
Towards the Generation of the “Perfect” Log
Using Abductive Logic Programming

Federico Chesani1[0000−0003−1664−9632], Chiara Di
Francescomarino2[0000−0002−0264−9394], Chiara Ghidini2[0000−0003−1563−4965],

Daniela Loreti1[0000−0002−6507−7565], Fabrizio Maria
Maggi3[0000−0002−9089−6896], Paola Mello1[0000−0002−5929−8193], Marco

Montali4[0000−0002−8021−3430], Vasyl Skydanienko3, and Sergio
Tessaris4[0000−0002−3156−2669]

1 University of Bologna, viale Risorgimento 2, 40136—Bologna, Italy
{federico.chesani,daniela.loreti,paola.mello}@unibo.it

2 FBK-IRST, Via Sommarive 18, 38050 Trento, Italy.
{dfmchiara,ghidini}@fbk.eu
3 University of Tartu, Estonia
{skydanienko,f.m.maggi}@ut.ee

4 Free University of Bozen–Bolzano, piazza Università, 1, 39100 Bozen-Bolzano, Italy.
{montali,tessaris}@inf.unibz.it

Abstract. Data is the new raw material for business. As regards Busi-
ness Process Management, this natural resource is contained into a pro-
cess log in the form of recorded executions of process instances. In this
framework, the evaluation of process mining techniques like process dis-
covery and conformance checking demands for solid benchmark suites
composed of logs with specific characteristics, which are rarely available
in real contexts. Although the creation of the “perfect log” is certainly
an unattainable hope, the availability of tools for synthetic log gener-
ation could simplify the development and test of novel process mining
techniques. In this work, starting from an existing approach based on Ab-
ductive Logic Programming, we further report on a tool for synthetic log
generation based on this approach, and suggest a practical application
of the tool in the field of process engineering.

Keywords: Synthetic Log Generation · Abductive Logic Programming
· Declarative business process models · Process Mining.

1 Introduction

In the context of Business Process Management (BPM), and even more in the
process mining field [1], event logs play a key role. Therefore, the availability
of event logs is essential for the evaluation of process mining algorithms. Con-
sider for example, predictive process monitoring, a branch of process mining
consisting of techniques for predicting the future development of a running pro-
cess instance based on historical logs. To be able to evaluate predictive process



monitoring techniques, large event logs with specific characteristics are usually
needed. These characteristics include not only what sequences of activities are
available in the log, but also the data payloads associated with activities [9, 12].
Another typical process mining task in which the need of event logs with certain
characteristics is crucial is the evaluation of process discovery algorithms. The
typical procedure for evaluating process discovery algorithms indeed consists of
(i) generating an event log starting from a process model; (ii) mining a process
model with the given discovery algorithm from this log and (iii) comparing the
initial model (representing the gold standard) with the discovered one.

Although some real-life logs are publicly available to accomplish this type
of tasks, their number is still quite limited. Most companies, indeed, are not
willing to share their own event logs, e.g., due to privacy issues or because they
depend on third parties. Moreover, real-life logs are not always the best choice for
evaluating process mining approaches, as they do not offer control over different
parameters such as the log size, the length of the traces or the amount of noise.
Having control over these characteristics is of utmost importance to be able to
evaluate a process mining algorithm in a complete and predictable way, e.g., in
order to be able to understand how robust is the mining algorithm with respect
to the noise or scalable with respect to the log size.

Although the creation of the “perfect log” is an unattainable hope, the avail-
ability of tools for synthetic log generation could simplify the development and
test of novel process mining techniques. Some effort has been recently done to-
wards this direction with the realization of procedural log generators [4] for the
creation of event logs and associated data. However, currently, there are very few
tools available for generating artificial logs from declarative process models [8,
2, 18] and even less able to deal with the generation of data payloads.

Over the last decade, various declarative languages have been proposed to
represent business processes. One of the most popular among them is proba-
bly Declare [17], whose formalism can be easily mapped into logic-based lan-
guages such as Event Calculus [16], Linear Temporal Logic (LTL) [17], Abductive
Logic Programming (ALP) [7], and computational logic in general. Recently, also
declarative-based tools have appeared, which are able to synthesize logs with a
number of features such as the possibility to include negative traces.

