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Abstract. Understanding of the visual world is not limited to recog-
nizing individual object instances, but also extends to how those ob-
jects interact in the scene, which implies recognizing events happening
in the scene. In this paper we present an approach for identifying complex
events in videos, starting from object detection using a state-of-the-art
object detector (YOLO), providing a set of candidate objects. We pro-
vide a logic based representation of events by using a realization of the
Event Calculus that allows us to define complex events in terms of log-
ical rules. Axioms of the calculus are encoded in a logic program under
Answer Set semantics in order to reason and query over the extracted
events. The applicability of the framework is demonstrated over the sce-
nario of recognizing car parking on a handicap slot.
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1 Introduction

The increase in availability of data in both structured (e.g. sensors) and un-
structured (e.g. images, video, and audio) formats is a common trend nowadays,
but information extraction for a meaningful use from this ocean of data is still
a challenging task. The interpretation of these data need to be automated in
order to be transformed into operational knowledge [3, 10]. Events are mostly
important pieces of knowledge, as they represent activities of unique significance.
Therefore, the recognition of events is of fundamental importance.

The goal of event detection from unstructured data formats (i.e. videos, im-
ages) is to identify and localize specified spatio-temporal patterns in videos,
where each pattern represents a significant event. Understanding of events tak-
ing place in videos is a challenging problem for the scientific community due to
factors such as, e.g. background clutter, pose, illumination and camera point of
view variations. Complex video sequences [6] contain many activities and involve
multiple interactions between objects. Determining which objects are relevant to
a particular event type is the basic building block in understanding the dynamics



of the event. Hence, it is of fundamental importance not only to detect, but also
keep a track of such candidate objects over the period of time.

Event recognition is considered to be the paragon of all computer vision tasks
[2], because of its wide applications and involvement that they have in our daily
life. Advances in deep convolutional neural networks in recent times have mostly
focused on developing end-to-end black box architectures that achieve a high
accuracy in recognizing events. However, the major drawback of such approaches
is the interpretability of the model [17]. For complex events, humans can analyze
the properties of complex actions and inject some semantic knowledge to extract
semantically meaningful events. Whereas, CNN (convolutional neural network)
based black box architectures often rely on high accuracy given the event is
happening or not.

In this paper we take on the event recognition problem by aiming at bridg-
ing the gap between the effectiveness of deep learning and logical reasoning.
We believe that building a hybrid solution exploiting end-to-end learning and
logical reasoning is a good trade-off between accuracy and semantic richness
of the event. To achieve this objective, we make use of the state-of-the-art ob-
ject detector YOLO (You only look once) [19] for extracting basic information
(appearance and movement) about objects from video streams. Events are then
represented inside the logical framework of the Event Calculus [11], which allows
for the definition of complex events: the calculus and events representation are
implemented as a logic program interpreted under Answer Set semantics in order
to reason and ask queries about the represented scenario.

2 Problem Description

Problem Statement. The core focus of our work is to extract complex events
from the scene starting from the simple facts that are detectable from the visual
information in the frames. Complex events require a level of understanding that
pushes beyond the number of objects present in the scene to detailed compre-
hension of interactions between actors and objects across different video frames.

Use-Case: Handicap parking occupancy. The deployment of sensors in
parking lots to address the issue of automatic parking-lot detection is performed
with great success, but results in high deployment cost. Recently, smart cam-
eras have been used to detect the occupancy of the slots in real-time relying
on CNN-based architectures to be executed on these cameras [4, 14]. But, most
of these camera-based solutions cannot be generalized for different parking lots.
Visual occupancy detection in parking lots essentially involves the detection of
vehicles (car, bike, bus, etc.) and parking spaces. However, to the best of our
knowledge, the detection of vacant parking space for people with special needs
by considering visual information is still an open problem.
The experimental data at our disposal consists of an approximately 4 min. long
video, composed of multiple sequences, where each sequence is approximately 12
to 15 seconds, depicting the event of interest under different viewing conditions



including camera movement, ego-motion, change in illumination, clutter, motion
artifacts.

3 Related Work

Object detection in videos aims to detect objects belonging to a pre-defined class
and localize them with bounding boxes in a given video stream [19]. Object de-
tectors based on bounding boxes have seen a steady improvement over the years.
One of the pioneer CNN-based object detector was R-CNN [9], which involved
two-stage pipeline, one part of the system provides region proposals, then for
each proposal CNN is used for classification. To reduce the computational cost
Region of Interest Pooling is used in FAST R-CNN [8] leading to efficient re-
sults. Furthermore, the most recent object detectors [13, 19] combine the two
tasks of region proposal and classification in one system. Single shot object de-
tectors, YOLO, SSD (single shot multi-box detector) significantly improved the
detection efficiency compared to prior object detection systems.

