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Abstract. In this work we describe PEAR, a tool for reasoning about
prototypical properties in an extension of Description Logics of typical-
ity with probabilities and scenarios. PEAR implements a non-monotonic
procedure for the logic ALC+TP

R, a recently introduced extension of the
logic of typicality ALC+TR by inclusions of the form T(C) vp D, where
p is a real number between 0 and 1 capturing the intuition that “all the
typical Cs are Ds, and the probability that a C is not a D is 1− p”. In
this logic, different scenarios are considered by taking into account sev-
eral extension of the ABox, containing only some typicality assumptions
about individuals. Each scenario has a probability depending on those
equipping typicality inclusions, then entailment can be restricted to sce-
narios whose probabilities belong to a given and fixed range. PEAR is
implemented in Python, it computes all scenarios of a knowledge base
and it allows the user to check the probability of a query by exploiting
a translation into standard ALC.

1 Introduction

Non-monotonic extensions of Description Logics (from now on, DLs for short)
have been actively investigated since the early 90s [1–6], in order to tackle the
well known problem of allowing one to represent and reason about prototypi-
cal properties and defeasible inheritance. A simple but powerful non-monotonic
extension of DLs is proposed in [7]: in this approach, typical properties can be
directly specified by means of a “typicality” operator: a TBox, in addition to
standard inclusions C v D, representing that “all Cs are also Ds”, can contain
inclusions of the form T(C) v D to represent that “typical Cs are also Ds”.
The Description Logic so obtained is called ALC+ TR and, as a difference with
standard DLs, one can consistently express exceptions and reason about defeasi-
ble inheritance as well. For instance, a knowledge base can consistently contain
the inclusions (1) HummingBird v Bird , (2) T(Bird) v ¬BackwardsFlier and
(3) T(HummingBird) v BackwardsFlier , expressing that, normally, birds are
not able to fly backwards, however hummingbirds are exceptional birds that,
typically, are able to fly backwards. The key point of the logic ALC + TR relies
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on the fact that the semantics of the T operator is strongly related to axioms
and rules of rational entailment as introduced in [8], widely considered as the
core properties of non-monotonic reasoning. As a consequence, T inherits well-
established properties like specificity : in the example, if one knows that Petey
is a typical hummingbird, then the logic ALC + TR allows one to infer that
it flies backwards, giving preference to the most specific information of being a
hummingbird with respect to being a bird.

The main drawback of the logic ALC + TR it that it is too weak: in-
deed, although the operator T is non-monotonic (T(C) v E does not imply
T(C u D) v E), the logic ALC + TR is monotonic [9, 10], namely, if F is
entailed from a knowledge base KB, then F is also entailed from any KB’ ⊇
KB. As a consequence, unless a KB contains explicit assumptions about typ-
icality of individuals, there is no way of inferring defeasible properties about
them: in the above example, if KB only contains that Petey is a hummingbird
(HummingBird(petey)), it is not possible to conclude that it flies backwards:
this would be possible only if the stronger information that Petey is a typical
hummingbird (T(HummingBird)(petey)) belongs to (or can be inferred from)
KB. In order to tackle this problem, in [9, 11] the authors have strengthened the
semantics of the logic ALC+TR by means of a minimal model semantics, corre-
sponding to a notion of rational closure as defined in [8] for propositional logic.
Intuitively, the idea is to restrict reasoning to (canonical) models that maximize
typical instances of a concept when consistent with the knowledge base. As a
consequence, in the resulting logic ALC + TRaCl

R , if one knows that Petey is a
hummingbird, one can nonmonotonically assume that it is also a typical one if
this is consistent, and therefore that it is able to fly backwards. From a semantic
point of view, the logic ALC + TRaCl

R is based on a preference relation among
ALC+TR models and a notion of minimal entailment restricted to models that
are minimal with respect to such preference relation.