In particular, in [14] we have shown how ALP can be used to generate trace
templates, starting from a model specification, where the model can be described
through a procedural representation language, or a declarative one, and the
model can be open or closed (i.e., every activity that is not explicitly requested
to be executed, might be allowed or forbidden, respectively). As sketched in [6],
the key idea is that abductive explanations, i.e., sets of abudcibles (possibly
containing constrained variables) obtained by the SCIFF proof procedure [3],
can be interpreted from a BPM perspective as intensional trace templates. In
turn, sets of ground instances of such templates could be then interpreted as
process logs.

In this work, we further explore our approach to synthetic log generation
by deepening its main characteristics and suggesting a practical application in



the field of process engineering. In particular, we present a tool called ALGen
(Abductive Log Generator) implementing our approach. Then, after clarifying
how the tool deals with declarative constraints – including constraints on data
– in the model specification and after providing insights on both positive and
negative trace generation, we focus on the methodology adopted to generate
grounded, extensional instances, as well as trace templates.

In the remainder of the paper, we summarize the description of the log gen-
erator (Section 2), introduce a running example (Section 3) and show how the
constraints of the running examples can be translated in the input of the log
generator. In Section 4, we show challenges and applications of the proposed log
generator and, finally, in Section 5, we draw some conclusions.

2 The Abductive Log Generator

The generation process relies on a previously developed ALP framework: the
Social Constrained IFF (SCIFF)[3]. This software provides a logic-based lan-
guage for expressing the domain knowledge and a proof procedure supporting
the abductive reasoning process. Initially, it was developed to support the run-
time compliance checking of multi-agent systems’ behavior w.r.t. a given model,
whereas later [7], its abductive capabilities were employed to extend the concept
of compliance to logs with incomplete traces (i.e., with missing events).

A SCIFF specification can be formally intended as a triple 〈KB, A, IC〉,
where:

– KB is a knowledge base (i.e., a Logic Program as for [13]),
– A is a set of abducible predicates (predicates that can be hypothesized i.e.,

predicates with functor ABD, E),
– IC is a set of Integrity Constraints (ICs).

Abducibles ABD correspond to commonly intended abducibles of ALP [11],
whereas abducibles with functor E model expectations about the happening of
certain events.
IC is a set of ICs in the form of forward rules body → head, stating that

when body becomes true, also head must be true. These SCIFF’s ICs model the
link between the happening of events and the expectations, thus body contains
conjunctions of special terms with functor H (indicating the actual happening of
an event), with functors E and ABD, while the head is made up of disjunctions
of conjunctions of terms with functor E or ABD.

This SCIFF specification is used to express, in terms of ICs, the relations
between events, such as for example “If event a happens at time Ta, then b is
expected to happen at time Tb”:

H(a, Ta)→ E(b, Tb). (1)

This formalization is important in the context of compliance checking be-
cause, if an event matching with the expectation E occurs in the log, then we



can say that the expectation is fulfilled. If such an event does not happen, the
expectation is violated.

As the goal of the generator is not to determine if an existing trace is compli-
ant, but rather to produce sets of traces with predefined characteristics (possibly
compliant with, or violating a given process model), it employs a representation
of the model in terms of ICs defined in terms of abducibles and expectations
only.

The generation of synthetic logs through SCIFF proceeds in two steps. First
of all, the SCIFF proof procedure is given the ICs (representing the model)
and an empty trace as starting points, and it is queried about the existence of a
trace. This triggers the generation of a trace template (as defined in [6]), where all
the events have been abduced through hypothetical reasoning from rules in the
model specification. In this first step, timestamps and activity data (if present)
are indicated as variables, each one with its own set of constraints. Hence, the
output is not a proper trace containing ground values, but rather a “template”
with constrained variables: each trace template can be grounded to a number
of different traces. Once such a first template is found, the SCIFF is asked to
look for another one so that, iteratively, all the templates are pointed out. To
ensure the termination of this operation even in the presence of (indeterministic)
loops, a meta-information about the process is required: the user must specify a
maximum length, i.e., a maximum number of events in each trace.

Secondly, the trace templates are grounded by substituting variables with
values that fulfill the ICs. Two issues here arise:

– variables might have infinite domains, hence, the grounding step might not
terminate. To cope with such issue, we explicitly ask the user to specify, for
each variable, a finite domain. This is true also for event timestamps: the
user is asked to provide a maximum time for the happening of the last event
of the trace;

– synthetic process logs should provide a good “coverage” for all the data
and time domains, but should not exceed by enumerating all the possible
solutions.

