
KRaider: a Crawler for Linked Data

Giuseppe Cota1[0000−0002−3780−6265], Fabrizio Riguzzi2[0000−0003−1654−9703],
Riccardo Zese1[0000−0001−8352−6304], and Evelina Lamma1[0000−0003−2747−4292]

1 Dipartimento di Ingegneria – Università di Ferrara
2 Dipartimento di Matematica e Informatica – Università di Ferrara

Via Saragat 1, 44122, Ferrara, Italy
{giuseppe.cota,fabrizio.riguzzi, riccardo.zese,evelina.lamma}@unife.it

Abstract. The aim of the Semantic Web and Linked Data principles is
to create a web of data that can be processed by machines. The web of
data is seen as a single globally distributed dataset. During the years,
an increasing amount of data was published on the Web. In particular,
large knowledge bases such as Wikidata, DBPedia, LinkedGeoData, and
others are freely available as Linked Data and SPARQL endpoints. Ex-
ploring and performing reasoning tasks on such huge knowledge graphs
is practically impossible. Moreover, triples involving an entity can be
distributed among different datasets hosted by different SPARQL end-
points. Given an entity of interest and a task, we are interested into
extracting a fragment of knowledge relevant to that entity, such that the
results of the given task performed on the fragment are the same as if
the task was performed on the whole web of data.
Here we propose a system, called KRaider (“Knowledge Raider”), for ex-
tracting the relevant fragment from different SPARQL endpoints, with-
out the user knowing their location. The extracted triples are then con-
verted into an OWL ontology, in order to allow inference tasks. The sys-
tem is part of a - still under development - framework called SRL-Frame
(“Statistical Relational Learning Framework”).

Keywords: Linked Data · SPARQL · Ontology · RDF · Semantic Web.

1 Introduction

The aim of the Semantic Web and Linked Data principles [2] is to create a web of
data that can be processed by machines. During the years, an increasing amount
of data was published on the Web. In particular, large knowledge bases such as
Wikidata [21], DBPedia [12], LinkedGeoData [18], and others are freely available.
These knowledge bases are represented with Semantic Web standards like RDF
and OWL. They contain thousands of classes and properties, and millions of
triples. Moreover, new small knowledge bases and HTML pages with semantic
content are continuously published.

Published data is generally available as data dumps, Linked Data documents,
Triple Pattern Fragments or SPARQL Endpoints. Moreover, according to the
Linked Data principles, triples involving an entity can be distributed among

different datasets. All this data constitutes the web of data, that can be seen as
a single globally distributed dataset.

Due to its sheer size, it is difficult to explore or perform complex tasks such
inference tasks (e.g. inconsistency checks) on the whole Web of data. Reasoners
like Pellet [17], Hermit [16] and BUNDLE [4,15] can handle relatively small
knowledge bases. A better scalability of these algorithms can be achieved by
taking into account only the “interesting parts” of the web of data. In particular,
given an entity of interest, we are interested into extracting the fragment of
knowledge relevant to that entity from the Web of data.

In this paper we propose a system, called KRaider (“Knowledge Raider”),
for extracting the relevant fragment from different SPARQL endpoints, without
the user knowing their location. The extracted triples are then converted into
an OWL ontology, in order to allow inference tasks. The system is part of a -
still under development - framework called SRL-Frame (“Statistical Relational
Learning Framework”).

The paper is organized as follows. Section 2 provides an overview of the main
interfaces used to obtain knowledge from the Web of data. Section 3 illustrates
the problem of the extraction of the knowledge fragment relevant to an entity.
Section 4 presents the system KRaider and the framework SRL-Frame. An eval-
uation of KRaider used in SRL-Frame is provided in Section 5. Finally, Section 6
draws conclusions.

2 Related Work

In this section we provide a brief overview of the main paradigms and interfaces
for publishing and querying Linked Data based on RDF triples:(i) data dumps,
(ii) Linked Data Documents, (iii) SPARQL endpoints, and (iv) Triple Pattern
Fragments.