The logic ALC + TRaCl
R imposes to consider all typicality assumptions that

are consistent with a KB. In other words, in absence of explicit contradictory
information, the logic ALC+TRaCl

R leads to assume that there are no exceptions:
this seems to be too strong in several application domains, especially in situations
characterized by a high number of individuals that are all considered as typical
ones, whereas it could be useful to reason about scenarios exhibiting exceptional
ones. To this aim, in [12] we have introduced a further extension of the logic of
typicality called ALC+TP

R, which extends ALC by means of typicality inclusions
equipped by probabilities of the form T(C) vp D, where p ∈ (0, 1), whose
intuitive meaning is that “normally, Cs are Ds and the probability of having
exceptional Cs – not being Ds – is 1 − p”. All the typical instances of the
concept C are also instances of the concept D, but we have the opportunity of
expressing a degree about the fact that a C element is not also a D element,
i.e. it is an exceptional C element. This allows us to rank different typicality
inclusions, for instance we can have that T(TeenAger) v0.6 InfluencerFollower
as well as that T(TeenAger) v0.9 ∃play .VideoGame, capturing the intuition that
both following an influencer and playing video games are typical properties of



teenagers, and we also want to express that the probability of having exceptional
teenagers not following any influencer is higher than the one of finding ones not
playing video games, by ranking the two properties with probabilities 0.6 and
0.9, respectively.

In this work we introduce PEAR, a preliminary implementation of the rea-
soning mechanism for the logic ALC+TP

R described in [12]. PEAR, standing for
Probability of Exceptions and typicAlity Reasoner, computes different syntactic
extensions of an ABox containing only some of the “plausible” typicality asser-
tions that can be entailed from the KB in the non-monotonic logic ALC+TRaCl

R :
each extension represents a scenario having a specific probability. Then, PEAR
allows one to check whether a query is non-monotonically entailed from the
knowledge base, either by selecting the scenarios where it holds or by restricting
the attention to extensions whose probabilities belong to a given and fixed range,
as well as to compute the probability of a query as the sum of the probabilities
of scenarios from which it is entailed. This allows one to reason about scenarios
that are not necessarily the most probable and are, in some sense, surprising.
The decision procedure computed by PEAR is ExpTime complete, therefore we
retain the same complexity of the underlying standard ALC.

2 Preferential Description Logics

Let us first quickly recall the main notions about the Description Logic of typ-
icality ALC + TR introduced in [7, 13, 9]. The logic ALC + TR is obtained by
adding to standard ALC the typicality operator T [7]. The intuitive idea is that
T(C) selects the typical instances of a concept C. We can therefore distinguish
between the properties that hold for all instances of concept C (C v D), and
those that only hold for the normal or typical instances of C (T(C) v D).
From a semantic point of view, we refer to rational models [9]: a model M is
any structure 〈∆I , <, .I〉 where ∆I is the domain, < is an irreflexive, transitive,
well-founded and modular (for all x, y, z in ∆I , if x < y then either x < z or
z < y) relation over ∆I . In this respect, x < y means that x is “more normal”
than y, and that the typical members of a concept C are the minimal elements
of C with respect to this relation. An element x ∈ ∆I is a typical instance of
some concept C if x ∈ CI and there is no C-element in ∆I more typical than
x. In detail, .I is the extension function that maps each concept C to CI ⊆ ∆I ,
and each role R to RI ⊆ ∆I ×∆I . For concepts of ALC, CI is defined as usual.
For the T operator, let Min<(CI) = {x ∈ CI | @y ∈ CI s.t. y < x}, we define
(T(C))I = Min<(CI).

A model M can be equivalently defined by postulating the existence of a
function kM : ∆I 7−→ N, where kM assigns a finite rank to each domain element:
the rank function kM and < can be defined from each other by stating that x < y
if and only if kM(x) < kM(y). Given standard definitions of satisfiability of a
KB in a model, we define a notion of entailment in ALC + TR. Given a query
F (either an inclusion C v D or an assertion C(a) or an assertion of the form
R(a, b)), we say that F is entailed from a KB if F holds in all ALC+TR models
satisfying KB.



As already mentioned in the Introduction, even if the T operator itself is non-
monotonic, the logic ALC + TR is monotonic. In order to perform useful non-
monotonic inferences, in [9] the authors have strengthened the above semantics
by restricting entailment to a class of minimal models. Intuitively, the idea is to
restrict entailment to models that minimize the untypical instances of a concept.
The resulting logic is called ALC + TRaCl

R and it corresponds to a notion of
rational closure on top of ALC + TR. Such a notion is a natural extension of
the rational closure construction provided in [8] for the propositional logic. The
non-monotonic semantics of ALC+TRaCl

R relies on minimal rational models that
minimize the rank of domain elements. Informally, given two models of KB, one
in which a given domain element x has rank 2 (because for instance z < y < x),
and another in which it has rank 1 (because only y < x), we prefer the latter, as
in this model the element x is assumed to be “more typical” than in the former.
Query entailment is then restricted to minimal canonical models. The intuition is
that a canonical model contains all the individuals that enjoy properties that are
consistent with KB. A modelM is a minimal canonical model of KB if it satisfies
KB, it is minimal and it is canonical1. A query F is minimally entailed from a
KB if it holds in all minimal canonical models of KB. In order to ascribe typical
properties to individuals, the notion of rational closure is further extended to the
ABox. In [9] it is shown that query entailment in ALC+ TRaCl

R is in ExpTime.

