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Abstract. The paper describes a preferential approach for dealing with
exceptions in Description Logics, based on the rational closure. It is well
known that the rational closure does not allow an independent handling
of the inheritance of different defeasible properties of concepts. Several
solutions have been proposed to face this problem and the lexicographic
closure is the most notable one. In this work, we provide an overview
of the closure constructions that have been proposed to strengthen the
rational closure.

1 Introduction

The study of nonmonotonic extensions of DLs is motivated by a problem in
standard ontology languages (and, specifically, in OWL Description Logics) where
a class inherits the properties of its superclasses, and where the treatment of
exceptions is required in many application domains, from those concerning laws
and regulations (where new laws override old ones) to medical ontologies.

Many non-monotonic extensions of DLs have been developed incorporating
non-monotonic features from most of the non-monotonic formalisms in the litera-
ture, from default [3, 4] and autoepistemic logics [23, 41, 49], to circumscription
[12, 9] and preferential logics [33, 13, 34, 17, 16, 37, 20, 35, 36], including also the
approaches based on Answer Set Programming [25, 24] and, in general, on rule
languages [43, 40]. New constructions and semantics have also been developed
specifically for dealing with exceptions in DLs as, for instance, the logic of
overriding DLN in [8, 10] and the context based CKR framework in [11]).

The landscape is very rich and the complexity of the different approaches
has been studied, both for low complexity and for high complexity description
logics. The case of description logic is an interesting case study for non-monotonic
reasoning, which encompasses a limited treatment of first order of non-monotonic
logics, namely, the treatment of the decidable fragment including only unary
and binary predicates. Some undecidability results have also been found in
nonmonotonic extensions, for instance, when roles are fixed in circumscriptive
knowledge bases [9].

For dealing with big knowledge bases, tractable constructions are especially
important. In this paper we focus on the rational closure for DLs [17, 20, 16, 37,



15] and on its refinements. The rational closure introduced by Lehmann and
Magidor [45] is a polynomial construction, and it was first adapted to DLs by
Casini and Straccia [17]. On the one hand, the rational closure can be computed
by exploiting polynomial reductions to standard DLs [36, 48], and its construction
requires a quadratic number of entailments to the underlying DL reasoner. On the
other hand, it suffers from different problems, one of them being the well known
problem called by Pearl [50] “the blocking of property inheritance problem”.
There are other problems of the rational closure which are specific to description
logics. For logics including some combination of constructs, such as nominals and
universal role, the rational closure of a finite knowledge base may be inconsistent.
This problem is due to the fact that some DL constructs (or their combination)
allow for the specification of very general constraints which are not taken into
account in the rational closure construction. For this problem there are some
partial solutions in [38, 22] for the low complexity logics of the EL⊥ family, while
a new notion of stable rational closure has been proposed by Bonatti [7] to deal
with the wider class of expressive description logics. A further problem of rational
closure for DLs is that it disregards defeasible information for existential concepts,
a problem which has been addressed by Pensel and Turhan [51], who developed
a stronger versions of rational and relevant entailment in EL, which considers
defeasible information for quantified concepts.

In this paper we focus on the first problem: if a subclass of a class C is
exceptional to C for a given aspect, it is exceptional tout court and does not
inherit any of the typical properties of C. Refinements of the rational closure
construction, avoiding this problem, have been studied in the literature, the first
prominent one being the lexicographic closure introduced by Lehmann [46] in
the context of propositional logic, later extended to the DL ALC by Casini and
Straccia [19]. In the context of description logics, other approaches have been
proposed to deal with this problem. In [20] the same authors have developed
an inheritance-based approach for defeasible DLs. In [14] Casini et al. have
introduced the notions of basic Relevant Closure and of minimal Relevant Closure
as extensions of the rational closure, where relevance is based on the notion
of justification. In [39] Gliozzi has defined a semantics for defeasible inclusions
in which models are equipped with several preference relations, providing a
refinement of the rational closure semantics. It has to be mentioned that other
defeasible extensions of DLs still based on preferential logics but not on the
rational closure, also suffer from the blocking of property inheritance problem, for
instance, the typicality logic ALC+Tmin [35] which, differently from the rational
closure, is not based on a non-ranked semantics. A multi-typicality version of this
semantics has been studied in [26] to address this problem. Other approaches,
such as the logic of overriding DLN [8], still build on the rational closure to
determine specificity of defaults, but do not suffer from this problem. In a sense,
when it builds on the rational closure to determine the ranking of concepts
(rather than building on the concept hierarchy), also DLN can be regarded as a
refinement of the rational closure.