In particular, for each interface, we illustrate how queries can be performed
by clients and/or servers using the SPARQL language, which is the standard
language defined by the W3C for expressing queries on RDF triples.

data
dump

Linked Data Documents
(RDFa, JSON-LD)

Triple Pattern
Fragments

SPARQL
Endpoint

generic request / restricted queries
simple server / complex client
high availability / high bandwidth

specific request / unrestricted queries
complex server / simple client

low availability / low bandwidth

Queryable
by client

Queryable
by server

Fig. 1: Interfaces for querying Linked Data.

Figure 1 shows an overview of the main interfaces for publishing and querying
Linked Data. A SPARQL endpoint allows clients to execute SPARQL queries

on RDF triples, whereas a server that publishes data dumps or Linked Data
Documents does not provide a way for executing queries, which is, instead, del-
egated to clients. Moreover, there exist hybrid approaches like Triple Pattern
Fragments [20] that divide the query workload between servers and clients.

2.1 Data Dumps

The easiest way to publish Linked Data is to upload to a server an archive (data
dump) containing one or more files in an RDF syntax such as Turtle or N-Triples.
The client downloads the data dump, extracts the contained files and processes
them for performing queries.

The main advantage is that the server is easy to maintain and the requests
received from clients can be easily handled, i.e. the complexity of the server is
low.

However, this approach has several disadvantages. First of all, even if only
few triples are needed, the client has to download the whole dump and a high
bandwidth may be necessary. Second, if part of the data becomes outdated, the
client has to download again the archive. Moreover, the cost for managing data
can be very high for clients. For huge RDF graphs, the client is required to
perform data-intensive tasks in order to answer queries.

Data centralization approaches aim at providing support for query execution
over a collection of RDF data harvested from several sources. LOD Laundro-
mat [1] is one of them: it gathers data dumps in various RDF formats, cleans up
the data by removing syntax errors, duplicates and blank nodes, and then con-
verts and re-publishes the collected dumps into RDF-compliant formats. More-
over, LOD Laundromat allows querying the datasets using approaches based on
Triple Pattern Fragments (see subsection 2.4).

If a query service is provided, a data centralization system can provide fast
responses. However, if the central repository server is not available, all the clients
that rely on it are unable to function. Therefore, in order to avoid unavailability
(and latency), clients still have to download the needed data dumps. Further-
more, even without any query service, the cost of maintaining a centralized
repository can be very high. Finally, given the dynamic nature of Linked Data,
the collected dumps may be outdated.

2.2 Linked Data Documents

RDF triples are divided into several Linked Data documents organized by entity.
Typically, each document de consists of triples related to the entity e identified
by an URI, where the subject of the triples is that entity, i.e. de contains triples
of the form (e, p, o).

These approaches follow the Linked Data principles by Tim Berners-Lee [2].
In fact, if a client does not know what an entity identified by an URI represents,
it can find information about that entity by “dereferencing” its URI (usually by
means of an HTTP GET request). For instance, the entity Leonardo da Vinci is

denoted by the URI http://dbpedia.org/resource/Leonardo_da_Vinci, and
dereferencing this URI leads to a document containing triples in which the URI
is the subject.

Linked Data documents can be represented in any RDF syntax. In particular,
due to the popularization of REST architectures for web applications, an RDF
format based on JSON, called JSON-LD was developed. Moreover, in order to
reduce the effort for producing documents, RDFa was proposed, which allows
publishing Linked Data in HTML5 documents.

From the viewpoint of the server, the required cost to generate each document
is low and the performances for responses can be high. Moreover, the same
document can be reused by many clients, allowing the sever to apply cache
reuse policies to reduce the response time.

In [8], Hartig surveyed the approaches to execute queries over Linked Data
documents. These approaches can be split into two main categories. One category
uses pre-populated index structures [19]. The other one performs link traversal to
dynamically discover data for answering the query [9]. Link traversal approaches
have usually long query execution times. However, they require less bandwidth
than data dumps and, unlike data dumps, the data used to answer the query
is up-to-date. The major drawback of these methods is that the completeness
of the answers with respect to a knowledge graph cannot be guaranteed [7]. In
particular, queries that contain triple patterns with unbound subject may cause
some issues. For instance, the following query is not Linked Data-answerable:

SELECT ?entity WHERE { ?entity foaf:name "Leonardo da Vinci" }

2.3 SPARQL Endpoints

The most straightforward way for a client to execute a SPARQL query is to send
the query to the server and delegate the entire execution to the server, which
sends the answer back to the client. A SPARQL endpoint enables the clients to
execute queries on a dataset through HTTP.

