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Abstract. In the context of multiple, repeated, execution of reasoning
tasks, typical of stream reasoning and other applicative settings, we pro-
pose an incremental reasoning infrastructure, based on the answer set se-
mantics. We focus particularly on the possibility of caching and re-using
ground programs, thus knocking down the time necessary for performing
this demanding task when it has to be repeated on similar knowledge
bases. We present the outline of our incremental caching technique and
report about our preliminary experiments.

1 Introduction

The practice of attributing meaning to quantified logical sentences using a grounded
propositional version thereof dates back to the historical work of Jacques Her-
brand [18]. Later, at the end of the past century, ground programs have been
used as the operational basis for computing the semantics of logic programs in
the context of the answer set semantics [17] and of the well-founded seman-
tics [23]. The traditional structure of an answer set solver includes indeed two
separated steps: a grounding module, which pre-processes an input, non-ground
knowledge base, and produces a propositional theory; and a model generator,
which computes the actual semantics in form of answer sets. Structurally similar
pre-processing steps are taken when low-level constraint sets, or propositional
SAT theories are obtained from high-level, non-ground input languages [21].

The generation of a propositional ground theory can be both time and space
consuming and, as such, the grounding phase cannot be overlooked as a light
preprocessing stage. There are a number of both application and benchmark
settings in which the grounding step is prominent in terms of used resources [16].
Note also that grounding can be of EXPTIME complexity if arbitrarily long rules
are allowed in input. Indeed, when focusing to the answer set semantics, a number
of optimization techniques aim to reduce space and time costs of the grounding
step [1, 4, 5, 15], or to blend it within the answer set search phase [8, 19,22,24].

In the context of stream reasoning and multi-shot evaluation [2,3,14], a quite
typical setting is when the grounding step is repeatedly executed on slightly
different input data, while a short computation time window is allowed. The
contributions of this paper are the following:
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– in the spirit of early truth maintenance systems [9], we set our proposed in-
cremental technique through a multi-shot reasoning engine, based on answer
set semantics, whose usage workflow allows continuous updates, query and
reason over a stored knowledge base;

– we focus on caching ground programs, or parts thereof, whose re-evaluation
can thus be avoided when repeated, similar reasoning tasks are issued to
our engine. Our proposal is comparable to early and recent work on incre-
mental update of datalog materializations (see [20] for an overview). Such
approaches focus however on query answering over stratified Datalog and ma-
terialize just query answers. Our focus is instead on the generalized setting
in which disjunction and unstratified negation is allowed and propositional
logic programs are materialized and maintained;

– our stored knowledge bases grow monotonically from one shot to another,
becoming more and more general, yet larger than usual ground programs.
We show, in preliminary experiments, that this approach, which we called
“overgrounding”, pays off in terms of performance. We expect this setting to
be particularly favourable when non-ground input knowledge bases are con-
stituted of small set of rules, typical of declaratively programmed videogame
agents, or robots.

In the following, after some brief preliminaries, we show the basic structure
of our caching strategy, and we briefly illustrate our framework. Then we report
about some preliminary experiments.

2 Preliminaries

We assume to deal with knowledge bases under the answer set semantics (Answer
Set Programming (ASP) in the following [10,12,17]). A knowledge base KB is a
set of rules. A rule r is in the form: α1∨α2∨· · ·∨αk :- β1, . . . , βn, not βn+1, . . . ,
not βm where m > 0, k > 0; α1, . . . , αk and β1, . . . , βm are atoms. An atom
is in the form p(X), where p is a predicate name and X is a list of terms that
are either constants or a variables. A knowledge base (resp. a rule, an atom, a
term) is said to be ground if it contains no variables. The head of r is defined
as H(r) = {α1, . . . , αk}; if H(r) = ∅ then r is a constraint. The set of all head
atoms in KB is denoted by Heads(P ) =

⋃
r∈P H(r). The positive body of r is

defined as B+(r) = {β1, . . . , βn}. The negative body of r is defined as B−(r) =
{not βn+1, . . . , not βm}. The body of r is defined as B(r) = B+(r) ∪ B−(r); if
B(r) = ∅, ‖H(r)‖ = 1 and r is ground, then r is referred to as a fact.