The latter point indeed points to a more general problem about the char-
acteristics that a log should exhibit. Roughly speaking, a log should enjoy the
following features:

1. in-trace features such as, for example, trace length, which activities are surely
in the trace, and which constraints are surely respected by the data fields
in the trace templates. Such type of constraints can be easily covered by
our approach, by properly representing the process model (as explained in
Section 3.1);

2. data-domain coverage features such as, for example, ensuring that data val-
ues are distributed over a predefined standard distribution, or over a uni-
form distribution. To this end, we extend the grounding step by adding
constraints, so as to force the solver to look for groundings with the desired
features;



Table 1. Graphical notation and ltl formalization of some Declare templates.

template formalization notation description

existence(A) ♦A
1..∗

A

A occurs
at least once

init(A) A
init

A

A is the first
event to occur

resp. existence(A,B) ♦A→ ♦B A •−−−− B
If A occurs, B must
occur as well

response(A,B) �(A→ ♦B) A •−−−I B
If A occurs, B must
eventually follow

precedence(A,B) ¬BW A A −−−I• B
B can occur only if A
has occurred before

chain response(A,B) �(A→◦B) A •=−=−=−I B
If A occurs, B
must occur next

alt. succession(A,B)
(¬BW A)∧

A •==I• B
A and B occur

�(B →◦(¬BW A))∧ if and only if B follows A

�(A→◦(¬AU B)) and they alternate each other

chain succession(A,B) �(A←→◦B) A •=−=−I• B
A occurs if and only if
B immediately follows

3. inter-trace features such as, for example, how many traces generated from
a specific trace template are in the log; or, how many traces that do not
respect the model (i.e., negative traces) are in the log.

Depending on the application purposes for which the log is generated, a number
of different features might be identified. For example, in [10] several structural log
metrics are identified, such as the magnitude of the log, the support, the variety
and the level of detail, and the time granularity. Thanks to the expressive power
of the logic programming approach, these metrics can be exploited in the log
generation process, towards the creation of a log tailored to the user needs.

3 The running example

In this section, we describe the scenario used to generate the event logs, which
is related to the management of a loan application. In this scenario, the process
starts when an application for a loan of a certain amount is submitted by a
requester with a given salary. The application undergoes several steps, which
sometimes include checking the requester career and his/her medical history,
and ends up with the assessment of the loan and the notification of the outcome
to the requester.

The scenario can be modeled in a declarative language as, for instance, in
Declare [17]. A Declare model consists of a set of rules, which are instan-
tiations of templates on real activities. Declare templates have a graphical
representation and their semantics can be formalized in different logics the main
one being LTL on finite traces. Table 1 reports the main templates and their
LTL semantics.



Fig. 1. The loan process described in MP-Declare

Fig. 1 shows the declarative model described in MP-Declare [5] (Multi-
Perspective Declare), an extension of Declare that allows for expressing
conditions also on time and data. The MP-Declare templates allow for speci-
fying five parameters, namely the activation, the target, the activation condition,
the correlation condition and the time condition. The activation (A) of a con-
straint is an event whose occurrence imposes, because of that constraint, some
obligations on the occurrence of a target event (T ). The activation condition
is a relation (over the payload of the activation event) that must be valid in
order for the constraint to be activated. The correlation condition relates the
payload of the activation event and the payload of the target event and has to
hold in order for the constraint to be fulfilled. Finally, in MP-Declare, also a
time condition can be specified through an interval (I = [τ0, τ1)) indicating the
minimum and the maximum temporal distance allowed between the occurrence
of the activation and the occurrence of the corresponding target.

According to the model, for instance, if the Salary of the loan requester is
lower than 24 000 and the Amount of the requested loan higher than 50 000, the
application is assessed with AssessmentType complex and a high AssessmentCost

(AssessmentCost higher than 100). Whenever the result of the notification is
an acceptance, it has to be preceded by a submission loan carried out by a re-
quester with a Salary higher than 12 000. Whenever the career of the requester
is checked, also his/her medical history is checked immediately after. In detail,
if the Duration of the career check is equal or lower than 5, the Cost of the
medical history check is low (it is lower or equal than 100).