Advances in deep convolutional neural networks in recent times have mostly
focused on developing end-to-end black box architectures that achieve a high
accuracy in recognizing events. Most of the work [7, 16, 18] in this area makes
use of the recurrent neural networks which process the images or video frames
one at a time, and incrementally combine information building up a dynamic
internal representation of the scene. Such models try to capture the pose, move-
ments that are the part of actions known as atomic actions and interactions (e.g.,
walking, running, surfing, riding etc.), but such methods are not very successful
in capturing semantically meaningful representation of actions. Injecting seman-
tic definition and structural knowledge in these approaches is rather difficult.
Hence, it is of great importance for the model to be interpretable, and this is a
part where neural networks fall short. To make up for this, we exploit a classic
logic-based event recognition framework, like Event Calculus for complex event
representation based on logical rules and answer set programs to reason and
query over the events. The role of Answer set programming in conjunction with
computer vision to formalize rules for visual scene understanding and answer
queries about the event occurring in the scene is very recent [1, 20, 22].

4 Proposed Architecture

Figure 1 describes the workflow for our proposed architecture. Our method fol-
lows two phases: (1) objects are detected and tracked from every single frame
using YOLO, providing simple events such as appearance of the object, disap-
pearance of the object; (2) based on those candidate objects, events are repre-
sented in the logical framework of the Event Calculus. Reasoning on complex
events is obtained by an encoding in logic programs under Answer set semantics
(in particular, programs are run using DLV [12]). In the following sections, we
detail the realization of the two steps and their results in the application to our
experimental scenario.



Fig. 1. Block diagram of the proposed architecture

5 Objects and simple events extraction from video

Given a video as input, the task of object detector is: (1) determine whether an
object exists or not in the image/video, (2) determine the location of the object
by putting a bounding box around it. Most of the methods previously used for
object detection have one thing in common: they have one part of their system
dedicated to providing region proposals which includes re-sampling of pixels and
features for each bounding box, followed by a classifier to classify those propos-
als. These methods are useful but are computationally expensive resulting in a
low frame rate. Another simpler way of doing object detection is by using the
YOLO system, which combines the two tasks of region proposal and classifica-
tion in one system. The key idea behind YOLO is the use of small convolutional
filters applied to feature maps of bounding boxes to predict the category scores,
using separate predictors for different aspect ratios to perform detection on mul-
tiple scales. YOLO uses optical flow method from OpenCV4 to track objects by
determining the pattern of motion of objects for two consecutive frames, which
occurs due to the movement of the objects, helping in image segmentation and
tracking. It works on the following assumptions. (1) Pixels grouped with similar
motion, result in blob of pixels for all objects having different motion. (2) In-
tensities of pixels do not change between consecutive frames. (3) Neighbouring
pixels have similar motion.

We applied this method on our sample video data of multiple short video
clips, where each clip is 10 to 12 seconds: Figure 2 and Figure 3 show detection
and tracking results of a car moving towards the handicap slot and a car parked
at the handicap slot. As in common practice, we evaluate the performance of our
model for object detection task by assessing the Average Precision (AP) of each
class. Average precision (AP) is equal to the area under Precision-Recall curve,
where Precision and Recall are calculated for every possible confidence threshold

4 see [5], https://opencv.org/ and https://github.com/AlexeyAB/darknet



Car moving to the handicap
parking slot

Car parked at the handicap slot

Fig. 2. Object detection using YOLO

Car3 moving to the handicap
parking slot3

Car3 parked at handicap parking slot3

Fig. 3. Object tracking using YOLO

(for confidence of each detection), and for IoU thresholds. Table 1 shows the av-
erage precision of the objects at different Intersection over union (IoU) threshold
values. IoU measures how much overlap exists between the ground truth and ac-
tual prediction: this measures how good is our prediction in the object detector
with the ground truth (the real object boundary). Results, depicted in Table 1,
show the object detector detects objects with high accuracy.

Table 1. Average precision at different IoU thresholds. AP(0.75) means the AP with
IoU=0.75.

