentiation
in terms of the triadic relationmi(a) = m. His result, as stated here, also refers
to the sequence

〈
yi(a)

〉
i∈N;

8 it is explained, albeit brie�y, in our Appendix C.

Theorem 4 ([13, pp. 31�32]). The bi-implications

bn = c⇔ c = bmn+1(16 b (n+ 1)mn+1(2 b+ 2) + 4) /
mn+1(16 (n+ 1)mn+1(2 b+ 2))c

⇔ c = b yn+1

(
8 b (n+ 1)yn+1(b+ 1) + 2

)
/

yn+1

(
8 (n+ 1)yn+1(b+ 1)

)
c

⇔ (∃x , y , z , r , s)
(
z = c y + r & 1 + r + s = y &

z = yn+1(b x+ 2) &

y = yn+1(x) &

x = 8 (n+ 1)yn+1(b+ 1)
)
.

hold, where x, y, z, r, and s are uniquely determined. This gives us a Diophantine
representation of exponentiation, whichever way we manage to get a Diophantine
representation of either one of the triadic relations mi(a) = m, yi(a) = y.

One slightly less slick, but nevertheless very elegant, reduction of exponenti-
ation to the sequence

〈
yi(a)

〉
i∈N also deserves being mentioned:

Theorem 5 ([12, pp. 534�535]). When b > 1 and n > 1, the bi-implication

bn = c⇐⇒ (∃m, k , p , q )

[
k + n+ 1 = ymb(n+ 1) &

m = 4n (c+ 1) + b+ 2 &

(m2 − 1) p2 + 1 = q2 &

m− 1 | p− n− 1 &(
p2 − 4 (k + n+ 1− p c)2

)
b c n > 0

]
holds (whence, trivially, the variable m can be eliminated).
8 An early reduction of exponentiation to an integer quotient that involves, besides
Diophantine functions, only the triadic relation yi(a) = y, appears in [16, p. 308].



Conclusions

A striking consequence of the univocal exponential representability of any r.e.
set was noted in [16, p. 300 and p. 310]. One can �nd a concrete polynomial
H(a, x0, x1, . . . , xκ, y, w) with integral coe�cients such that:

1) to each a ∈ N, there corresponds at most one κ+ 2 tuple 〈v0,v1, . . . ,vκ,u〉
such that H(a,v0,v1, . . . ,vκ,u, 2

u) > 0 holds;
2) to any monadic totally computable function C, there correspond κ+3 tuples
〈a,v0,v1, . . . ,vκ,u〉 of natural numbers such that

H(a,v0,v1, . . . ,vκ,u, 2
u) > 0 and max

{
v0,v1, . . . ,vκ,u

}
> C(a) .

To see this, refer to an explicit enumeration f0,f1,f2, . . . of all monadic
partially computable functions (see [7, p. 73 �]), so that both of

H = { 〈a1 , a2〉 ∈ N2
| fa1

(a1) = a2 } ,
K = { a ∈ N | 〈a , x〉 ∈ H holds for some x }

are r.e. sets, the complement N\K of the latter is not an r.e. set, and the former
can be represented in the univocal form shown at the beginning of Sect. 1, namely

fa1
(a1) = a2⇐⇒ (∃x1 · · · ∃xκ∃ y ∃w)

[
2y = w & D( a1, a2 , x1, . . . , xκ, y, w ) = 0

]
,

where D is a polynomial with integral coe�cients; then put

H(a, x0, x1, . . . , xκ, y, w) =
Def

1−D2( a, x0 , x1, . . . , xκ, y, w) ,

so that H(a, x0, x1, . . . , xκ, y, 2
y) > 0 holds if and only if fa(a) = x0, and hence

H satis�es 1).
By way of contradiction, suppose that there is a monadic totally computable

function C∗ such that the inequalities v0 6 C∗(a), . . . ,vκ 6 C∗(a), and u 6 C∗(a)
hold whenever a tuple 〈a,v0,v1, . . . ,vκ,u〉 of natural numbers exists such that
H(a,v0,v1, . . . ,vκ,u, 2

u) > 0 holds; that is, they hold when a pair 〈a , v0〉 ∈ H
exists (this happens, e.g., for the in�nitely many a's satisfying C∗ = fa). In
particular, the said inequalities must hold when a ∈ K. But then this would
o�er us a criterion for checking whether or not a ∈ K, by evaluating a bounded
family of expressions of the form H(a, v0, v1, . . . , vκ, u, 2

u); however, this would
con�ict with the fact that N \ K is not r.e. We conclude that H satis�es 2).