Given a knowledge base KB and a set of facts F , the Herbrand universe of
KB and F , denoted by UKB,F , consists of all (ground) terms that can be built
combining constants appearing in KB or in F . The Herbrand base of KB ∪ F ,
denoted by BKB,F , is the set of all ground atoms obtainable from the atoms of
KB by replacing variables with elements from UKB,F .

A substitution for a rule r ∈ KB is a mapping from the set of variables of
r to the set UKB,F of ground terms. A ground instance of a rule r is obtained



applying a substitution to r. Given a knowledge base KB and a set of facts F
the instantiation (grounding) grnd(KB∪F ) of KB∪F is defined as the set of all
ground instances of its rules. The answer sets AS(KB∪F ) of KB are set of facts,
defined as the minimal models of the so-called FLP reduct of grnd(KB∪F ) [11].

3 Overgrounding and caching

In order to compute AS(KB ∪ F ) for given knowledge base KB and set of facts
F , state-of-the-art grounders usually compute a refined propositional program,
obtained from a subset gKB of grnd(KB∪F ) (see e.g. [4]). gKB is equivalent in
semantics to the original knowledge base, i.e. AS(gKB) = AS(grnd(KB ∪ F )) =
AS(KB ∪ F ). In turn, gKB is usually obtained using a refined version of the
common immediate consequence operator. The choice of the instantiation strat-
egy impacts on both computing time and on the size of the obtained instantiated
program. Grounders usually maintain a set PT of “possibly true” atoms, initial-
ized as PT = F ; then, PT is iteratively incremented and used for instantiating
only “potentially useful” rules, up to a fixpoint. Strategies for decomposing pro-
grams and for rewriting, simplifying and eliminating redundant rules can be of
great help in controlling the size of the final instantiation [5, 7].

Let S be a set of ground atoms or ground rules. Let Inst(KB,S) be defined
as

Inst(KB,S) = {r ∈ grnd(KB) s.t. B+(r) ⊆ S}

whenever S is intended as a set of rules, with a slight abuse of notation, we
define Inst(KB,S) as Inst(KB,Heads(S)).

The above operator can be seen as a way for generating and selecting only
ground rules that can be built by using a set of allowed ground atoms S. If S is
initially set to a set of input facts F , one can obtain a bottom-up constructed
ground program equivalent to KB ∪ F by iteratively applying Inst.

Theorem 1 (adapted from [4]). For a set of facts F , we define Inst(KB,F )k

as the k-th element of the sequence Inst(KB,F )0 = Inst(KB, ∅ ∪ F ), . . . , Inst(KB,F )k

= Inst(KB, Inst(KB,F )k−1 ∪ F ). The sequence Inst(KB,F )k converges in a fi-
nite number of steps to a finite fixed point Inst(KB,F )∞ and

AS(Inst(KB,F )∞ ∪ F ) = AS(grnd(KB ∪ F ))

Assume that for a fixed knowledge base KB, we wish to compute a series of
multi-shot evaluations in which input facts are changing according to a given se-
quence F1, . . . , Fn, i.e. we aim at computing the sets AS(KB∪F1), . . . , AS(KB∪
Fn).

The following holds:

Theorem 2. Let UF k =
⋃

1≤i≤k Fi. It holds that

AS(Inst(KB,UF k)∞ ∪ Fk) = AS(KB ∪ Fk)



Input: a stored ground program Gk = Inst(KB,UF k)∞

Input: union of “accumulated” input facts UF k =
⋃

1≤i≤k Fk

Input: current input facts Fk+1

Output: updated ground program Gk+1, updated accumulated facts UFk+1

1: Procedure Differential-GROUND(Gk,UFk+1,Fk+1)
2: ∆G = Inst(KB,UF k ∪ Fk+1)∞ \Gk

3: Gk+1 = Gk ∪∆G
4: UF k+1 = UF k ∪ Fk+1

Fig. 1: Incremental Grounding Algorithm.