Although allowing clients to submit arbitrary SPARQL queries leads to low
bandwidth consumption and low client cost, the cost of processing the whole
query server-side may be really high, for the server, in terms of CPU time
and memory consumption. In fact, evaluating a SPARQL query is PSPACE-
complete [14]. Another disadvantage of SPARQL endpoints is that client queries
are highly individualized. Therefore, caching the results does not lead to signif-
icant improvements.

In order to reduce the computational cost of evaluating SPARQL queries,
many endpoints use fragments of SPARQL with less expressive power (and hence
lower complexity), reduce the allowed query execution time and limit the number
of rows that can be returned (for instance, the SPARQL endpoint of DBPedia [12]
has a limit of 10,000 rows).

The idea of query federation is to answer queries based on information from
many different sources. SPARQL 1.1 from the SPARQL W3C working group
added the SERVICE operator to the language specification, which can be used
for querying another remote SPARQL endpoint during query execution.

http://dbpedia.org/resource/Leonardo_da_Vinci

2.4 Triple Pattern Fragments

The Triple Pattern Fragment [20] (TPF) interface aims at reducing query exe-
cution costs by moving part of the execution workload from servers to clients.

A fragment consists of all triples that match a specific triple pattern (plus
metadata and controls). SPARQL queries are decomposed by clients into triple
pattern queries, i.e. queries composed of a single triple pattern. The server is
only responsible for providing solutions to triple patterns, i.e. providing the
fragment of a given triple pattern query. The client is responsible of combining
the obtained fragments by processing operators such as join, union and optional.

An example of a triple pattern is: dbpedia:Donald_Duck ?p ?o. The formal
definition of triple pattern is reported below.

Definition 1. Let V be the infinite set of variables, which is disjoint from the
set U of all URIs and the set L of all literals. Any triple tp ∈ (V ∪U ∪L)× (V ∪
U)× (V ∪ U ∪ L) is a triple pattern.

Since queries received by a server are less specific, it is more probable that
the same fragment may be reused by multiple clients. Therefore Triple Pattern
Fragments can exploit caching. This interface allows servers to maintain high
availability and to scale to a much larger number of clients. However, it is not
flawless. First of all, this interface requires the maintenance of dedicated servers
and clients. Moreover, the required bandwidth is much higher. In fact, a query
is decomposed into multiple triple pattern queries leading to a large amount of
data transferred between servers and clients. In order to overcome this issue,
Hartig and Buil Aranda [10] proposed an extension of TPF that allows clients
to send to the server bindings in the queries in addition to triple patterns. There
exist hybrid approaches that combine SPARQL endpoints and Triple Pattern
Fragments, in order to exploit the advantages of both paradigms [13].

3 Extraction of Knowledge Fragments

In [11], the authors defined an approach to extract a knowledge fragment relevant
to an entity in order to perform a learning task. This approach is integrated into
DL-Learner [3] and the fragment can be extracted by using only one SPARQL
endpoint. Moreover, the user must know the URL of the endpoint.

In this paper, in order to enable the users to perform complex tasks such as
inference on Linked Data, we propose KRaider, a system for discovering relevant
knowledge fragments. The approach is similar to the one proposed in [11], but,
unlike [11], it can extract knowledge from multiple SPARQL endpoints by using
an approach inspired by Link Traversal methods [9].

Below we provide the definition of desired knowledge fragment relevant to an
entity.

Definition 2. The desired knowledge fragment Fe relevant to an entity e is the
smallest fragment of the Web of data W (Fe ⊂ W), such that a task involv-
ing entity e and performed on Fe, provides the same results as if the task was
performed on W.

dbpedia:Donald_Duck

In other words, we want to extract a fragment that holds enough information
and that is small enough to allow the efficient execution of various tasks.