In the following, we give an overview of the lexicographic closure and of other
refinements of the rational closure, comparing their outcomes on some examples.
In particular, we consider the MP-closure and the Skeptical closure, which are
weaker variants of the lexicographic closure, as well as the multi-preference
semantics [39], the relevant closure [14], and DLN . The multi-preference closure
was first introduced in [30] as a sound approximation of Gliozzi’s multi-preference
semantics [39]. As the lexicographic closure, it builds over the rational closure
but it defines a preferential, not necessarily ranked, semantics, using a different
lexicographic order to compare sets of defaults.

The MP-closure construction generates a superset of the basis generated
by the lexicographic closure and, therefore, entailment under the MP-closure
(capturing the typicality inclusions which hold from all the MP-closure bases)
is weaker than entailment under the lexicographic closure. Unfortunately, both
the MP-closure and the lexicographic closure require an exponential number of
possible bases to be considered. Having a single base would make reasoning about
exceptions in the ontology much faster. The pattern followed by the skeptical
closure [27, 28], as by the logic of overriding DLN [8], is that of building a single
basis which, in essence, is a subset of the intersection of all the basis (soundly
approximating the MP-closure), and can be constructed in a polynomial number
of steps. Entailment in the skeptical closure is neither weaker nor stronger than
entailment in DLN . On the other hand, the multi-preference semantics, although
stronger than the MP-closure (and than the skeptical closure), is incomparable
with the lexicographic closure. In the following, we first introduce the rational
closure and then we compare the different approaches through some examples.

2 The rational closure for ALC
In this section we recall the extension ofALC with a typicality operator introduced
in [34, 36] under the preferential and ranked semantics. In particular, we recall the
logic ALC + TR which is at the basis of a rational closure construction proposed
in [36] for ALC. The general idea is that of extending the description logic ALC
with concepts of the form T(C), whose instances are the typical instances of
concept C, thus distinguishing between the properties that hold for all instances
of concept C (given by strict inclusions C v D), and the properties that only
hold for the typical instances of C (given by the defeasible inclusions T(C) v D).
The extended language is defined as follows:

CR := A | > | ⊥ | ¬CR | CR u CR | CR t CR | ∀R.CR | ∃R.CR

CL := CR | T(CR),

where A is a concept name and R a role name. A knowledge base K is a pair
(T ,A), where the TBox T contains a finite set of concept inclusions CL v CR,
and the ABox A contains a finite set of assertions of the form CR(a) and R(a, b),
for a, b individual names, and R role name. Less constrained languages have
been considered, in which the typicality operator may also occur on the right
hand side of inclusions, for instance, in extensions with typicality of the very
expressive logic SROIQ [36] and of the low complexity logic SROEL(u,×) [38]



For simplicity, however, here we restrict our consideration to inclusions, which
are either strict inclusions, or typicality inclusions of the form T(C) v D (where
C and D are ALC concepts), which in essence correspond to KLM defeasible
inclusions C |∼ D.

The semantics of ALC with typicality is defined in terms of preferential
models, extending to ALC the preferential semantics by Kraus, Lehmann and
Magidor in [44, 45]: ordinary models of ALC are equipped with a preference
relation < on the domain, whose intuitive meaning is to compare the “typicality”
of domain elements: x < y means that x is more typical than y. The instances of
T(C) are the instances of concept C that are minimal with respect to <. < is
further assumed to be well-founded3 (i.e., there is no infinite <-descending chain,
so that, if S 6= ∅, also min<(S) 6= ∅) and, in ranked models, which characterize
ALC + TR, < is also assumed to be modular (i.e., for all x, y, z ∈ ∆, if x < y
then either x < z or z < y). Let us shortly recap the definition of preferential
and ranked models of a finite DL knowledge base K = (T ,A).