Object AP(0.25) AP(0.50) AP(0.75)
Handicap slot 99.01 90.55 77.04
Car 90.76 90.76 88.22



Table 2. Event Calculus predicates

Basic Predicates Description

holdsAt(f, t) fluent f is true at time-point t

happens(e, t) event e occurs at time-point t

initiates(e, f, t)
if event e occurs at time-point t,
then fluent f will be true after t.

terminates(e, f, t)
if event e occurs at time-point t,
then fluent f will be false after t

6 Logical reasoning on complex events

In this section we review the definition of Event Calculus as presented in [21];
then, we present the encoding of its axioms as a logic program and we show how
we can use it to reason over the events extracted from video in our scenario.

Event Calculus. Event Calculus (EC) was first introduced by Kowalski and
Sergot in [11] as a logic framework for representing and reasoning about events
and their effects. EC has been frequently used for event recognition as it provides
a set of rich axioms for capturing the behavior of events and their effects. The
EC language consists of (ordered) time-points, events and fluents. A fluent is
a property whose truth value may change over time, such as the location of a
physical object. The expressions referring to temporal entities that occur over
some time interval are called events. After an event occurs, it may change the
truth value of a fluent. It is assumed that the value of a fluent is preserved in
successive time points, if no event changes its state. In particular, an event can
initiate a fluent, meaning that the fluent is true after the happening of the event,
or terminate a fluent, meaning that the occurrence of the event makes the fluent
false.

The calculus makes use of the predicates listed in Table 2. The language
provides predicates expressing the various states of an event occurrence: happens
defines the occurrence of an event at a given time point, while holdsAt states
that a fluent holds in a point in time. The predicates initiates and terminates
specify under which circumstances a fluent is initiated or terminated by an event
at a specific time point.

Event Calculus in ASP. An implementation of the Event Calculus into ASP
is provided in [15]. The EC axioms determining the relation across fluents and



events are defined by the rules that follow.5

initiated(F, T ) ← happens(E, T ), initiates(E,F, T ). (1)

terminated(F, T ) ← happens(E, T ), terminates(E,F, T ). (2)

holdsAt(F, T1) ← holdsAt(F, T ), not terminated(F, T ), time(T ), T1 = T + 1. (3)

← holdsAt(F, T1), not holdsAt(F, T ), (4)

not initiated(F, T ), time(T ), T1 = T + 1.

holdsAt(F, T1) ← happens(E, T ), initiates(E,F, T ), time(T ), T1 = T + 1. (5)

← holdsAt(F, T1), happens(E, T ), terminates(E,F, T ), (6)

time(T ), T1 = T + 1.

Axiom (1) and (2) state that a fluent is initiated with the occurrence of an event
that initiates it, and that fluent will be terminated when another event occurs
and terminates it. Axiom (3) states that if a fluent holds at time-point T and
is not terminated in T , then the fluent is true at the next time-point T1. Axiom
(5) states that if a fluent is initiated by some event that occurs at time-point
T , then the fluent is true at T1. Constraint in Axioms (4) state that it can not
be that a fluent F that is not initiated nor true at time T becomes true at time
T + 1. Similarly, constraint in axiom (6) state that it can not be that fluent F
holds at time T + 1 if an event happened at time T that terminated F .

Event reasoning on example scenario. We are now ready to express our
example scenario in terms of the presented ASP encoding of the Event Calculus.
For explaining perceived dynamics of objects in the scene, we define the simple

Table 3. Description of simple and complex events

Simple event Description
appearsCar(A, T ) The object corresponding to car A enters

the scene at time T
disappearsCar(A, T ) The object corresponding to car A leaves

the scene at time T
appearsSlot(L, T ) The object corresponding to parking slot

L appears in the scene at time T
disappearsSlot(L, T ) The object corresponding to parking slot

L disappears from the scene at time T
Complex event Description
covers(A,L, T ) The object car A covers the slot L at

time T
uncovers(A,L, T ) The object car A uncovers the slot L at

time T

and complex events listed in Table 3. The focus is on explaining what is visible
in the frames by identifying appearance and disappearance of objects in the

5 We use the DLV syntax[12] of rules (in particular, for the use of functors and for
expressing number operations in rules).



scene: thus, the fluents of our scenario are visibleCar and visibleSlot , that are
true respectively if a car or a slot are currently visible in the scene.6 Table 3
provides the description of simple events. The occurrences of these events are
directly extracted from the output of the tracker: in other words, they will be
compiled as facts in the final program. Given this information, complex events
are then defined by combining simple events and conditions on fluents: in our
example, we can detect when a car covers and uncovers a parking slot using the
information about what is visible at a given time-point. Assuming the previous
rules defining the EC axioms, we encode our scenario in a logic program with
the rules that follow. We first declare objects, events and fluents of the scenario:

event(appearsCar(A)) ← agent(A).
event(disappearsCar(A)) ← agent(A).

event(appearsSlot(L)) ← location(L).
event(disappearsSlot(L)) ← location(L).

fluent(visibleCar(A)) ← agent(A).
fluent(visibleSlot(L)) ← location(L).