3.1 Mapping MP-Declare models in ALP

To generate the ALP-based model of the business process, each MP-Declare
constraint pattern is translated into one or more ICs. For example, the ac-
tivity SubmitLoanApplication shown in Fig. 1 is subject to the init con-
straint, i.e., each process instance should always begin with an instance of



SubmitLoanApplication. This is achieved by simply stating the following IC:

true→ABD(SubmitLoanApplication(Salary,Amount), T )

∧ T > 0 ∧ T < 10

∧ Salary > 1000 ∧ Salary < 100 000

∧ Amount > 10 000 ∧ Amount < 300 000

∧ABD(init, T ).

(2)

The antecedent of IC (2) is true, meaning that the rule is triggered immediately
at the start of the SCIFF proof procedure. As a consequence, the happening of an
event SubmitLoanApplication is hypothesized (i.e., abduced), with data fields
Salary and Amount, constrained in the specified domains. This is achieved thanks
to the fact that SCIFF integrates and supports CLP (in this specific example,
CLP over Finite Domains): Salary and Amount are simply represented as CLP
variables. Upper bounds are placed on the time instant the event is expected to
happen, as well as on the variables Salary and Amount: the latter are imposed
by the original MP-Declare model, while the former is user-definable, and it
is needed to ensure the grounding of the variable. Note also the abduction of the
special event init: its role will be fundamental to ensure the semantics of the
MP-Declare init constraint.

A characteristic feature of MP-Declare models is that they are open, i.e.,
activities that are not explicitly prohibited can happen during the process execu-
tion. To generate process logs compliant with such process models, we decided to
impose a constraint: the set of activities that can freely happen during a process
execution should be finite, and known a-priori. Given such assumption, for each
activity x in the set, we add the following pair of ICs:

ABD(start, T0)→true
∨
ABD(x, T )

∧ T > 0 ∧ T < 10 ∧ T > T0.

(3)

ABD(init, T0) ∧ABD(x, T1)→
true

∨
ABD(x, T2)

∧ T2 > T1 ∧ T2 > 0 ∧ T2 < 10 ∧ T2 > T0.

(4)

IC (3) ensures that as soon as the init of a process instance is hypothesized,
then either no activity is added to the trace, or an activity x is abduced. IC (4)
then ensures that any time the happening of an activity x is hypothesized, either
no other activity x is added to the trace (first disjunct of the IC), or a further
activity x is added (second disjunct). In other words, ICs (3) and (4) generate
traces with more and more activity executions. Each new activity execution has



a timestamp that is constrained to be greater than T0, the timestamp of the
special init abducible, thus ensuring the semantics of the MP-Declare init

constraint.

Finally, consider the response constraint between the activities SubmitLoanApplication
and AssessApplication previously introduced. Its formalization as IC is the
following:

ABD(SubmitLoanApplication(Salary,Amount), T1)

∧ Salary ≤ 24000 ∧Amount > 50000→
E(AssessApplication(AssessmentType,AssessmentCost), T2)

∧ T2 > T1 ∧ T2 > 0 ∧ T2 < 10

∧AssessmentType == 1 ∧AssessmentCost > 100.

(5)

Whenever the happening of SubmitLoanApplication is hypothesized (abduced),
then the execution of AssessApplication is expected. Note that the expecta-
tion, in the SCIFF framework, requires to be matched by a corresponding event.
In other words, the IC (5) only poses a requirement over the final trace, but no
happening of event is hypothesized. Indeed the generation mechanism has been
embedded through ICs (3) and (4), while IC (5) ensures that only traces with
certain properties are considered as solutions. Other MP-Declare relational
constraints are represented similarly.

Once the MP-Declare model is properly translated, it is possible to ask
the SCIFF proof procedure to compute the abductive answer, that corresponds
to the trace template. More than one abductive answer exist; for example a
generated trace template is the following one:

τ = {abd(submitLoanApplication(Salary,Amount), T1),

abd(assessApplication(1, AssessmentCost), T2),

abd(checkCareer(Coverage), T3),

abd(checkMedicalHistory(Cost), T4),

abd(event(notifyOutcome(0), T5),

Salary : 12001 .. 24000,

Amount : 50001 .. 299999,

T1 : 1 .. 8,

AssessmentCost : 101..199,

T2 : 2 .. 9,

Coverage : 16 .. 29,

T3 : 2 .. 9,

Cost : 11 .. 199,

T4 : 2 .. 9,

T5 : 2 .. 9}

(6)



Note that in the abdcutive answer τ , besides the abducibles that have been
computed, also intervals of CLP variables are provided. Any grounded trace is
simply generated starting from τ .