Definition 1 (Preferential and ranked interpretations of ALC + T). A
preferential interpretation M is any structure M = 〈∆,<, I〉 where: ∆ is the
domain; < is an irreflexive, transitive and well-founded relation over ∆. I is an
interpretation function that maps each concept name C ∈ NC to CI ⊆ ∆, each
role name R ∈ NR to RI ⊆ ∆I ×∆I and each individual name a ∈ NI to aI ∈ ∆.
For concepts of ALC, CI is defined in the usual way in ALC interpetations
[2]. In particular:>I = ∆, ⊥I = ∅, (¬C)I = ∆\CI , (C u D)I = CI ∩ DI ,
(C tD)I = CI ∪DI and

(∀R.C)I = {x ∈ ∆ | for all y ∈ ∆, (x, y) ∈ RI implies y ∈ CI}
(∃R.C)I = {x ∈ ∆ | there is a y ∈ ∆ such that (x, y) ∈ RI and y ∈ CI}

For the T operator, we have (T(C))I = min<(CI).
When the relation < is modular, I is called a ranked interpretation.

The notion of satisfiability of a KB in an interpretation is defined as usual. Given
an ALC interpretation M = 〈∆,<, I〉:

- I satisfies an inclusion C v D if CI ⊆ DI ;
- I satisfies an assertion C(a) if aI ∈ CI ;
- I satisfies an assertion R(a, b) if (aI , bI) ∈ RI .

Definition 2 (Model of a KB [34]). A preferential (ranked) model of a knowl-
edge base K = (T ,A) is a preferential (ranked) interpretation M that satisfies
all inclusions in T and all assertions in A.

A query F (either an assertion CL(a) or an inclusion relation CL v CR) is
preferentially (rationally) entailed by a knowledge base K, written K |=ALC+T F
(resp., K |=ALC+TR

F ) if F is satisfied in all the models (resp., ranked models)
of K.

3 Since ALC + TR has the finite model property, this is equivalent to having the
Smoothness Condition, as shown in [36]. We choose this formulation because it is
simpler.



In particular, the definition of the rational closure for ALC and its semantics
in [37, 36] extends the definition introduced by Lehmann and Magidor [45] to the
language ALC + TR of ALC plus typicality. Roughly speaking T(C) v D holds
in the rational closure of K if C is less exceptional than C u ¬D. We shortly
recall this construction of the rational closure of a TBox and we refer to [36] for
full details.

Definition 3 (Exceptionality of concepts and inclusions). Let E be a
TBox and C a concept. C is exceptional for E if and only if E |=ALC+TR

T(>) v
¬C. An inclusion T(C) v D is exceptional for E if C is exceptional for E. The
set of inclusions which are exceptional for E will be denoted by E(E).

Given a TBox T , it is possible to define a sequence of non increasing subsets of the
TBox T ordered according to the exceptionality of the elements E0 ⊇ E1 ⊇ E2 . . .
by letting E0 = T and, for i > 0, Ei = E(Ei−1) ∪ {C v D ∈ T s.t. T does not
occurr in C}. Observe that, being knowledge base finite, there is an n ≥ 0 such
that, for all m > n,Em = En or Em = ∅. A concept C has rank i (denoted
rank(C) = i) for TBox, iff i is the least natural number for which C is not
exceptional for Ei. If C is exceptional for all Ei then rank(C) = ∞ (C has no
rank). The rank of a typicality inclusion T(C) v D is rank(C). The intuition is
that, for i < j, Ei contains less specific defeasible properties then Ej . Consider
the following example.