Summing up, we are in this situation: thanks to reductio ad absurdum,
we have found that the course of values of the concrete arithmetic expression
H(a, v0, v1, . . . , vκ, u, 2

u) exceeds zero at most once for each value a of a; it is
unconceivable, though, that one can put an e�ective bound on the search space
for positive values of H(a, v0, v1, . . . , vκ, u, 2

u).
A proof that every r.e. set admits a �nite-fold Diophantine polynomial rep-

resentation would yield analogous, equally striking consequences about `non-
e�ectivizable estimates'.
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A A quick account of the reduction, as proposed in [19],
of exponentiation to any exponential-growth relation

Suppose that Q ⊂ N× N and S ⊂ N× N are such that

i) Q(w, u) implies u > ww ,
ii) w > 1 & u > w2w implies Q(w, u) ;
iii) S(p, q) implies p > 1 & q 6 pp ,
iv) for each k > 0, there are p and q such that S(p, q) and pk < q .

Then, as we will prove:

bn = c⇐⇒ (∃ a , d , ` , r , v , s , t)
[
(c− 1)2 + n = 0 ∨

(n > 1 & c+ b = 0) ∨(
n > 1 & b > 1 & S(a, d) & d > ` &

`2 = (a2 − 1) r2 + 1 & r = (a− 1) s+ n &

Q(b+ n+ 1 , v) & v = 2 a b− b2 − 1 &

a > b+ n & v > c &

` = (a− b) r + v t + c

) ]
.

(@)

Lemma 2. The above bi-implication (@) holds if i), ii), iii), and iv) hold.



Proof. Assuming that n > 1 & b > 1, we must show that bn = c holds if and
only if: there are natural numbers a, d, `, r, and v = 2 a b− b2 − 1, such that the
conditions S(a, d), d > `, `2− (a2−1)r2 = 1, Q(b+n+1, v) hold and, moreover,
n is the remainder of the integer division of r by a− 1 and c is the remainder of
the division of `− (a− b) r by v.

(`⇐='): By means of i), we get v > (b + n + 1)b+n+1 > bn; by means of
iii), a > 1 and ` < aa. Thus, since n > 1 implies r > 0, we get ` = xi(a) and
r = yi(a) for some i such that 0 < i < a; therefore�taking the congruence
yi(a) ≡ i (mod a− 1) into account�i ≡ n (mod a− 1), and hence i = n is the
remainder of the division of r by a−1. Since `− (a− b) r ≡ bn (mod v)�thanks
to the congruence xj(a)− (a− b) yj(a) ≡ bj (mod 2 a b− b2 − 1) holding for all
j�and, moreover, `− (a− b) r ≡ c (mod v), c < v, bn < v, we conclude that
c = bn as desired.

(`=⇒'): Notice that iii) and iv) imply that for every k there exists an in�nite
sequence

〈p0 , q0〉 , 〈p1 , q1〉 , 〈p2 , q2〉 , . . .

in N×N such that S(pj , qj), qj > pkj , and pj+1 > pj hold for every j.9 Hence we

can choose an a so large that: for some d, S(a, d) and d > a2n holds; a > n+ b;
Q(b+n+1 , 2 a b−b2−1) (to enforce this, by ii), it su�ces to pick an a such that
2 a b−b2−1 > (b+n+1)2 (b+n+1)) and, in consequence of i), 2 a b−b2−1 > bn. To
satisfy all desired conditions, it will then su�ce to take ` = xn(a) and r = yn(a),
thanks to the congruence xn(a)− (a− b) yn(a) ≡ bn (mod 2 a b− b2 − 1).

In order for Q to behave as wanted, it su�ces to put:10

Q(w, u) =
Def

(∃x , y)
[
u > w x & x > 1 &

x2 − (w2 − 1) (w − 1)2 y2 = 1

]
.

Lemma 3. As just de�ned, the Diophantine relation Q(w, u) satis�es i) & ii).

Proof. Suppose �rst that Q(w, u) holds. From x > 1 it follows that w /∈ {0, 1};
hence x = xn(w) & (w − 1) y = yn(w) holds for some n > 0. Since yi(w) ≡
i (mod w − 1) holds for all i, we get n ≡ 0 (mod w − 1); therefore n > w − 1
and, hence, u > w xw−1(w) > ww. This proves i).

Suppose next that w > 1. By taking x = xw−1(w) and y = yw−1(w) /(w−1),
we easily check that Q(w, u) holds for every u > w xw−1(w). Since xi(w) <
(2w)i 6 w2 i holds for every i > 0, we get w xw−1(w) < w w2w−2 < w2w;
therefore, Q(w, u) holds for every u > w2w. This proves ii).

9 To choose p0, q0 so that S(p0, q0) & q0 > pk0 , just rely on iv). Inductively, assuming
S(pj , qj) & qj > pkj , notice that pj 6= 0 & p

pj
j > qj holds by iii), hence pj > k

follows; therefore, by choosing pj+1 and qj+1 so that S(pj+1, qj+1) & qj+1 > p
pj
j+1,

we will enforce qj+1 > pkj+1; on the other hand, pj+1 6= 0 & p
pj+1

j+1 > qj+1, and
therefore pj+1 > pj .

