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Abstract. Answer Set Programming (ASP) is an established logic-based pro-
gramming paradigm which has been successfully applied for solving complex
problems since it features efficient implementations. In previous work we showed
how to obtain ASPQ, a fairly effective 2QBF solver, by just resorting to state of
the art ASP solvers. In this work we describe how we have optimized it to ex-
ploit some unexpressed potential of its solving strategy. The resulting empowered
solver won the Hard Instances Track in the 2018 QBFEval.
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1 Introduction

Answer Set Programming (ASP) [23] is a declarative programming paradigm that has
been developed in the field of logic programming and nonmonotonic reasoning. The
idea of ASP is to represent a given computational problem by means of a logic program
whose stable models [36] (or answer sets) correspond to the desired solutions, and then
to use an ASP solver to actually compute the stable models. Indeed, a robust solving
technology has been developed [40, 2, 24, 31–35, 9, 10, 17–19, 43, 42, 38, 37], and use-
ful extensions of the ASP semantics have been introduced [3, 14, 15, 6, 11]. As a matter
of fact, ASP has been used in numerous scientific applications ranging from Artificial
Intelligence [20, 29, 12, 1, 8]; Bioinformatics [25]; Databases [22, 41]; and Game The-
ory [16, 7]. Moreover, ASP is attracting increasing interest also beyond the scientific
community, and counts already some successful application in industrial products [26,
27, 39]. ASP has become a popular choice for solving complex problems since it com-
bines an expressive language with efficient implementations. Indeed, the results of the
latest ASP Competition series [24] witness the continuous improvements achieved in
the field of ASP solving.

The core language of ASP, which features disjunction in rule heads and nonmono-
tonic negation in rule bodies, can be used to solve all problems at the second level of
the polynomial hierarchy. Given the large progress measured in the last few years in
ASP solving, it is natural to ask whether this solving technology can applied profitably
also for solving 2QBFs, the canonical problem for the second level of the polynomial
hierarchy. Actually, we implemented a quite effective ASP-based 2QBF solver called
ASPQ [13]. We obtained it reusing for a pragmatic goal a well-known theoretical result
by Eiter and Gottlob. Indeed, to prove that answer set existence for a disjunctive logic
programs is hard for the second level fo the polynomial hierarchy Eiter and Gottlob



provided a reduction from 2QBF in [28]. In ASPQ this transformation is implemented
efficiently to actually solve an instance of 2QBF Φ by obtaining the corresponding
ASP program T eg(Φ) and then solving it with an ASP solver. Actually, ASPQ first calls
CLASP, and if after a time threshould a solution cannot be found, it calls WASP. This
is to exploit a somehow non overlapping behavior of the two solvers, that are based on
different answer set checking techniques. ASPQ demonstrated to be a valid solver since
the first participation in QBFEval [44]. Indeed, ASPQ entered as non-competitive par-
ticipant the 2016 QBF Evaluation and obtained a fairly acceptable result in the 2QBF
track, obtaining (virtually) the fifth place, thus performing better than various native
QBF solvers. In 2017, we just updated the binaries of the ASP solvers to the last ver-
sion, and fixed a bug of the script that did not allow in 2016 to exploit the entire time
limits (the solver self-killed itself at 600 seconds), and ASPQ reached the fourth place
at the 2QBF track. In this paper we describe how we have optimized it to better exploit
the two state of the art ASP solvers used as internal engines. The resulting empowered
version reached the fourth place in the 2QBF Track and won the Hard Instances Track
in the 2018 QBFEval.

The paper is structured as follows: In section 2 we overview quantified boolean
formulas; in Section 3 we recall the ASP language; in Section 4 we describe the Eiter
and Gottlob transformation; in Section 5 we describe the main algorithm of our solver;
in Section 6 we comment on the performance of ASPQ at the 2018 QBFEval; we draw
the conclusion in Section 7.

2 Quantified Boolean Formulas

In this section, we introduce the logic of Quantified Boolean Formulas (QBFs), where
variables can be existentially or universally quantified. Hence, QBF extends proposi-
tional logic, where all variables are existentially quantified, and the satisfiability prob-
lem comes from NP-complete to PSPACE-complete [45]. We start to introduce syntax
and semantics of QBFs.