Example 1. Let K be the knowledge base with TBox:

1. T(Student) v ¬∃has paid .Tax
2.T(Student) v Young
3. T(EStudent) v ∃has paid .Tax
4. EStudent v Student

stating that typical students have not paid taxes, but typical employed students
(which are students) have paid some taxes and that typical students are young.
It is possible to see that

E0 = T
E1 = {T(EStudent) v ∃has paid .Tax , EStudent v Student}.

The rank of concept Student is 0, as Student is non-exceptional for E0, while
concept EStudent has rank 1, it is exceptional w.r.t. the property that students
typically are not taxpayers. The properties of EStudent are more specific than
those of Students.

Rational closure builds on this notion of exceptionality:

Definition 4 (Rational closure of TBox). Let K = (T ,A) be a DL knowl-
edge base. The rational closure of TBox is defined as:

RC(T ) ={T(C) v D ∈ T | either rank(C) < rank(C u ¬D) or

rank(C) =∞} ∪ {C v D ∈ T | KB |=ALC+TR
C v D}

where C and D are ALC concepts.



In [36] it is shown that deciding if an inclusion T(C) v D belongs to the rational
closure of TBox is a problem in ExpTime and that the semantics corresponding
to rational closure can be given in terms of minimal canonical ALC + TR models.
In such models the rank of domain elements is minimized to make each domain
element as typical as possible. Furthermore, canonical models are considered in
which all possible combinations of concepts are represented. We refer to [36] for
a description.

In Example 1, the typicality inclusion T(Student u Italian) v ¬∃has paid .Tax
belongs to the rational closure of the TBox, as rank(Student u Italian) = 0 <
rank( Student u Italian u ∃has paid .Tax ) = 1. Similarly, T(EStudent u Italian)
v ∃has paid .Tax belongs to the rational closure.

However, the inclusion T(EStudent) v Young does not belong to the ratio-
nal closure. Indeed, the concept EStudent is exceptional for E0, as it violates
the defeasible property of students that, normally, they have not paid taxes
(T(Student) v ¬∃has paid . Tax ). For this reason, EStudent does not inherit
“any” of the defeasible properties of Student . Indeed, in a language allowing
more liberal occurrences of the typicality operator, as the one in [38] one could
have actually inferred that T(EStudent) v ¬T(Student) using preferential (or
rational) entailment.

3 Refinements of the rational closure: a comparison

To overcome the weakness of the rational closure, Lehmann introduced the notion
of lexicographic closure [46], that has been extended to the description logic
ALC by Casini and Straccia in [19], which strengthens the rational closure by
allowing, roughly speaking, a class to inherit as many as possible of the defeasible
properties of more general classes, giving preference to the more specific properties.
In the example above, the defeasible property of students of being young should
be inherited by employed students, as it is consistent with all other (strict and
defeasible) properties of employed students and, by “presumption of independence”
[46], even if typicality is lost with respect to one consequent (∃has paid .Tax ) we
may still presume typicality of EStudent with respect to the property of being
Young .

In Example 1, the set D = {1, 2} of defeasible properties (defaults) from the
TBox forms a basis for EStudent . Using Lehmann terminology, a basis D for A is a
maximally serious set of defaults whose material counterpart D̃ is consistent with
A. In our example, following the definition for ALC in [19], the materialization
of D, D̃ = {Student v Young , Employee v ∃has paid .Tax}, is consistent with
EStudent and with the strict part of TBox Φ = {Student v Young} (i.e., Φ∪D̃ 6|=
¬EStudent). Since D is the unique set of defaults consistent with EStudent and
Φ, D is maximally serious, and is the unique basis for EStudent . Young holds
in the basis D, as Young follows from EStudent ∪ Φ ∪ D̃. Thus, Young holds
in all the basis for EStudent , and (using our notation) the defeasible inclusion
T(EStudent) v Young belongs to the lexicographic closure of the KB.