3.2 Generating negative traces

With the term “negative traces” we indicate those traces that are not compliant
with the process model. In MP-Declare, the process model is defined in terms
of a set of constraint about the execution of the activities. Hence, a trace is neg-
ative if it violates one or more constraints. In our approach, each MP-Declare
constraint is represented through one or more ICs, i.e. (forward) implications.
An implication is violated when the premises are true, but the consequences do
not hold.

The main idea behind the generation of negative traces is to exploit the same
mechanism envisaged for the generation of the positive ones, but feeding it with
a different (modified) process model. For each (non-empty) subset of the ICs
composing the model, we remove such subset from the original process model,
we “negate” all the ICs in the subset, and we add them to the model again. Any
trace that is compliant with the obtained model will violate the original model.
Thus, the model obtained in this way is provided to the proof procedure, and
traces are generated.

Several considerations need to be done. First of all, by “negating” one or more
ICs and re-adding them to the model, there is no assurance that a trace can be
generated, simply because the added ICs might make the new model inconsistent.
This is expected: indeed, in our approach, we consider all the possible subsets
of ICs, thus exploring all the possible combinations of “negated” ICs.

Secondly, the term “negating an IC” is slightly misleading: we are not putting
a negation over the whole implication, but rather we are negating the consequent.
In the simplest case, the consequent is made by a single literal, hence, its negation
is straightforward. But if we consider the response constraint shown in Eq. (5),
the consequent is made up of conjuncts and the negation of the consequent is
a disjunction of negated literals. Hence, many different “negated” ICs can be
obtained, each IC having as a consequent a subset of the negated literals.

As the reader can imagine, the approach for the generation of negative traces
suffer a complexity issue due to the powerset of the ICs to be negated, and then
a further complexity issue due to the powerset of the negated consequents of
each IC. This is indeed expected, given that a constrained process model tends
to limit the allowed traces: in turn, the number of not allowed traces is usually
larger.

3.3 Proof of Concept

As a first proof-of-concept validation, we used ALGen (Abductive Log Gener-
ator) to generate a positive event log starting from the MP-Declare model
described in Section 3 and we then applied the ProM DeclareMiner plug-in to



Fig. 2. Declare model mined by the ProM DeclareMiner plug-in

rediscover the declarative model. In detail, we generated 4000 traces (in ∼17 sec-
onds) with maximum trace length equals to 6. For each trace following a certain
path of the model, we generated, for each variable (e.g., Salary, Amount), three
different values uniformly distributed over the domain of the variable. Concern-
ing the parameters of the discovery plug-in, instead, we disabled the vacuity
detection, i.e., if the constraints are not activated the constraints evaluate to
true, and we set the minimum support threshold to 100%, i.e., only constraints
supported by all the traces in the log are discovered.

Fig. 2 shows the discovered Declare model. The init and the existence

constraints have an exact correspondence in the original model. Concerning
the other constraints, instead, we observe an overall specialization with re-
spect to the original model (e.g., alt. successions rather than response or
precedence) and the discovery of constraints that are not present in the orig-
inal model (e.g., the alt. succession between SubmitLoanApplication and
CheckMedicalHistory). This analysis confirms that the generated log is actually
compliant with the original model, though more specialized.

4 Challenges and Applications

In this section, we give a clue of one of the challenges that a log generator needs
to face when generating event logs for process mining tasks (Section 4.1) and of
a possible application of the log generator in an iterative user-guided methodol-
ogy for discovering process models closer and closer to the desired model (Sec-
tion 4.2).

4.1 The quest for the “perfect” log

Event logs represent the starting point for several approaches in the context of
process mining, e.g., process discovery or predictive process monitoring tech-
niques. In order to be used by these techniques and provide meaningful results,



however, event logs should have certain quality criteria. One of the challenges
of event log generators is hence questing for the “perfect” log. Unfortunately,
a unique perfect log does not exist, as for different tasks, or even for differ-
ent algorithms accomplishing the same task, the quality criteria (and hence the
perfect log) could differ. One of the event log quality criteria shared by many
process mining tasks is case diversity. In other terms, one of the main features
that an event log should guarantee in order to be a good log for several process
mining tasks, is that in different cases, different paths or different constraints
should be activated, activities should occur in different order, data values should
vary. Indeed, for instance, it would be not very effective applying discovery tech-
niques to an event log in which all cases are actually composed of the same
sequence of activities, i.e., in which all cases belong to the same process variant,
while other process paths are neglected. Similarly, applying predictive process
monitoring techniques that leverage data payloads to event logs in which each
variable conveys the same value across all the cases of the log would produce
rather inaccurate results without exercising the technique.