2.1 Syntax

A variable x is an element of a set Γ of propositional letters and a literal l is a variable
(e.g., x) or the negation of a variable (e.g., ¬x). We denote by |l| the variable occurring
in the literal l, and by ¬l the complement of l , i.e., ¬l = x, if l = ¬x, and ¬l = ¬x,
if l = x. Given a natural number k > 0, a k-clause is a disjunction of k literals, and
a propositional formula of arity k is a conjunction of k-clauses. A quantified Boolean
formula Φ is an expression of the form

Q1x1 . . .QnxnF (1)

where, for each i = 1, . . . ,n, xi is a variable, Qi is either an existential quantifier, that is
Qi = ∃ or a universal quantifier, that is Qi = ∀, and F is a propositional formula in the
variables x1, ..., xn, called the matrix of Φ . We say that l is an existential literal, if |l|= xi
and Qi = ∃, for some i = 1, . . . ,n, otherwise we say that l is a universal literal. Finally,
whenever there is 1 ≤ k ≤ n such that, Q1 = . . . = Qk = ∃, and Qk+1 = . . . = Qn = ∀,
we say that Φ is a 2QBF formula.



2.2 Semantics

First, given a literal l and a QBF formula of the form Φ = QxΨ , where Ψ is a QBF for-
mula, we denote by Φl the QBF formula obtained from Ψ by removing all the conjuncts
in which l occurs, and removing ¬l from the others. Moreover, we say that a clause is
contradictory, whenever it does not contain existential literals.

Let Φ be a QBF formula of the form (1). We define the semantics of a QBF formula
recursively as follows. If F contains a contradictory clause, then Φ is false; if F has no
conjuncts, then Φ is true; if Φ = ∃xΨ , and Φx or Φ¬x are true, then Φ is true; if Φ =
∀xΨ , and Φx and Φ¬x are true, then Φ is true. The QBF satisfiability problem (QSAT)
is to decide whether a given QBF formula is true or false.

Example 1. Consider the 2QBF formula Φ = ∃x∀yF , where F = (x∨ y)∧ (¬x∨¬y).
Therefore, Φx = ∀y(¬y) and Φ¬x = ∀y(y). Then, from Φx, we obtain (Φx)y = () and
(Φx)¬y = /0; and from Φ¬x, we obtain (Φ¬x)y = /0 and (Φ¬x)¬y =(). Hence, since (Φx)¬y
is false and (Φx)¬y is true, thus Φx is false; and since (Φ¬x)y is true and (Φ¬x)¬y is false,
thus Φ¬x is also false. Therefore, we can conclude that Φ is false.

Example 2. Consider the 2QBF formula Φ = ∃x∀yF , where F = (x∨ y)∧ (x∨¬y).
Therefore, Φx = ∀y /0 and Φ¬x = ∀y(y)∧(¬y). Then, in particular, Φx is true. Therefore,
we can already conclude that Φ is true.

3 Answer Set Programming

Answer Set Programming (ASP) [23] is a programming paradigm developed in the
field of nonmonotonic reasoning and logic programming. In this section we overview
the syntax and the semantics of ASP.

3.1 Syntax

Following the traditional grounding view [36], we concentrate on programs over a
propositional signature Λ . A disjunctive rule r is of the form

a1∨ ...∨al ← b1, ...,bm, not bm+1, ..., not bn, (2)

where all ai and b j are atoms (from Λ) and l≥ 0, n≥m≥ 0 and l+n> 0; not represents
negation-as-failure, also known as default negation. The set H(r) = {a1, ...,al} is the
head of r, while B+(r) = {b1, ...,bm} and B−(r) = {bm+1, . . . ,bn} are the positive body
and the negative body of r, respectively; the body of r is B(r) = B+(r)∪B−(r). We
denote by At(r) = H(r)∪B(r) the set of all atoms occurring in r. A rule r is a fact, if
B(r) = /0 (we then omit←); a constraint, if H(r) = /0; normal, if |H(r)| ≤ 1; and pos-
itive, if B−(r) = /0. A (disjunctive logic) program P is a finite set of disjunctive rules.
P is called normal [resp. positive] if each r ∈ P is normal [resp. positive]. Finally, we
denote by At(P) =

⋃
r∈P At(r) the set of all atoms occurring in the program P.