The relevant fragment is extracted by recursively traversing the RDF graphs
starting from an entity. The recursion depth is a parameter that can be set by
the user and affects the size of the extracted fragment.

The extraction algorithm starts from an entity e identified by an URI Ue,
then extracts the triples that have e as subject, i.e. triples of the form (e, p, o).
The recursion depth is decremented and the objects o of the obtained triples
are used to extract additional knowledge until the user-defined recursion depth
is reached. In case p is equal to owl:sameAs, the recursion depth is not decre-
mented. Moreover, if the object’s URI Uo has a domain Do which is different from
the domain of subject’s URI, in the next recursive step, the SPARQL endpoint
hosted by Do is also queried.

The object of the obtained triples are used to extract additional knowledge
until the user-defined recursion depth is reached. The fragment extraction pro-
cess is shown in Figure 2.

Wikidatadata.europa.euDBPedia

owl:sameAs/owl:equivalentClass/
owl:equivalentProperty

property

entity

starting entity

Fig. 2: Extraction of the relevant fragment from different SPARQL endpoints
(Wikidata, data.europa.eu and DBPedia). The closed curves represents different
recursion depths. The smallest curve represent the fragment with recursion depth
0, the larger inner curve represents the fragment with recursion depth 1, up to
the largest outer curve with recursion depth 3. It should be noted, that the
predicate owl:sameAs does not increment the recursion depth.

4 Extraction Framework

In this section we provide the conceptual and some technical details about the
framework used to extract the relevant knowledge fragment.

4.1 Architecture

The system that takes care of extraction of the knowledge fragment from SPARQL
endpoints is KRaider, which is integrated into SRL-Frame, a framework under
development written in Java and based on the OSGi technology. In particular,
it uses Apache Felix as the OSGi implementation.

SRL-Frame

Triple2OWLAxiom
Converter

OSGi Framework

Service Register

OWLAPI Common
libraries

SLF4J Log4j

requests

KRaider

Extraction
Manager

KRaider Service

SPARQL Endpoint
Extractor Factory

Alternative
Extractor Factory

Extractor
Factory Service

requests

SRL-Frame
core

CLI

OntologyManager

uses

Fig. 3: Architecture of SRL-Frame.

The architecture of SRL-Frame is shown in Figure 3. The framework provides
some common libraries like SLF4J and Log4j for logging and OWL API for
manipulating ontologies. KRaider is a bundle3 and a service of this framework.
When SRL-Frame is launched, an instance of (an implementation of) KRaider is
registered into the OSGi Service Register. Therefore, if another bundle wants to
use a KRaider instance, it should check if there is one in the Service Register. The
OSGi technology is useful to enable or disable services on the fly. In fact, if for
some reason the KRaider service was disabled (e.g. maintenance, replacement
of the service with a better implementation), the client bundle does not find
KRaider in the Service Register and it simply does nothing.

The implementation of KRaider provides a factory for building new extrac-
tors (SPARQLEndpointExtractorFactory). An extractor is a component
that extracts new triples from the Web of data. In particular, a SPARQL end-
point extractor is a component that can find new triples by exploiting SPARQL

3 In the OSGi jargon a bundle is a module.

endpoints. When an extractor is created, it is assigned to a new thread by a
component called ExtractionManager, which manages the created extrac-
tors. In particular, it is responsible for the creation of new extractors, handles
the extracted triples and assigns jobs to extractors (see subsection 4.2 for further
details).

The ultimate goal of KRaider is to be able to use several types of extractors,
each exploiting a different Linked Data interface. The service oriented philosophy
of OSGi comes in handy to realize this. In fact, KRaider can check, at run-time,
which extraction services are available and then choose the ones to use. However,
at the moment, KRaider only contains a single type of extractor which is able to
exploit SPARQL endpoints to obtain triples. No other kinds of extractors have
been implemented yet.