ALGen, as other tools do for procedural models [4], is able to address
this challenge. For instance, by providing different types of heuristics (e.g., the
inter-trace and the data domain coverage), it is able to generate positive event
logs starting from declarative constraints with a good diversity of the gener-
ated traces, thus enabling the evaluation of declarative process discovery algo-
rithms [15]. Furthermore, its capability of dealing with both positive and negative
traces makes it suitable for generating event logs to be used for outcome-based
predictive process monitoring approaches [9] demanding for positive and nega-
tive examples.

4.2 Closing the loop: a more and more refined model

As a side effect, the event log generators, and in particular ALGen, can be used
for the continuous refinement of process models mined with discovery techniques.
Existing (declarative) process discovery approaches can indeed be used to close
the loop so as to provide an iterative methodology as in typical software engi-
neering processes. The idea of the methodology is offering users the possibility to
guide the discovery of process models by analyzing positive and negative cases
generated according to the current model. At each step of the methodology:

1. positive and negative event logs are generated from an initial (declarative)
model (empty, manually drawn or discovered from a log);

2. the generated event logs are analyzed, so as to evaluate whether cases in the
positive log can be excluded and whether negative cases should be included;

3. based on the analysis carried out, the model can be changed (manually) or
rediscovered from the positive event log;

The procedure can be iterated until no more cases to discard are contained in the
positive log and no more cases to take are contained in the negative logs or until
a maximum number of iterations is reached. By assuming that the user knows



the actual process, at each iteration the methodology allows for discovering a
process model which is closer to the behavior of the actual process.

ALGen and its heuristics can be used for applying this methodology. For
instance, we can consider the Declare model discovered by DeclareMiner plug-
in starting from the event log generated by ALGen in Section 3.3. In such a
setting, if the user is interested in generalizing the model (e.g., to obtain a model
closer to the initial one), she can remove traces from the log or manually constrain
further the discovered model, so as to exclude the too specific behaviors in the
positive log (e.g., the alt. precedence between SubmitLoanApplication and
AssessApplication), and regenerate the log.

5 Discussion and Conclusions

The paper shows how the Abductive Logic Programming log generator ALGen
can be used to produce good-quality positive and negative event logs starting
from declarative constraints, so as to address the quest for the “perfect” log of
process mining tasks.

A number of aspects, however, are still to be investigated. First of all, we plan
to compare the logs generated through ALGen with logs generated by other ap-
proaches such as [4], from both the qualitative and quantitative perspectives.
Second, in Section 3.3 we just showed the outcome obtained by applying the
ProM DeclareMiner mining tool to the generated log: however, a number of
mining algorithms are available, and a comparison of the learned models start-
ing from the same log might be of interest. Finally, we plan to understand how
the negative traces would affect the mining algorithms, and to determine which
characteristics of the generated logs impact (how and how much) different algo-
rithms. In particular, given that the “space” of negative traces might be huge, a
question arise if negatives traces should exhibit specific characteristics. An inter-
esting outcome would be to determine guidelines on the tuning of the heuristic
parameters for the generation of the “perfect” log for each specific task.

Acknowledgments. This research has partially been carried out within the
Euregio IPN12 KAOS, which is funded by the “European Region Tyrol-South
Tyrol-Trentino” (EGTC) under the first call for basic research projects.