3.2 Semantics

Any set I ⊆ Λ is called interpretation. An interpretation I is a model of a program P
(denoted by I |= P) if, and only if, for each rule r ∈ P, I ∩H(r) 6= /0 if B+(r) ⊆ I and
B−(r)∩ I = /0 (denoted by I |= r). A model M of P is minimal if, and only if, no model
M′ ⊂M of P exists. We denote by MM(P) the set of all minimal models of P. Given an
interpretation I, we denote by PI the so-called Gelfond-Lifschitz reduct [36] of P with
respect to I, that is the set of rules a1 ∨ ...∨ al ← b1, ...,bm, obtained from rules r ∈ P
of form (2), such that B−(r)∩ I = /0. An interpretation I is called answer set (or stable
model) of P, whenever I ∈MM(PI). Finally, we denote by AS(P) the set of all answer
sets of P. A program P such that AS(P) 6= /0 is called coherent, otherwise it is called
incoherent.

Example 3. Consider the disjunctive logic program

P = {a← c,not b; b∨ c← not d}.

Therefore, the set of all minimal model of P is given by MM(P) = {{d}, {b}, {a,c}}.
Instead, the set of all answer sets is AS(P) = {{b},{a,c}}. Hence, P is a coherent logic
program. Note that I = {d} is not an answer set of P, since I is not a minimal model of
PI = {a← c}.

Example 4. Consider the logic program

PΦ =

{
a← d,not b; d ← not e;
b← not c; c ← not a

}
.

Therefore, the set of all minimal model of P is given by MM(P) = {{a,c,d}, {a,b,d},
{a,b,e}, {b,c,d}, {c,e}}. However, {a,b,e} and {c,e} are not answer sets of P, as
the rule d ← not e is deleted in the reduct, and e can not belong to a minimal model
of the reduct. Moreover, P{a,c,d} = {a; d}; P{a,b,d} = {b; d}; and P{b,c,d} = {c; d}.
Therefore, also {a,c,d}, {a,b,d}, and {b,c,d} are not answer sets of P. Thus, P is an
incoherent logic program.

4 Encoding 2QBF in ASP

In this section, we introduce the translation from 2QBFs to logic programs proposed by
Eiter and Gottlob [28] to prove the Σ P

2 -hardness of checking whether a disjunctive logic
program has some answer set.

To describe the translation, let Φ = ∃X∀Y F be a quantified boolean formula, where
we may assume that X = {x1, . . . ,xe}, Y = {y1, . . . ,ya} and F = D1∨ . . .∨Dm, such that
Di = Li,1 ∧ . . .∧ Li,a+e and Li, j are literals over X ∪Y . For every atom z ∈ X ∪Y , we
introduce a fresh atom z′, and we set σ(z) = z and σ(¬z) = z′. Finally, we introduce
one more fresh atom, say w, and define a disjunctive logic program PΦ consisting of the
following rules:

z∨ z′ ∀ z ∈ X ∪Y
y← w and y′← w ∀ y ∈ Y
w← σ(Li,1), . . . ,σ(Li,a+e) ∀ i = 1, . . . ,m
w← not w



Eiter and Gottlob in [28] proved the following result.

Theorem 1. Let Φ be a 2QBF formula. Then, Φ is true if, and only if, PΦ is coherent.

We enlighten the translation described above through two examples.

Example 5. Consider the 2QBF formula

Φ = ∃x∀y∀z((x∧ y)∨ (x∧¬y∧¬z)∨ (¬y∧ z)).

Therefore, the corresponding logic program is

PΦ =


x∨ x′; y∨ y′; z∨ z′;
y← w; y′← w;
z← w; z′← w;

w← x,y; w← x,y′,z′; w← y′,z;
w← not w


Hence, PΦ has as unique answer set {x,y,y′,z,z′,w}, corresponding to set x to true in
Φ . So that, according to Theorem 1, Φ is true.