4.2 Triple Extraction with KRaider

Algorithm 1 shows the algorithm of ExtractionManager. Its interactions
with the extractors are graphically summarized in Figure 4.

Given a recursion depth, an URI that represents an entity e, a list of available
SPARQL endpoints and a triple queue as input, ExtractionManager extracts
the domain from the given URI4 (line 7), creates the first job, where a job is
a quadruple of the form 〈Ue, Oe, Se, De〉, where Ue is the URI of entity e, Oe

is its domain, Se is the status, and De the recursion depth (line 8). The status
can have four possible values: Available, Running, NotAnswerable and Complete.
Then it checks if new extractor threads can be launched and listens for extractor
requests.

When an extractor requests a new job (line 11), it also send the set of ex-
tracted triples and the job j that has just been completed (in the first request
the list will be empty and the completed job will be null). The extracted triples
will be all those triples that have as subject the entity represented by the URI
in job j.

If the extractor was able to extract new triples, it sends a requests where the
computed job’s status is Complete, otherwise it sends an empty set of triples and
the computed job’s status is NotAnswerable. Then the manager takes the first
available job, i.e. a job with status equal to Available, sends it to the extractor
(lines 12-14) and sets the job status to Running . If there are no available jobs
at the moment, the manager stops the extractor that performed the request.

When the manager receives a request from the extractor together with a non-
empty set of newly extracted triples and the computed job is 〈Us, Os, Ss, Ds〉,
for each new triple of the form (s, p, o), if o is a named resource, it extracts the
domain Oo from Uo and adds the following job to the job queue:

〈Uo, Oo,Available, Do〉

In addition, if the domain Os is different from Oo, then it means that another
SPARQL endpoint should be taken into account and the manager adds the

4 We assume that each domain corresponds to a SPARQL endpoint.

Algorithm 1 KRaider’s ExtractionManager

1: function ExtractionManager(Ue, D, E , T)
2: Input: URI representing an entity Ue

3: Input: max recursion depth D
4: Input: list of available SPARQL endpoints E
5: Input: triple queue T
6: Create job queue J
7: Oe ← ExtractDomain(Ue)
8: Enqueue job 〈Ue, Oe,Available, De〉 into J
9: do

10: StartExtractors(J , E) . Start extractor threads according to available
jobs

11: T, j ← WaitRequests() . Listen to requests and receive from each
extractor the set of triples T and the computed job j

12: l← DequeueAvailable(J)
13: Update l status to Running
14: Send l to extractor
15: Enqueue triples T into T
16: for all (s, p, o) ∈ T do
17: if o is a named resource then
18: Oo ← ExtractDomain(Uo)
19: if p 6= owl:sameAs then
20: Do = Ds − 1
21: else
22: Do = Ds

23: end if
24: Enqueue job 〈Uo, Oo,Available, Do〉 into J
25: if Os 6= Oo then
26: Enqueue job 〈Uo, Os,Available, Do〉 into J
27: end if
28: end if
29: end for
30: while AvailableJobs(J)
31: end function

Extraction
Manager

Extractor 1

Job Queue
<Ue, Oe, Available, De>

2. Request job
5. Assign job

1. Create

Triple Queue

3. Dequeue available job
4. Return job

(a) First operations of KRaider.

2. Enqueue
 new triples

Extractor 2

6. Create

Extraction
Manager

Extractor 1

Job Queue
<Ue, Oe, Complete, De>

5. Assign job

1. Request job
 Send triples

Triple Queue

3. Enqueue new jobs
 Dequeue available job

4. Return
 job

<Uo2, Oo2, Available, Do2>

<Uo1, Oo1, Available, Do1>

(e, p1, o1)

(e, p2, o2)

(b) Dynamic creation of new extractors
when new jobs are available.

Extractor 2

Extraction
Manager

Extractor 1

Job Queue
<Ue, Oe, Complete, De>

4. Stop
1. Request job
 Send null

Triple Queue

 2. Dequeue available job
3. Return null

<Uo2, Oo2, Available, Do2>

<Uo1, Oo1, Available, Do1>

(e, p1, o1)

(e, p2, o2)

(c) Termination of an extractor caused by
the lack of available jobs.