The notion of seriousness comes into play when there are alternative sets
D of consistent defaults. Seriousness of D depends on the ranking of defeasible
inclusions in the rational closure. In order to compare alternative sets of defaults,
in [46] a seriousness ordering ≺ among sets of defaults is defined by associating
with each set of defaults D ⊆ K a tuple of numbers 〈n0, n1, . . . , nk〉D, where
n0 is the number of defaults in D with rank ∞ and, for 1 ≤ i ≤ k, ni is the
number of defaults in D with rank k − i (and there is not default with rank k or
greater). A modular order ≺ among sets of defaults is obtained from the natural
lexicographic order over the tuples. This order gives preference to those bases
containing more specific defaults (the highest is the rank, the more specific is
the default). This is essentially the ordering used in [19] (but for that fact that
hidden non-defeasible knowledge is first moved to the strict part of the KB).

Let us consider the following variant of Example 1.

Example 2. Let K ′ be a knowledge base with TBox:

1. T(Student) v ¬∃has paid .Tax
2. T(Student) v Young
3. T(Employee) v ¬Young
4. T(EStudent) v ∃has paid .Tax
5. EStudent v Student u Employee

In the rational closure of K ′, concepts Student and Employee have rank 0 and
concept EmployedStudent has rank 1. Default 4 has rank 1 and is more specific
than defaults 1, 2 and 3 having rank 0. We want to derive the properties of
typical employed students. Clearly, default 4 holds for EStudent , as its rank
is 1. The property that typical employed students are taxpayers (default 4),
overrides the property that students are typically not taxpayers (default 1).
Instead, the two defaults 2 and 3 are each one compatible with with the property
that employed students have paid taxes (default 4). In the lexicographic closure
there are two alternative bases (sets of defaults) for EStudent , namely, D = {2, 4}
and E = {3, 4}, which are not comparable (no one is more serious than the other),
while the strict inclusion 5 holds for all bases. In fact, the corresponding tuples
〈0, 1, 1〉D (D contains no default with rank∞, 1 default with rank 1 and 1 default
with rank 0) and, similarly, 〈0, 1, 1〉E . As the two tuples are incomparable, neither
D ≺ E nor E ≺ D. As Young does not hold from basis E , in the lexicographic
closure one cannot conclude that T(EStudent) v Young . Similarly, one cannot
conclude that T(EStudent) v ¬Young .

Concerning Examples 1 and 2 above, similar results can be obtained when
reasoning with the MP-closure, with the Skeptical closure and with the logic
DLN . None of them can conclude that typical employed students are young. In
Example 2 the logic of overriding DLN finds out that there is a conflict between
the defaults 2 and 3, none of which is overridden by more specific properties. In
this case the prototype of concept EStudent is said to be inconsistent.

In Example 2 the MP-closure and the Skeptical closure, as the lexicographic
closure, silently eliminate the conflict and neither infer that typical employed



students are young, nor that they are not young. In particular, the MP-closure
is a variant of the lexicographic closure which has been studied in [29], and
exploits a different lexicographic ordering with respect to the one considered by
the lexicographic closure. It compares two sets of defaults D and E by considering
the tuples of the sets of defaults with different ranks rather than the tuples of
their cardinality. The natural lexicographic order to compare such tuples of sets
exploits strict subset inclusion, and the resulting seriousness ordering among sets
of defaults is a strict partial order, but is not modular in general.

In Example 1, there is a single basis in the MP-closure as in the lexicographic
closure, as there is a single set of defaults consistent with EStudent (and with
the strict inclusions). In Example 2, the two sets D = {2, 4} and E = {3, 4}
are incomparable, as neither 〈∅{4}, {2}〉D is less serious than 〈∅, {4}, {3}〉E , nor
vice-versa. Hence D and E are both bases of the MP-closure and, as in the
lexicographic closure, we can neither conclude that T(EStudent) v Young nor
that T(EStudent) v ¬Young .