3 The Logic ALC + TP
R

In this section we recall the logic ALC + TP
R, extending the DLs of typicality

with probabilities and scenarios. Here, typicality inclusion are equipped with a
probability/degree of not having exceptions for it, and have the form

T(C) vp D,

whose meaning is “typical Cs are also Ds, and the probability of having excep-
tional Cs not being Ds is 1− p”.

Definition 1. We consider an alphabet of concept names C, of role names R,
and of individual constants O. Given A ∈ C and R ∈ R, we define:

C := A | > | ⊥ | ¬C | C u C | C t C | ∀R.C | ∃R.C

An ALC + TP
R knowledge base is a pair (T ,A). T contains axioms of the form

either C v C or T(C) vp C, where p ∈ R, p ∈ (0, 1). A contains assertions of
the form either C(a) or R(a, b), where a, b ∈ O.

Given an inclusion T(C) vp D, the higher the probability p, the less the proba-
bility of having exceptional Cs not being also Ds. In this respect, the probability
p is a real number included in the open interval (0, 1): the probability 1 is not
allowed, in the sense that an inclusion T(C) v1 D would correspond to a strict

1 In Theorem 10 in [9] the authors have shown that for any consistent KB there exists
a finite minimal canonical model of KB.



inclusion C v D (all Cs are Ds). Given another inclusion T(C ′) vp′ D′, with
p′ < p, we assume that this inclusion is less “strict” than the other one, i.e. the
probability of having exceptional C ′s is higher than the one of having exceptional
Cs with respect to properties D′ and D, respectively.

Given a KB, we define the finite set Tip of concepts occurring in the scope of
the typicality operator, i.e. Tip = {C | T(C) vp D ∈ KB}. Given an individual
a explicitly named in the ABox, we define the set of typicality assumptions
T(C)(a) that can be minimally entailed from KB in the non-monotonic logic
ALC + TRaCl

R , with C ∈ Tip. We then consider an ordered set TipA of pairs
(a,C) of all possible assumptions T(C)(a), for all concepts C ∈ Tip and all
individual constants a in the ABox. We then define the ordered multiset PA =

[p1, p2, . . . , pn], respecting the order imposed on TipA, where pi =
m∏
j=1

pij for all

T(Ci) vpi1
D1,T(Ci) vpi2

D2, . . . ,T(Ci) vpim
Dm in T . The ordered multiset

PA is a tuple of the form [p1, p2, . . . , pn], where pi is the probability of the
assumption T(C)(a), such that (a,C) ∈ TipA at position i. pi is the product of
all the probabilities pij of inclusions T(C) vpij

D in the TBox.

Following the basic idea underlying surprising scenarios outlined in [14], we

consider different extensions Ãi of the ABox and we equip them with a probabil-
ity Pi. Starting from PA = [p1, p2, . . . , pn], the first step is to build all alternative
tuples where 0 is used in place of some pi to represent that the corresponding
typicality assertion T(C)(a) is no longer assumed. We then define the notion of
extension of the ABox corresponding to a string so obtained: in this way, the
extension corresponding to PA contain all the available typicality assumptions;
in the other extensions, some typicality assumptions are discarded, thus 0 is used
in place of the corresponding pi. The probability of an extension Ãi correspond-
ing to a string PAi = [pi1, pi2, . . . , pin] is defined as the product of probabilities
pij when pij 6= 0, i.e. the probability of the corresponding typicality assump-
tion when this is selected for the extension, and 1 − pj when pij = 0, i.e. the
corresponding typicality assumption is discarded, that is to say the extension
contains an exception to the inclusion. It is easy to observe that we obtain a
probability distribution over extensions of A.