Fig. 4: KRaider’s fragment extraction process.

following job (where Oo 6= Os):

〈Uo, Os,Available, Ds〉

Moreover, if p is different from owl:sameAs, the recursion depth is decreased
Do = Ds − 1, otherwise it is left unchanged (lines 16-29).

Finally, if there are no available jobs the algorithm terminates.

The algorithm SPARQLEndpointExtractor which extracts triples from
a SPARQL endpoint is shown in Algorithm 2. The extractor gets as input a list
of the SPARQL endpoints E and a job 〈Us, Os, Ss, Ds〉. It checks if there is a
SPARQL endpoint hosted by domain Os (line 5) In the list of the available end-
points E . If no such endpoint exists, it updates the job status to NotAnswerable
(line 24) and request a new job to ExtractionManager (line 26). Otherwise,
it queries the endpoint 3 times in order to obtain the list of URIs Uei (with
i = 1 . . . n) of the entities which are the same as (owl:sameAs) or equivalent
(owl:equivalentClass,
owl:equivalentProperty) to Us (lines 8-19). Then it sends the following query
to the endpoint (line 20:

SELECT DISTINCT * WHERE {

{ <Us> ?p ?o . } UNION

{ <Ue1> ?p ?o . } UNION

... { <Uen> ?p ?o . } }

The triples that bind with the union of the triple patterns of the query are
extracted.

4.3 OWL Conversion of the Extracted Fragment

Each extracted triple is added by ExtractorManager to a triple queue
(TripleQueue). Many reasoners like Pellet [17], Hermit [16] and BUNDLE [4,15]
are able to perform inference on OWL ontologies. For this reason, we developed
a conversion pipeline which converts the extracted triples into an OWL ontology.
Figure 5 shows how the conversion is performed.

The triples in TripleQueue are repeatedly dequeued by a converter
(Triple2OWLAxiomConverter), which converts each triple into an OWL
axiom and then enqueues the axiom into another queue called OWLAxiomQueue.
This queue is consumed by OntologyManager, which annotates the OWL ax-
ioms with their origins, i.e. with the dataset from which an axiom was extracted,
and enqueues them to an OWL ontology. Finally, if a timeout was reached or
the triple queue doesn’t contain any triples (that means that KRaider stopped),
the converter and the ontology manager stop.

The conversion from RDF to OWL is performed by following the mapping
defined by the W3C in [6]. Moreover, for triples of the form (s, rdf:type, o), if
s or o are classes, the predicate rdf:type is converted to rdfs:subClassOf.

Algorithm 2 SPARQLEndpointExtractor

1: function SPARQLEndpointExtractor(E , 〈Us, Os, Ss, Ds〉)
2: Input: a job 〈Us, Os, Ss, Ds〉
3: Input: a list of SPARQL endpoints E
4: j ← 〈Us, Os, Ss, Ds〉
5: E ← GetEndpoint(Os, E) . get from E the SPARQL endpoint that is

hosted by domain Os

6: T ← emptySet
7: if E 6= null then
8: S ← GetSameAsIndividuals(Us)
9: for all Ue ∈ S do

10: Add (Us, owl:sameAs, Ue) to T
11: end for
12: E ← GetEquivalentClasses(Us)
13: for all Ue ∈ E do
14: Add (Us, owl:equivalentClass, Ue) to T
15: end for
16: P ← GetEquivalentProperties(Us)
17: for all Ue ∈ S do
18: Add (Us, owl:equivalentProperty, Ue) to T
19: end for
20: Q← BuildQuery(j, S, E, P)
21: T ← SPARQLQuery(Q)
22: j ← 〈Us, Os,Complete, Ds〉
23: else
24: j ← 〈Us, Os,NonAnswerable, Ds〉
25: end if
26: RequestJob(T , j)
27: end function

Triple2OWLAxiom
Converter

KRaider

Triple Queue

OWL Axiom Queue

Enqueue

SRL-Frame
core

Ontology
Manager Extracted

ontology
fragment

save

Dequeue

Enqueue

Dequeue

Fig. 5: Interaction with KRaider and conversion of triples into OWL Axioms.