In particular, for each k,

Inst(KB,UF k)∞ ⊆ Inst(KB,UF k+1)∞ (1)

Our caching strategy, shown in figure 1, can be outlined as follows: let a
grounder be subject to a consecutive number of runs, in which KB is kept con-
stant, while different sets of input facts are given. We keepGk = Inst(KB,UF k)∞

in memory as the result of grounding and caching previous processing steps.
Whenever a new ground program is needed for processing new input facts Fk+1,
we compute

∆G = Inst(KB,UF k+1)∞ \Gk (2)

Then we obtain Gk+1 = Gk∪∆G. The newly obtained ground program Gk+1

can be used for performing querying and reasoning tasks such as, e.g., computing
AS(KB ∪ Fk+1) = AS(Gk+1 ∪ Fk+1).

In other words, we groundKB with respect to a, monotonically increasing, set
of accumulated facts UFi; on the other hand, the sequence of input facts Fi can
be arbitrary (i.e. a Fi+1 can in principle be non-overlapping with previous input
fact sets). Nonetheless, a given ground program Gk can be used for computing
answer sets of KB with respect to all Fi for all i ≤ k.

Clearly ∆G is not computed by evaluating (2) but in an efficient and incre-
mental way. In our case we developed a variant of the typical iteration which is
at the core of the known semi-naive algorithm. Such logic has been implemented
in the I-DLV grounder [5, 7].

4 System Architecture

An high-level infrastructure for incremental grounding is depicted in Figure 2.
The system provides a server-like behaviour and allows to keep the main process
alive, waiting for incoming requests. Once a client U establishes a connection
with I-DLV -incr, a private working session SC is opened. Within SC, U can
specify, using XML commands, tasks to be carried out. In particular, after load-
ing a KB along with an initial set of facts F1, the system can be asked to
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Fig. 2: An infrastructure for incremental grounding.

perform the grounding of KB over F1; Inst(KB,F1)∞ is then stored on server
side. Then, further loading and grounding requests may be specified. U can pro-
vide additional sets of facts Fi for 1 < i ≤ n so that Inst(KB,UFi)

∞ with
UF i =

⋃
1≤i≤n Fi is computed. At each step i, the system is in charge of inter-

nally managing incremental grounding steps and automatically optimizing the
computation by avoiding the re-instantiation of ground rules generated in a step
j < i.

5 Benchmarks

Hereafter we report the results of a preliminary experimental activity carried
out to assess the effectiveness of our incremental reasoning infrastructure. Ex-
periments have been performed on a NUMA machine equipped with two 2.8
GHz AMD Opteron 6320 processors and 128GB of RAM. Unlimited time and
memory were granted to running processes.

As benchmark, we considered the Sudoku domain. The classic Sudoku puz-
zle, or simply “Sudoku”, consists of a tableau featuring 81 cells, or positions,
arranged in a 9 by 9 grid. The grid is divided into nine sub-tableaux (regions,
or blocks) containing nine positions each. Initially, in the game setup a number
of positions are filled with a number between 1 and 9. The problem consists in
checking whether the empty positions can be filled with numbers in a way such
that each row, each column and each block shows all digits from 1 to 9 exactly
once. When solving a Sudoku, players typically adopt deterministic inference



strategies allowing, possibly, to obtain a solution. Several deterministic strate-
gies are known [6]; herein, we take into account two simple strategies, namely,
“naked single” and “hidden single”. The former one permits to entail that a
number n has to be associated to a cell C when all other numbers are excluded
to be in C; for instance, in a Sudoku of 9 rows and 9 columns, assuming that we
inferred that all numbers between 1 and 8 cannot be in the cell (1, 1), then, it
must contain 9. The hidden single strategy, instead, allows to derive that only
a cell of a row/column/block can be associated with a particular number; for
instance, in a Sudoku of 9 rows and 9 columns, the only cell that can contain 3
is (4, 5) if, according to Sudoku rules, all other cells in the same block of (4, 5),
row 4 and column 5 cannot hold the number 3.