10 Notice that for w > 2 the inequality x > 1 amounts to the same as y > 0.



From Lemma 3 and Thm 2, by taking the above implementation of Q�where
we replace y by h+ 1�into account, we get straightforwardly:

Corollary 1. If S is a Diophantine relation satisfying iii) & iv), the following
rule provides a Diophantine representation of exponentiation:

bn = c⇐⇒ (∃ a , d , ` , s , x , h)
[
(c− 1)2 + n = 0 ∨

(n > 1 & c+ b = 0) ∨(
n > 1 & b > 1 & S(a, d) & d > ` &

`2 =
(
a2 − 1

) [
(a− 1) s+ n

]2
+ 1 &

x2 = (b+ n)3 (b+ n+ 2) (h+ 1)2 + 1 &

2 a b− b2 − 1 > (b+ n+ 1) x &

2 a b− b2 − 1 > c & a > b+ n &

2 a b− b2 − 1 | `−
(
a− b

) [
(a− 1) s+ n

]
− c

) ]
.

(Besides a, d, `, s, x, h, one needs one additional existential variable in the right-
hand side of this bi-implication in order to eliminate each inequality, plus one
more to eliminate the divisibility relator `|'. Thanks to the inequality a− b > 0,
we can also get rid of `, thus reducing the number of existential variables to 12.)

B Davis's reduction of bn = c to the relation r = yn(a)

The following crucial link between exponentiation and the sequence 〈yi(a)〉i∈N
was pointed out in [3] and explained at length, again, in [4]:

b > 1 =⇒
[
bn = c⇐⇒ (∃ t , a , ` , r , h )

(
r = yn(a) &

`2 − (a2 − 1) r2 = 1 &

t > b & t > n &

(t2 − 1) (t− 1)2 (h+ 1)2 + 1 = a2 &

c < 2 a b− b2 − 1 &

c ≡ `− (a− b) r ( mod 2 a b− b2 − 1 )

)]
.

Speci�cally, when b > 1 and bn = c, the constraints here appearing in the scope of
∃ can be satis�ed in in�nitely many ways: for, corresponding to any t > nmax b,
it su�ces to put a = xt−1(t) in order to be able to determine the values of ` , r ,
and h uniquely (see Lemma 4 below).



In light of the above biimplication, if we now provided a Diophantine repre-
sentation of the relation r = yn(a), we would readily get that the relation bn = c
is also Diophantine.

Let us recall here the proof of the above-stated relationship between expo-
nentiation and the Pell equation. We begin with the proposition:

Lemma 4. If b > 1 and bn = c, then to each number of the form a = x(s+1) (t−1)(t)
with t > b maxn there correspond uniquely values `, r, h such that the fol-
lowing conditions are met: r = yn(a), ` = xn(a), c < 2 a b− b2 − 1, c ≡
`− (a− b) r (mod 2 a b− b2 − 1), and a2 − (t2 − 1) (t− 1)2 (h+ 1)2 = 1.

Proof. Observe that, since t > b > 1, the Pell equation x2−(t2−1) y2 = 1 has the
usual in�nite sequence 〈〈xi(t) , yi(t)〉〉i∈N of solutions; therefore, it makes sense
to put a := x(s+1) (t−1)(t). In its turn a > 1 holds, because x(s+1) (t−1)(t) >
x1(t) > 1; hence it makes sense to put r := yn(a) and ` := xn(a).

Plainly, a > xt−1(t) > tt−1 > bn; hence it is easy to see that the inequality
bn < 2 a b− b2 − 1 is satis�ed11 when n > 0. The same inequality holds when
n = 0, as it follows from a > tt−1 > t > b > 1.

The last two conditions in the claim simply state well-known congruences
that are satis�ed (as recalled in Fig. 2) by the solutions of any Pell equation of
the special form being considered here. In particular,

c ≡ `− (a− b) r ( mod 2 a b− b2 − 1 )

states that

bn ≡ xn(a)− (a− b)yn(a) ( mod 2 a b− b2 − 1 ). (◦)

As for a2 − (t2 − 1) (t− 1)2 (h+ 1)2 = 1, it merely expresses that y(s+1) (t−1)(t)
is a non-null multiple of t − 1�; recall, in fact, that a = x(s+1) (t−1)(t) and
t − 1 > 0, and that the congruence yi(t) ≡ i (mod t− 1) holds in general, for
every i.