Example 6. Consider the 2QBF formula

Φ = ∃x∃y∀z((x∧¬z)∨ (¬x∧ y∧¬z)).

Therefore, the corresponding logic program is

PΦ =


x∨ x′; y∨ y′; z∨ z′;
z← w; z′← w;

w← x,z′; w← x′,y,z′;
w← not w


Hence, PΦ is incoherent. Indeed, there are only two choices to infer w, {x,z′} and
{x′,y,z′}. Therefore, an interpretation candidate must contain one of the two sets. In
both cases, it cannot be an answer set. Indeed, we have three candidate models: I1 =
{x,y,z,z′,w}; I2 = {x,y′,z,z′,w}; and I3 = {x′,y,z,z′,w}. However, none can be an an-
swer set. Indeed, {x,y,z} is a minimal model of PI1 ; {x,y′,z} is a minimal model of PI2 ;
and {x′,y,z} is a minimal model of PI3 . In conclusion, according to Theorem 1, Φ is
false.

5 The ASPQ 2QBF Solver

We first present the ASPQ main algorithm, and then introduce a result that allowed us to
optimize ASPQ performance.



Algorithm 1: ASPQ-main
Input : A 2-QBF formula Φ

Output: SAT or UNSAT

1 begin
2 Tbloqqer := 120s; Tclasp := 60s // QBFEval settings;
3 Φ := BLOQQER (Tbloqqer, Φ);
4 if Φ => then return SAT; // solved by bloqqer

5 if Φ =⊥ then return UNSAT; // solved by bloqqer

6 Π := QDimacs2ASP(Φ); // encode the logic program

7 res := CLASP (Tclasp, Π ); // run clasp for Tclasp seconds

8 if res = UNKNOWN then res := WASP (Π ); // run wasp if unsolved

9 if res = COHERENT then return UNSAT;
10 if res = INCOHERENT then return SAT;
11 return UNKNOWN;

5.1 Main Algorithm

The main algorithm implemented in ASPQ is reported as Algorithm 1. The input for-
mula Φ is first simplified by the preprocessor BLOQQER [21], which replaces Φ by a
(usually) smaller equisatisfiable formula. The simplification process can take significant
time in case of huge formulas. Hence, tool is allowed to run for at most Tbloqqer seconds.
Φ is not modified if BLOQQER exceeds the allotted time. Note that BLOQQER might be
able to simplify the formula up to solving it. In that case, it (conventionally) returns a
tautology for SAT formulas or a contradiction for UNSAT. This case is exploited to ter-
minate immediately the computation and return the result. Otherwise, Φ is encoded as a
propositional ASP program Π as detailed in Section 4. The program Π is subsequently
provided as input of the ASP solver CLASP [30], which is executed for Tclasp seconds.
If CLASP is not able to find an answer set within the allotted time, then WASP [5] is
executed without time limits. The reason for using two solvers is to find in the observa-
tion that CLASP and WASP employ different strategies for solving disjunctive programs
(see [4, 30] for details), which may solve different sets of instances. The system varies
its performance for different selections of Tbloqqer, Tclasp , and Twasp, in the following
we describe a strategy to optimize this choice.

5.2 Optimizing the evaluation

We now abstract the ASPQ algorithm considering a setting in which more than two
solvers have to be run in sequence, to draw a result that holds also in a more general
setting.

Let {S1, . . . ,Sn} be a set of n solvers, {inst1, . . . , instm} a set of m instances, Tj the
maximal execution time given to the solver S j, and t j

instk
the execution time to solve the

instance instk by solver S j.
Given a topological ordering S = (S1, . . . ,Sn) to run the solvers in series, we denote

by m j the number of solved instances by solver S j with respect to the topological or-



dering S, i.e., the number of instances solved by S j and not by Si, for each i < j. Let
{inst j

1, . . . , inst j
m j} be the set of instances solved by solver S j with respect to S.