In this same example, the minimal relevant closure [14] would neither conclude
that T(EStudent) v Young nor that T(EStudent) v ¬Young . There are two
EStudent-justifications w.r.t. K ′, namely J1 = {1, 4} and J2 = {2, 3}. Hence,
J1
min = {1} and J2

min = {2, 3}. In particular, both defaults 2 and 3 are relevant
for determining the subsumption T(EStudent) v Young , and both of them are
eligible for removal.4

Example 3. Consider the case when the TBox in Example 2 is extended with an
additional defeasible inclusion

6. T(Student) v Bright .
In this case, in both the lexicographic closure and the MP-closure, there are
two bases for concept EStudent , D′ = {2, 4, 6} and E ′ = {3, 4, 6}, and de-
fault 6 belongs to both them. Hence, in both the lexicographic closure and the
MP-closure we would conclude that typical employed students are bright, i.e.
T(EStudent) v Bright . This conclusion would not be obtained in DLN , where
the prototype of concept EStudent is inconsistent, as before. In the Skeptical
closure, the defaults with rank 0 in the two bases, namely D′0 = {2, 6} and
E′0 = {3, 6} are conflicting. Hence they are all discarded when constructing the
single basis for EStudent , and T(EStudent) v Bright cannot be concluded as
well.

With the approach in [14], T(EStudent) v Bright would belong to the minimal
relevant closure of the KB, as the defeasible subsumption 6 is not potentially
relevant for resolving the conflict among the other defaults for concept EStudent .

To see the difference between the MP-closure and the lexicographic closure,
consider the following variant of Example 2:

Example 4. Let the TBox be:

4 Using the notation in [14], defeasible subsumptions would be written C@˜D rather
than T(C) v D, but they rely on the same ranked semantics.



1. T(Student) v ¬∃has paid .Tax
2. T(Student) v Young
3. T(Employee) v ¬Young ∧ ∃has paid .Tax
4. T(EStudent) v Graduate in 4Years
5. EStudent v Student u Employee

Now, defaults 1, 2 and 3 have rank 0 in the rational closure, while default 4 has
rank 1. We have still two alternative bases in the MP-closure, {1, 2, 4} and {3, 4},
but there is a single base {1, 2, 4} in the lexicographic closure. The reason is
that in the lexicographic order, the set D = {1, 2, 4} (with the associated tuple
〈0, 1, 2〉D) is more serious than E = {3, 4} (with the associated tuple 〈0, 1, 1〉E)
as both bases contain 1 default with rank 1, but D contains two defaults with
rank 0, while E contains just one. From the lexicographic closure one can then
conclude that T(EStudent) v Young ∧ ¬∃has paid . Tax .

In the MP-closure, instead, the two bases are not comparable as none of the
tuples of sets of defaults 〈∅, {4}, {1, 2}〉 and 〈∅, {4}, {3}〉 is more serious than
the other one, as the two sets of defaults with rank 0, {1, 2} and {3}, are not
comparable using subset inclusion.

In this example, the basic relevant closure and the minimal relevant closure
would not be able to conclude that T(EStudent) v ¬Young , as well. In fact,
there are two EStudent-justifications w.r.t. the KB above namely J1 = {1, 3} and
J2 = {2, 3}, both of them containing only defaults with rank 0. Hence, J1

min = J1

and J2
min = J2. In particular, defaults 1, 2 and 3 are all relevant for determining

the subsumption T(EStudent) v ¬Young , and all eligible for removal.

In this last example the lexicographic closure appears to be too bold, as the
reason to accept that typical employed students are not young and have paid
taxes may be disputable. Notice also that if we replace default 3 with two defaults

T(Employee) v ¬Young
T(Employee) v ∃has paid .Tax

there would be two bases in the lexicographic closure, and one would not conclude
any more that typical employed students are young and have not paid taxes.
The MP-closure and the relevant closure are more cautious (and less syntax
dependent in this example). In particular, both formulations of Example 4 there
are two bases in the MP-closure and nothing can be concluded about typical
employed students being young or paying taxes. Similarly, in the relevant closure.

In the Skeptical closure, the set of defaults with rank 0 which are not overridden
by more specific defaults is {1, 2, 3}, but they are altogether incompatible with
EStudent and with the strict inclusion 5. Hence, nothing can be concluded about
typical employed students except that they graduate in 4 years. In DLN the
prototype of concept EStudent is found to be inconsistent, as there are conflicting
non overridden defaults 1, 2 and 3.