We next come to the converse of Lemma 4:

Lemma 5. Suppose that b > 1 and that the conditions

c < 2 a b− b2 − 1,
c ≡ `− (a− b) r ( mod 2 a b− b2 − 1 )
`2 − (a2 − 1) r2 = 1
a2 − (t2 − 1) (t− 1)2 (h+ 1)2 = 1
t > b maxn,

are satis�ed by a, `, r, t, and h, where n is the value ensuring that r = yn(a).
Then bn = c holds.
11 Here, as we will again do in the proof of Lemma 5, we are making use of the following

fact (which gets easily proven even for a real number b): If n > 0, b > 1, and a > bn

(with a, n ∈ N), then 2 a b− b2 − 1 > bn.



Proof. Since t > b > 1, the Pell equation x2−(t2−1) y2 = 1 has the usual in�nite
sequence 〈〈xi(t) , yi(t)〉〉i∈N of solutions; thus, since a2 − (t2 − 1) y2 = 1 holds
for some y > 0, we have a = xj(t) for some j, where j > 0�since a > t�and
` = xn(a), r = yn(a) holds for a suitable n. Consequently 2 a b− b2 − 1 > 2;
moreover, by the well-known congruence (◦) recalled above, we have

c ≡ bn ( mod 2 a b− b2 − 1 ),

whence the sought equality will follow if we manage to prove that both sides
of this congruence are smaller than 2 a b − b2 − 1 (as for c, this is an explicit
assumption). Since this is obvious when n = 0, we will assume n > 0.

To see that bn < 2 a b−b2−1, we argue as follows. Clearly yj(t) = (t−1) (h+1)
holds, whence (t− 1) (h+ 1) ≡ j (mod t− 1), i.e. t− 1 | j, follows. Since j 6= 0,
we get j > t−1, and therefore a = xj(t) > tj > tt−1 > bn. The sought inequality
follows, which completes the proof.

Corollary 2. Put Q(w, h) := (w + 2)3 (w + 4) (h+ 1)2 + 1 . Then,

bn = c⇐⇒ (∃ a , ` , r , h)
[
(c− 1)2 + b+ n = 0 ∨ (n > 1 & c+ b = 0) ∨(
b > 1 & r = yn(a) &

`2 = (a2 − 1) r2 + 1 & Q(b+ n− 2, h) = a2 &

2 a b− b2 − 1 > c &

c ≡ `− (a− b) r ( mod 2 a b− b2 − 1 )

) ]
.

Proof. Suppose �rst that there are a, `, r, h satisfying the conditions in the scope
of `∃', and that b > 1. By putting t := b + n + 1, we obviously get t > bmaxn
and a2 − (t2 − 1) (t− 1)2 (h+ 1)2 = 1, so that bn = c holds by Lemma 5.

Conversely, suppose that bn = c holds, where b > 1. Put t := b + n + 1
and a := xt−1(t). Then, by Lemma 4, unique values `, r, h exist satisfying all
conditions that appear in the third disjunct of the scope of `∃' in the claim.

C Representing exponentiation as an integer quotient

In the ongoing, in order to prove that

bn = c⇐⇒ c =

⌊
yn+1

(
8 b (n+ 1) yn+1(b+ 1) + 2

)
yn+1

(
8 (n+ 1) yn+1(b+ 1)

)⌋ ,
we will proceed to show, for b and n natural numbers, that

bn = limx→∞
yn+1(b x+ 2)

yn+1(x)
;



this, in the light of the corollary which follows, will give us

bn = byn+1(b x+ 2) / yn+1(x)c (*)

where x is a natural number su�cently large to reduce the distance between bn

and yn+1(b x+ 2) / yn+1(x) to an amount less than 1. We will carefully assess
how to take the value of x big enough. Our treatment adheres closely to [13,
pp. 31�32].

We begin by recalling, from fact 1 of Fig. 2:

Lemma 6. For a > 2 and i ∈ N, the following inequalities hold:

(2 a− 1)i 6 yi+1(a) 6 (2 a)i .

Here the increase on the left is strict when i > 0; on the other side, when i > 1.

Corollary 3. For b, n, x ∈ N with x > 2,

yn+1(b x+ 2)

yn+1(x)
> bn .

Proof. Thanks to Lemma 6, we have

yn+1(b x+ 2)

yn+1(x)
>

(2 b x+ 3)
n

(2x)
n >

(2 b x)
n

(2x)
n = bn .

Assessment of a value of x which �ts our needs (cf. [13, p. 32]):

yn+1(b x+ 2)

yn+1(x)


= 1 for b = 0 and x > 2 ;

< 4n

(2 x−1)n < 1 for b = 0 < n and x > 2 ;

6 bn
(
1 + 16n

2 x

)
for b > 0 < n and x > 8n .

Thus (*) becomes true as soon as x > 8 (n + 1) (b + 1)n; we can, e.g., enforce
it by putting x := 8 (n + 1)yn+1(b+ 1), thus getting the formulation of bn = c
shown at the beginning of this appendix.
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