Note that S can be seen as a new solver. Assume that T = T1+ . . .+Tn is the maximal
execution time given to the solver S. Hence, the total number of solved instances by S
is given by M = m1 + . . .+mn. We denote by TS the total execution time to solve the M
instances by S. Hence, the following result holds.

Theorem 2. Let (S1, . . . ,Sn) be a topological ordering to run the solvers in series.
Then,

TS =
n

∑
k=1

mk

∑
h=1

tk
instkh

+
n

∑
j=2

(
Tj−1

n

∑
i= j

mi

)
.

Proof. We give a constructive proof. Clearly, to solve instances in {inst1
1, . . . , inst1

m1
},

the solver S spends the same time of the solver S1. Hence, t1
inst11

+ . . .+ t1
inst1m1

. Then, to

solve instances in {inst2
1, . . . , inst2

m2
}, the solver S spends the time of the solver S2 to

which is added the maximal execution time given to the solver S1, that is T1. Hence,
(T1 + t2

inst21
) + . . .+ (T1 + t2

inst2m2
) = T1m2 + (t2

inst21
+ . . .+ t2

inst2m2
). At the end, to solve

instances in {instn
1, . . . , instn

mn}, the solver S spends the time of the solver Sn to which
is added the maximal execution time given to the solvers S1, S2, ..., Sn−1, that is T1 +
. . .+Tn−1. Hence, (T1+ . . .+Tn−1+tn

instn1
)+ . . .+(T1+ . . .+Tn−1+tn

instnmn
) = (T1+ . . .+

Tn−1)mn +(tn
instn1

+ . . .+ tn
instnmn

).

We have applied the result stated in Theorem 2 to optimize the performance of
ASPQ. In particular, we have selected the time thresholds to minimize TS on a pre-
liminary experiment, and then used the result to configure the solver. The details are
provided in the next section.

6 Implementation and Performance Assessment

In this section we describe the implementation of ASPQ and then we narrate the his-
tory of optimization of our system. Finally we comment on the official results of the
2QBFEvaluation where ASPQ performed well in the 2QBF Track and won the Hard
Instances Track.

6.1 Implementation

ASPQ was implemented as a bash script that calls its four main modules implemented
in separate commands, namely: Bloqqer, QDimacs2ASP, WASP and CLASP. The bash
script follows faithfully Algorithm 1. Bloqqer, WASP and CLASP are called as external
processes, and were obtained by downloading and compiling the sources from the re-
spective websites. The QDimacs2ASP component is a genuine Java implementation of
the Eiter-Gottlob transformation presented in Section 4 that takes as input an instance
of 2QBF in the standard QDIMACS format used in QBFEvaluations, and outputs a
grouns ASP program in lparse format. Time measurement are implemented resorting



Solver Solved Instances
depqbfvariants-QxQBH 266
CADET 263
predyndep 261
ASPQ v.3 258
CAQE-hqspre 253
ghostq-cegar 253
CAQE-bloqqer-qdo 249
CAQE-bloqqer 246
ASPQ v.2 240
PortfolioDepQBFGhostQRaReQSQute 240
RAReQS 239
Qute-random 231
Qute-opt500 230
Qute-default 229
CUED2 227
CUED3 227
heretiq-simple 208
heretiq-cube 206
ghostq-plain 176
ijtihad 161
iProver-HQSpre-Bloqqer 148
depqbfvariants-qdo 73

Table 1. QBFEval 2018 Official Results of the 2QBF Track.

to the standard time command, that interrupts the execution of a subprocess if the com-
putation exceeds the maximum allotted time. The intermediate results, produced by
Bloqqer and QDimacs2ASP are stored in temporary files, that are destroyed once the
system ends the computation. Tbloqqer, Tclasp , and Twasp can be specified by modifying
the three corresponding variables declared in the main bash script. The resulting imple-
mentation can be easily updated with newer versions of the internal components, and
one can easily modify the maximum time thresholds by just editing the script with a
text editor.