4.4 Problems and Limitations

One of the main limitations of KRaider is that, at the moment, it cannot handle
blank nodes: KRaider just ignores the triples that contain them. These nodes are
important in order to convert RDF triples into complex OWL class expression
or properties.

For instance, the OWL class expression ∃hasChild.Person corresponds to
the following RDF triples:

_:x rdf:type owl:Restriction .

_:x owl:onProperty hasChild .

_:x owl:someValuesFrom Person .

where :x is a blank node. These triples are ignored by KRaider. In the future
we plan to make KRaider handle blank nodes.

After multiple executions, it could happen that triples about an entity were
already been extracted. Therefore, in order to improve the performances, KRaider
should exploit caching. This is also future work. Moreover, we plan to allow the
user to define filters that should be used during extractions.

5 Evaluation

We evaluated KRaider used inside SRL-Frame by performing several knowledge
fragment extraction tasks on three different entities and an increasing recursion
depth. The tests were performed on GNU/Linux machine equipped with Intel
Core i7-5500U CPU @ 2.40GHz with 6 extractor threads.

Table 1 reports the number of extracted axioms and the running time in
seconds averaged over 5 executions of KRaider (inside SRL-Frame) for different
entities and recursion depth settings.

6 Conclusions

In this paper we proposed KRaider, a system that extract triples from different
SPARQL Endpoints. The extracted triples are then converted into OWL axioms

Table 1: KRaider’s results concerning knowledge fragment extraction of three
different entities with an increasing recursion depth. (db: is equivalent to http:

//dbpedia.org/resource/)
Recursion Depth

0 1 2
URI # Axioms Time # Axioms Time # Axioms Time

db:Leonardo_da_Vinci 48 55.268 2956 130.029 100520.6 1271.571
db:Angela_Merkel 41 47.306 2412.4 107.771 160465.8 721.854
db:Nikola_Tesla 43 47.628 2139 87.499 62700.8 680.563

by another component. All these systems are integrated into a framework called
SRL-Frame, which is still under development. SRL-Frame is based on OSGi tech-
nologies, which allows the system to dynamically install and start new services,
hence making the framework flexible to changes.

KRaider’s code is available as git repository at https://bitbucket.org/

machinelearningunife/kraider/, whereas the code of SRL-Frame is available
at https://bitbucket.org/machinelearningunife/srl-frame/.

In addition to the directions for future work presented in subsection 4.4,
we plan to develop new type of extractors that exploit the other Linked Data
interfaces. In particular, in the immediate future, we plan to integrate SPARQL-
LD [5] into SRL-Frame as a triple extractor service to be used by KRaider.

References

1. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD
Laundromat: a uniform way of publishing other people’s dirty data. In: ISWC
2012. pp. 213–228. Springer (2014)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story so far. In: Semantic
services, interoperability and web applications: emerging concepts, pp. 205–227.
IGI Global (2011)

3. Bühmann, L., Lehmann, J., Westpha, P.: DL-Learner – a framework for inductive
learning on the semantic web. J. Web Semant. 39, 15–24 (2016)

4. Cota, G., Riguzzi, F., Zese, R., Bellodi, E., Lamma, E.: A modular inference sys-
tem for probabilistic description logics. In: Ciucci, D., Pasi, G., Vantaggi, B. (eds.)
SUM 2018. LNCS, vol. 11142, pp. 78–92. Springer, Heidelberg, Germany (2018).
https://doi.org/10.1007/978-3-030-00461-3 6, http://mcs.unife.it/~friguzzi/

Papers/CotRigZes-SUM18.pdf

5. Fafalios, P., Yannakis, T., Tzitzikas, Y.: Querying the web of data with sparql-
ld. In: Fuhr, N., Kovács, L., Risse, T., Nejdl, W. (eds.) Research and Advanced
Technology for Digital Libraries. pp. 175–187. Springer International Publishing,
Cham (2016)