The iterated application of inference rules to given Sudoku tables is a good
test for appreciating the impact of the incremental evaluation, since updated
Sudoku tables contain all logical assertions derived in previous iterations.

In the experiments, we considered Sudoku tables of size 16x16 and 25x25
and experimented with knowledge bases, under answer set semantics, encoding
deterministic inference rules. We compared two different evaluation strategies:
(i) I-DLV -incr implementing the incremental approach, and (ii) I-DLV -no-
incr which is endowed with the server-like behaviour but does not apply any
incremental evaluation policy. Both systems have been executed in a server-like
fashion. For a given Sudoku table the two inference rules above are modelled
via ASP logic programs (as reported in [6]). The resulting answer set encodes a
new tableau, possibly deriving new numbers to be associated to initially empty
cells, and reflecting the application of inference rules; the new tableau is given
as input to the system and again, by means of the same inferences, possibly, new
cell values are entailed. The process is iterated until no further association is
found. In general, given a Sudoku, it cannot be assumed that the deterministic
approach leads to a complete solution; thus, for each considered Sudoku size,
we selected only instances which are completely solvable with the two inference
rules described above.
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Fig. 3: Experiments on Sudoku benchmarks.

Results are depicted in Figure 3: instances are ordered by increasing time
spent during the grounding stage by I-DLV -no-incr. For each instance, it is
reported the total grounding time (in seconds) computed over all iterations. I-
DLV -incr required at most 12 seconds to iteratively solve each instance and
performed clearly better than I-DLV -no-incr that instead required up to 237
seconds with an improvement of 95%. Figure 4 shows a closer look on the per-
formance obtained in the instance 4 of size 25x25 which is the one requiring the
highest amount of time to be solved and the highest number of iterations: for
each iteration, the grounding time (in seconds) is reported. In the first itera-
tion, both configurations spent almost the same time; for each further iteration,
I-DLV -incr required an average time of 0.13 seconds with a time reduction of
98% w.r.t. I-DLV -no-incr showing an average time about 5.95 seconds. Overall,
this behaviour confirms the potential of our incremental grounding approach in
scenarios involving updates in the underlying knowledge base.



5.90

6.00

6.10

6.20

I-DLV -incr I-DLV -no-incr

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

0.10

0.13

0.15

0.17

Iterations

E
x
ec
u
ti
on

ti
m
e

(s
)

Fig. 4: Grounding times for all iterations of a 25x25 Sudoku instance.

6 Conclusions

In this paper we reported about our ongoing work towards the development
of an incremental solver with caching of ground programs. Our technique is
similar in spirit to the iClingo system [13]; this latter is also built in a multi-
shot context, and allows to manually define which parts of a knowledge base
are to be considered volatile, and which parts can be preserved in subsequent
reasoning “shots”. In our framework caching is totally transparent to knowledge-
base designers, thus preserving declarativity; the same caching technique can be
easily generalized to other semantics for rule-based knowledge bases such as the
well-found semantics.

Our early experiments show the potential of the approach: it must be noted
that our caching strategy is remarkably simple, in that cached ground programs
grow monotonically from an iteration to another, thus becoming progressively
larger but more generally applicable to a wider class of set input facts. We thus
expect an exponential decrease in grounding times and an exponential decrease
in the number of newly added rules in later iterations, as it is confirmed by our
first experiments. The impact of larger ground instances on model generators is
yet to be assessed, although we expect an acceptable performance loss.

Our work is currently being extended towards better defining the theoretical
foundations showing the classes of programs and the conditions over which “over-
grounding” is possible; also, we are interested in “interruptibility” of reasoning
tasks, a context in which it is desirable to not discard parts of computed ground
programs. As future work, we plan to experiment with further benchmark do-
mains and with scenarios in which input information can be retracted. We plan
also to investigate: the possibility of discarding rules when a memory limit is
required; the impact of updates (i.e., additions/deletions of rules) in selected
parts of the logic program; the introduction of ground programs which keep the
properties of embeddings, yet allowing some form of simplification policies.
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