We can then specify the effects of events on fluents:

initiates(appearsCar(A), visibleCar(A), T ) ← agent(A), time(T ).
terminates(disappearsCar(A), visibleCar(A), T ) ← agent(A), time(T ).

initiates(appearsSlot(L), visibleSlot(L), T ) ← location(L), time(T ).
terminates(disappearsSlot(L), visibleSlot(L), T ) ← location(L), time(T ).

Basically, the rules define that the appearance of an object (car or slot) initiates
its visibility, while its disappearance from the scene terminates the validity of the
visibility fluent. Occurrences of complex events are derived from event calculus
reasoning:

happens(covers(A,L), T ) ← agent(A), location(L), time(T ),
happens(disappearsSlot(L), T ),
holdsAt(visibleCar(A), T ).

happens(uncovers(A,L), T ) ← agent(A), location(L), time(T ),
happens(appearsSlot(L), T ),
holdsAt(visibleCar(A), T ).

By these rules, we recognize that a car covers a slot if the car is visible at the
time that the slot disappears. Similarly, the uncovers event occurs when a slot
appears and the car is still visible. By combining the information on complex
events, we can define that a parking from time T1 to time T2 is detected whenever
a car covers a slot at time T1, uncovers the slot at time T2 and it stands on the
slot for at least a number of frames defined by parkingframes:

parking(A,L, T1, T2) ← happens(covers(A,L), T1), happens(uncovers(A,L), T2),
parkingframes(N), T3 = T1 + N,T2 >= T3.

6 We are currently assuming a simple scenario with one car and one slot in the scene.



In our scenario, a query on parking can be used to obtain the parking events
detected in the scenes and their information.

The final program, enconding the scenario, is obtained by combining these
rules (together with the EC axiom rules) with the facts obtained from the tracker
output. Let us consider an example instantiation:

holdsAt(visibleSlot(hp slot), 0).
happens(appearsCar(car), 1).
happens(disappearsSlot(hp slot), 2).
happens(appearsSlot(hp slot), 4).
happens(disappearsCar(car), 5).

According to the input evidence, initially only one slot hp slot is visible. Then,
object car appears and object hp slot disappears from the scene at time-points
1 and 2, respectively. Whereas, at time-points 4 and 5, appearance and dis-
appearance of the hp slot and car occur. Using the rules, we can thus derive
the occurrence of complex events happens(covers(car , hp slot), 2) and happens(
uncovers(car , hp slot), 4). Say that we define parkingframes(1), then we can de-
tect the parking parking(car , hp slot , 2, 4), meaning that car parks on hp slot at
time-point 2 and leaves the slot at time-point 4.

Over our sample video data, we run the program on DLV using the output of
the tracker from previous step. We were able to detect complex events for some
of the video sequences (e.g. car 3 covers the handicap slot 3 at time-point 87
and uncovers the slot at time-point 107). Unfortunately, we could not apply the
method to the whole video: the reason stands in the ambiguities of tracker output
(e.g. multiple labelling of the same object, incorrect disappearence of objects)
which produce unclean data. A solution to this problem would be to include a
pre-processing step for data cleaning (possibly encoded as logical constraints)
which is able to resolve such ambiguities.

7 Conclusion and Future Work

We proposed a hybrid architecture for visual explanations encompassing logical
reasoning with video data for Handicap parking occupancy use-case. The overall
goal of this work is the integration of knowledge representation and computer
vision: (1) Visual processing pipeline for detection based object tracking, leading
to the extraction of simple events; (2) Answer set programming based reasoning
to derive complex events.

The limitations of the object tracker result in noisy data which restricts us
to reason on events for the whole video. As a future work, we aim to manage
these inaccuracies by a (possibly logical based) data cleaning step. We also want
to apply and evaluate the presented method in different scenarios (e.g. sports
events [10]).
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