References

1. van der Aalst, W.M.P., Adriansyah, A., Alves de Medeiros, A.K., Arcieri, F.,
Baier, T., Blickle, T., Bose, R.P.J.C., van den Brand, P., Brandtjen, R., Buijs,
J.C.A.M., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costan-
tini, N., Curbera, F., Damiani, E., de Leoni, M., Delias, P., van Dongen, B.F.,
Dumas, M., Dustdar, S., Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen,
F., Goel, S., Günther, C.W., Guzzo, A., Harmon, P., ter Hofstede, A.H.M., Hoog-
land, J., Ingvaldsen, J.E., Kato, K., Kuhn, R., Kumar, A., Rosa, M.L., Maggi,
F.M., Malerba, D., Mans, R.S., Manuel, A., McCreesh, M., Mello, P., Mendling,



J., Montali, M., Nezhad, H.R.M., zur Muehlen, M., Munoz-Gama, J., Pontieri, L.,
Ribeiro, J., Rozinat, A., Pérez, H.S., Pérez, R.S., Sepúlveda, M., Sinur, J., Soffer,
P., Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K.D., Talamo, M., Tan,
W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo,
R., Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M.,
Wynn, M.T.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S.
(eds.) Business Process Management Workshops - BPM 2011 International Work-
shops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers, Part
I. Lecture Notes in Business Information Processing, vol. 99, pp. 169–194. Springer
(2011), https://doi.org/10.1007/978-3-642-28108-2 19

2. Ackermann, L., Schönig, S., Jablonski, S.: Towards simulation- and mining-based
translation of resource-aware process models. In: Business Process Management
Workshops - BPM 2016 International Workshops, Rio de Janeiro, Brazil, Septem-
ber 19, 2016, Revised Papers. pp. 359–371 (2016)

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Tor-
roni, P.: Verifiable agent interaction in abductive logic programming: The
SCIFF framework. ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008),
http://doi.acm.org/10.1145/1380572.1380578

4. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: Proceedings of the BPM Demo Track 2016 Co-located with the
14th International Conference on Business Process Management (BPM 2016), Rio
de Janeiro, Brazil, September 21, 2016. pp. 1–6 (2016)

5. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016).
https://doi.org/10.1016/j.eswa.2016.08.040

6. Chesani, F., Ciampolini, A., Loreti, D., Mello, P.: Abduction for generating syn-
thetic traces. In: Teniente, E., Weidlich, M. (eds.) Business Process Management
Workshops - BPM 2017 International Workshops, Barcelona, Spain, September
10-11, 2017, Revised Papers. Lecture Notes in Business Information Processing,
vol. 308, pp. 151–159. Springer (2017). https://doi.org/10.1007/978-3-319-74030-
0 11, https://doi.org/10.1007/978-3-319-74030-0 11

7. Chesani, F., Mello, P., De Masellis, R., Francescomarino, C.D., Ghidini, C., Mon-
tali, M., Tessaris, S.: Compliance in business processes with incomplete informa-
tion and time constraints: a general framework based on abductive reasoning.
Fundam. Inform. 161(1-2), 75–111 (2018). https://doi.org/10.3233/FI-2018-1696,
https://doi.org/10.3233/FI-2018-1696

8. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs
through the simulation of declare models. In: EOMAS at CAiSE (2015)

9. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M.,
Rizzi, W., Simonetto, L.: Genetic algorithms for hyperparameter optimization
in predictive business process monitoring. Inf. Syst. 74(Part), 67–83 (2018).
https://doi.org/10.1016/j.is.2018.01.003

10. Günther, C.: Process mining in flexible environments. Ph.D. thesis,
Department of Industrial Engineering & Innovation Sciences (2009).
https://doi.org/10.6100/IR644335, proefschrift.

11. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Com-
put. 2(6), 719–770 (1992), https://doi.org/10.1093/logcom/2.6.719

12. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Business Process Management - 13th International Conference, BPM



2015, Innsbruck, Austria, August 31 - September 3, 2015, Proceedings. pp. 297–
313 (2015). https://doi.org/10.1007/978-3-319-23063-4 21

13. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
14. Loreti, D., Chesani, F., Ciampolini, A., Mello, P.: Generating synthetic positive and

negative business process traces through abduction. Knowledge and Information
Systems Accepted for publication (2019)

15. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: CAiSE (2012)

16. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach, Lecture Notes in Business Information Processing,
vol. 56. Springer (2010), https://doi.org/10.1007/978-3-642-14538-4

17. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. Ph.D. thesis, Eindhoven University of Technology (2008)

18. Skydanienko, V., Di Francescomarino, C., Ghidini, C., Maggi, F.M.: A tool for
generating event logs from multi-perspective declare models. In: Proceedings of the
Dissertation Award, Demonstration, and Industrial Track at BPM 2018 co-located
with 16th International Conference on Business Process Management (BPM 2018),
Sydney, Australia, September 9-14, 2018. pp. 111–115 (2018)