6.2 Optimizing ASPQ

ASPQ entered the 2016 QBFEval in the 2QBF track as non competing system (it was
submitted two days after the official solver submission deadline). We set Tbloqqer = 60s,
so that preprocessing never occupies more than 10% of the allotted time (the timeout
was set by the organizers to 600s); and we set Tclasp = 120s. This choice is motivated by
the results of a preliminary experiment on the QBF instances used in ASP competitions,
where CLASP solved the majority of instances within this time. After this experience,
for QBFEval 2017 the timeout was increased to 900 seconds by the organizers, and we
have updated the executables (with newer versions of Bloqqer, CLASP and WASP) and



Fig. 1. A snaphot of the official results of the Hard Instances Track.

submitted the system with Tbloqqer = 125s resulting in ASPQ v.2. The new setting was
suggested by observing that Bloqqer processing is always beneficial for our system,
and it terminates almost always in less than 125s in the QBFEval instances selected in
2016. An ugly bug limiting the execution to (the old timeout of) 600s influenced ASPQ
v.2 performance in 2017. Thus, in 2018 we have fixed the bug and submitted both a fixed
version of ASPQ (v.2) and a new one where we have optimized the thresholds by running
once a python procedure that optimizes TS of Theorem 2. We used as base the results
obtained running each single component solver paired with Bloqqer, configured with
different heuristics and choices of partial checks configurations (for the details on these
parameters see [30, 5]), when run on the instances of QBFEval 2016 and 2017. The
resulting optimized version uses Tbloqqer = 125s, Tclasp = 850s, where CLASP uses its
default parameters, and WASP was configured with the --forward-partialchecks

option.

6.3 Results in 2018 QBF Evaluation

ASPQ entered both the 2QBF track and the Hard Instances Track of QBFEval 2018.

2QBF Track. The results in the 2QBF track are summarized in Table 1, reporting
the list of participants ordered by the number of solved instances (reported in a sep-
arate column). This elaboration has been done on the official results published in the
QBFEval 2018 website. The optimized ASPQ v.3 reached the fourth place in the com-
petition, solving only three, five and eight instances less than predyndep, CADET, and
depqbfvariants-QxQBH occupying the first three places, respectively. The unoptimized
(but fixed) ASPQ v.2 solved 18 instances less than ASPQ v.3 occupying the 9th place. All
in all the optimization criterion presented in this paper allowed to improve significantly



our solver, and the resulting performance is basically aligned with the best options. It is
worth noting that, all the other systems are based on native methods for solving QBF,
whereas our implementation resorts to a translation, nonetheless it results to be very
competitive.

Hard Instances Track. The results in the Hard Instances track are summarized in Fig-
ure 1, reporting a snapshot of the official slides presented at SAT 2018. Despite being
able to solve only 2QBF instances (the track included also instances with more than two
quantifiers) ASPQ v.3 could solve the majority of instances, more than twice as much as
the solver in second position. Recall that, the Hard instances Track contained selected
instances that no QBF solver could solve in previous edition from the CNF Track. This
is an unexpected but impressive result that confirms the effectiveness of the optimized
implementation of ASPQ and the efficiency of the ASP solvers employed by our system.

7 Conclusion

Answer Set Programming is an established logic-based programming paradigm that can
be used to solve complex problems. ASP solving technology has steadily improved in
the last few years, as demonstrated by ASP Competitions. Since the introduction of the
first version of ASPQ, it was clear that ASP solving technology can be used fruitfully
to solve 2QBF instances [13]. Indeed, ASPQ obtained fairly acceptable result in the
2QBF track in 2016 and 2017 editions of QBFEval [44]. The solver demonstrates that
it is reasonable to exploit the capabilities of state of the art ASP solvers for solving
2QBF instances. Nonetheless, the first versions of ASPQ did not exploit completely the
potential maximum performance of its architecture. In this paper, we describe how we
have optimized ASPQ by tuning two main parameters of the algorithm. The resulting
empowered solver significantly outperformed previous version and also won the Hard
Instances Track in the 2018 QBFEval.

As far as future work is concerned, we are considering to tune our system by ex-
ploring the usage of the many different heuristics implemented by ASP solvers.
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