Non-monotonic entailment of a query F in the Description Logic ALC+ TP
R

is defined as follows: (i) if F is a TBox inclusion C v D, then it is entailed from
KB if it is minimally entailed from KB′ in the non-monotonic ALC + TRaCl

R ,
where KB′ is obtained from KB by removing probabilities of exceptions, i.e. by
replacing each typicality inclusion T(C) vp D with T(C) v D; (ii) if F is an
ABox fact C(a), then it is entailed from KB if it is entailed in the monotonic
ALC+TR from scenarios extending KB with Ai. Furthermore, one can consider
a notion of entailment restricted to scenarios whose probabilities belong to a
given range and, similarly to [15], a notion of probability of the entailment of a
query C(a), as the sum of the probabilities of all extensions from which C(a) is so
entailed. In [12] it is shown that entailment in ALC+ TP

R is ExpTime-complete
as for standard ALC.



4 Design of PEAR

In this section we introduce PEAR (Probability of Exceptions and typicAlity
Reasoner), a Python implementation of the reasoning services provided by the
logic ALC+TP

R. PEAR makes use of the library owlready2 2 that allows one to
rely on the services of efficient DL reasoners, e.g. the HermiT reasoner. PEAR
exploits the translation of an ALC + TR knowledge base into standard ALC
introduced in [9] and described later in this section. The current version of the
system PEAR, along with the files for the examples presented in this paper, are
available at http://di.unito.it/pear.

The system PEAR implements a non-monotonic procedure whose aim is
to compute extensions A of the ABox and corresponding alternative scenarios
having different probabilities described in the previous section. Given an ALC+
TP

R KB=(T ,A) and a query F , PEAR computes the following four steps: 1.
compute the set Tipa of all typicality assumptions that are minimally entailed
from the knowledge base in the non-monotonic logic ALC+TRaCl

R ; 2. compute all

possible Ãi extensions of the ABox and compute their probabilities; 3. select the
extensions whose probabilities belong to a given range 〈p, q〉; 4. check whether
the query F is entailed from all the selected extensions in the monotonic logic
ALC+TR. Step 1 is based on reasoning in the non-monotonic logic ALC+TRaCl

R :
in this case, PEAR computes the rational closure of an ALC + TR knowledge
base by means of the algorithm introduced in [9], which is sound and complete
with respect to the minimal model semantics recalled in Section 2. Step 4 is
based on reasoning in the monotonic logic ALC+TR: to this aim, the procedure
relies on a polynomial encoding of ALC+TR into ALC introduced in [16], which
exploits the definition of T in terms of a Gödel-Löb modality 2 as follows: T(C)
is defined as C u 2¬C where the accessibility relation of the modality 2 is the
preference relation < in ALC+TR models. Let KB=(T ,A) be a knowledge base
where A does not contain positive typicality assertions on individuals of the form
T(C)(a). The encoding KB’=(T ′,A′) of KB in ALC is defined as follows. First
of all, we let A′ = ∅. Then, for each A v B ∈ T , not containing T, we introduce
A v B in T ′. For each T(A) occurring in T , we introduce a new atomic concept
Box¬A and, for each inclusion T(A) vp B ∈ T , we add to T ′ the inclusion
A u Box¬A v B. In order to capture the properties of the 2 modality, a new
role R is introduced to represent the relation < in preferential models, and the
following inclusions are introduced in T ′: (i) Box¬A v ∀R.(¬A u Box¬A) and
(ii) ¬Box¬A v ∃R.(AuBox¬A). Inclusion (i) accounts for the transitivity of <,
whereas inclusion (ii) accounts for the well-foundedness, namely the fact that if
an element is not a typical A element then there must be a typical A element
preferred to it. For the encoding of the inclusions, if Cl v Cr is not a typicality
inclusion, then C ′

l = Cl and C ′
r = Cr; if Cl v Cr is a typicality inclusion

T(A) v Cr, then C ′
l = A u Box¬A and C ′

r = Cr. The size of KB’ is polynomial
in the size of the KB. The same for C ′

l and C ′
r, assuming the size of Cl and Cr

be polynomial in the size of KB. As an example, let the TBox contain:

2 https://pythonhosted.org/Owlready2/
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Fig. 1. The main components of the tool PEAR.