6. Grau, B.C., Horrocks, I., Parsia, B., Ruttenberg, A., Schneider, M.: OWL 2 web
ontology language mapping to RDF graphs (second edition) (12 2012)

7. Harth, A., Speiser, S.: On completeness classes for query evaluation on linked data.
In: Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12) (2012)

db:
http://dbpedia.org/resource/
http://dbpedia.org/resource/
db:Leonardo_da_Vinci
db:Angela_Merkel
db:Nikola_Tesla
https://bitbucket.org/machinelearningunife/kraider/
https://bitbucket.org/machinelearningunife/kraider/
https://bitbucket.org/machinelearningunife/srl-frame/
https://doi.org/10.1007/978-3-030-00461-3_6
http://mcs.unife.it/~friguzzi/Papers/CotRigZes-SUM18.pdf
http://mcs.unife.it/~friguzzi/Papers/CotRigZes-SUM18.pdf

8. Hartig, O.: An overview on execution strategies for linked data queries. Datenbank-
Spektrum 13(2), 89–99 (2013)

9. Hartig, O., Bizer, C., Freytag, J.C.: Executing sparql queries over the web of linked
data. In: The Semantic Web - ISWC 2009, 8th International Semantic Web Con-
ference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings. pp.
293–309. Springer (2009)

10. Hartig, O., Buil-Aranda, C.: Bindings-restricted triple pattern fragments. In: De-
bruyne, C., Panetto, H., Meersman, R., Dillon, T., Kühn, e., O’Sullivan, D.,
Ardagna, C.A. (eds.) On the Move to Meaningful Internet Systems: OTM 2016
Conferences. pp. 762–779. Springer International Publishing, Cham (2016)

11. Hellmann, S., Lehmann, J., Auer, S.: Learning of owl class descriptions on very
large knowledge bases. International Journal on Semantic Web and Information
Systems (IJSWIS) 5(2), 25–48 (2009)

12. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2),
167–195 (2015)

13. Montoya, G., Aebeloe, C., Hose, K.: Towards efficient query processing over hetero-
geneous rdf interfaces. In: Proceedings of the 2nd Workshop on Decentralizing the
Semantic Web co-located with the 17th International Semantic Web Conference
(ISWC 2018) (2018)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: The
Semantic Web - ISWC 2006, 5th International Semantic Web Conference, ISWC
2006, Athens, GA, USA, November 5-9, 2006. Proceedings. pp. 30–43. Springer
Berlin Heidelberg (2006)

15. Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: BUNDLE: A reasoner for probabilis-
tic ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 183–
197. Springer Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39666-
3 14

16. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In:
Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings of the Fifth OWLED
Workshop on OWL: Experiences and Directions, collocated with the 7th Inter-
national Semantic Web Conference (ISWC-2008), Karlsruhe, Germany, October
26-27, 2008. CEUR-WS, vol. 432. CEUR-WS.org (2008)

17. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

18. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: A core for a web
of spatial open data. Semant. Web 3(4), 333–354 (2012), http://jens-lehmann.
org/files/2012/linkedgeodata2.pdf

19. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. World Wide Web 14(5-6),
495–544 (2011)

20. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester,
B.D., Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-cost
knowledge graph interface for the web. J. Web Semant. 37-38, 184 –
206 (2016). https://doi.org/https://doi.org/10.1016/j.websem.2016.03.003, http:
//www.sciencedirect.com/science/article/pii/S1570826816000214

21. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledge base.
Commun. ACM 57, 78–85 (2014), http://cacm.acm.org/magazines/2014/10/

178785-wikidata/fulltext

https://doi.org/10.1007/978-3-642-39666-3_14
https://doi.org/10.1007/978-3-642-39666-3_14
http://jens-lehmann.org/files/2012/linkedgeodata2.pdf
http://jens-lehmann.org/files/2012/linkedgeodata2.pdf
https://doi.org/https://doi.org/10.1016/j.websem.2016.03.003
http://www.sciencedirect.com/science/article/pii/S1570826816000214
http://www.sciencedirect.com/science/article/pii/S1570826816000214
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext

	KRaider: a Crawler for Linked Data