HummingBird v Bird
T(Bird) v ¬BackwardsFlier
T(HummingBird) v BackwardsFlier

The system PEAR builds KB’ containing:

HummingBird v Bird
Bird u Bird1 v ¬BackwardsFlier
Bird1 v ∀R1.(¬Bird u Bird1 )
¬Bird1 v ∃R1.(Bird u Bird1 )
HummingBird uHummingBird1 v BackwardsFlier
HummingBird1 v ∀R2.(¬HummingBird uHummingBird1 )
¬HummingBird1 v ∃R2.(HummingBird uHummingBird1 )

The system PEAR comprises eleven Python files, whose behaviour and de-
pendencies are summarized in Figure 4. In particular, the following modules
represent the core components of the tool:

– OntologyManager.py, whose aim is to manage the knowledge base imple-
menting the above translation into standard ALC;

– IncreasedOntology.py, whose objectives are to generate all scenarios and
to compute their probabilities;

– ReasoningOnScenarios.py, which is devoted to check entailment of a query
(QueryInput.py) by exploiting reasoning services provided by HermiT.

Let us explain the functioning of PEAR by an example inspired by [12]. Let a
KB be a knowledge base in ALC + TP

R, where the TBox is as follows:



PokemonCardPlayer v CardPlayer (1)
T(CardPlayer) v0.85 ¬YoungPerson (2)
T(PokemonCardPlayer) v0.7 YoungPerson (3)
T(Student) v0.6 YoungPerson (4)
T(Student) v0.8 InstagramUser (5)

whereas the ABox is {PokemonCardPlayer(lollo),Student(thomas)}. PEAR first
computes the set of typicality assumptions entailed from ALC + TRaCl

R , namely
(a) T(PokemonCardPlayer)(lollo) and (b) T(Student)(thomas). Then, PEAR
generates the following four different scenarios:

1. neither (a) nor (b) are assumed: the probability is (1−0.7)×(1−(0.6×0.8)) =
0.156, but PEAR is not able to conclude anything about Lollo and Thomas;

2. (a) is assumed, whereas (b) is not: this scenario, having a probability 0.7×
(1− (0.6× 0.8)) = 0.364, allows PEAR to conclude YoungPerson(lollo);

3. (b) is assumed, whereas (a) is not: this scenario has probability (1 − 0.7) ×
(0.6 × 0.8) = 0.144, and PEAR only concludes YoungPerson(thomas) and
InstagramUser(thomas);

4. both (a) and (b) are assumed: in this scenario, whose probability is 0.7 ×
(0.6 × 0.8) = 0.336. In this scenario, PEAR concludes that both Lollo and
Thomas are young persons and that Thomas is an Instagram user.

PEAR can also evaluates the probability of a query as the sum of the proba-
bilities of scenarios where such a query holds. In the example, PEAR evaluates
the probability that Lollo is a young person as the sum of the probabilities of
scenarios (2) and (4), and it is therefore 0.336 + 0.364 = 0.7. Similarly, the prob-
ability that Thomas is an Instagram user is 0.336+0.144 = 0.48. Some pictures
of the execution of PEAR in this example are provided in Figure 4.

5 Related Works and Conclusions
In this work we have introduced PEAR, a tool for reasoning in the non-monotonic
Description Logic ALC + TP

R, which extends the logic of typicality by means of
probabilities equipping typicality inclusions. In this setting, T(C) vp D is in-
tended as “normally, Cs are Ds and we have a probability of 1 − p of having
exceptional Cs not being Ds”. From a knowledge representation point of view,
as a difference from ALC+TRaCl

R , the logic ALC+TP
R allows one to distinguish

among typicality inclusions by means of their probabilities: given two typical
properties of a given concept, one can formalize the fact that the probability of
having exceptional elements is different for the two properties/inclusions. Prob-
abilities of exceptions are then used in order to reason about plausible scenarios,
obtained by selecting only some typicality assumptions and whose probabilities
belong to a given and fixed range. PEAR is implemented in Python and it pro-
vides a decision procedure for reasoning in the Description Logic ALC + TP

R,
which turns out to be in ExpTime as in the underlying standard ALC.

An extension of DLs of typicality with probabilities is presented in [17],
however probabilities are intended as degrees of belief as in the DISPONTE
semantics [15].



Fig. 2. Some pictures of PEAR. On the left, it can be observed the list of generated sce-
narios. On the right, PEAR shows the probability of the query InstagramUser(thomas).

PEAR represents a preliminary attempt to implement reasoning services for
the logic ALC+TP

R. We plan to provide a more mature version, by investigating
the applicability of techniques introduced in [18, 19] in order to improve the
efficiency of the system.
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