4 Conclusions and related work

In this paper we have compared the behavior of some refinements of the rational
closure, namely the Lexicographic closure [46, 19], the Relevant closure [14], the
MP-closure [29] and the Skeptical [28] closure, through some examples. We have
also considered for comparison the logic DLN , proposed by Bonatti et al. in [8],
which captures a form of “inheritance with overriding”: a defeasible inclusion
is inherited by a more specific class if it is not overridden by more specific
(conflicting) properties. The logic DLN is not necessarily applied starting from
the ranking given by the rational closure but, when it does, it provides another
approach to deal with the problem of inheritance blocking in the rational closure.

The multi-preference closure (or MP-closure) was first introduced in [30] as a
sound approximation of Gliozzi’s multi-preference semantics [39]. As the lexico-
graphic closure, it builds over the rational closure but it defines a preferential, not
necessarily ranked, semantics, using a different lexicographic order to compare sets
of defaults. A semantic characterization of the MP-closure for the description logic
ALC was developed in [29] using bi-preferential (BP) interpretations, preferential
interpretations developed along the lines of the preferential semantics introduced
by Kraus, Lehmann and Magidor [44, 45], but containing two preference relations,
the first one <1 playing the role of the ranked preference relations in the models
of the RC, and the second one <2 representing a preferential refinement of <1.
The skeptical closure [28] was shown to be a weaker variant of the MP-closure in
[29].

The relevant closure [14] is based on the idea of relevance of subsumptions to
a query, to overcome the limitation of the weakness of rational closure. Relevance
is determined based on justifications and, in minimal relevant closure, the idea is
that subsumptions with lower ranks are removed first. It was shown by Casini et
al. [14] that the relevant closure is a weaker closure than the lexicographic closure.
In [31] it was proved that, in the propositional case, the basic and the minimal
relevant closure are weaker than the MP-closure, which, in turn, is weaker than
the lexicographic closure.

Another refinement of the rational closure, which also deals with this limitation
of the rational closure, is the inheritance-based rational closure in [18, 20], a
closure construction which is defined by combining the rational closure with
defeasible inheritance networks.

Fernandez Gil in [26] developed a multi-typicality version of the typicality
logic ALC + Tmin [35], another defeasible description logic based on preferential
extension of ALC with typicality, which, differently from the rational closure, is
not based on the ranked models semantics but, nevertheless, suffers from the
blocking of property inheritance problem. [26] provides a solution to this problem
for ALC + Tmin, considering a language with multiple typicality operators.

Other approaches in the literature deal with the problem of inheritance with
exceptions. For instance, Bozzato et al. in [11] present an extension of the CKR
framework in which defeasible axioms are allowed in the global context and can
be overridden by knowledge in a local context. Exceptions have to be justified in
terms of semantic consequence. A translation of extended CHRs (with knowledge



bases in SROIQ-RL) into Datalog programs under the answer set semantics is
also defined.

Concerning the multipreference semantics introduced in [39] to provide a
semantic strengthening of the rational closure, we have proved in [30] that the
MP-closure provides a sound approximation of such a semantics. As a consequence
of the fact that the skeptical closure is weaker than the MP-closure, the skeptical
closure is still a sound (a weaker) approximation for the multipreference semantics.

The relationships among the above variants of rational closure for DLs and
the notions of rational closure for DLs developed in the contexts of fuzzy logic [21]
and probabilistic logics [47] are also worth being investigated. In the propositional
logic case, it has been shown in [5] that KLM preferential logics and the rational
closure [44, 45], the probabilistic approach [1], the system Z [50], the possibilistic
approach [6, 5] are all related with each other, and another related approach is
that of c-representations [42]. Similar relations might be expected to hold among
the non-monotonic extensions of description logics as well.

Although the skeptical closure has been defined based on the preferential
extension of ALC, the same construction could be adopted for more expressive
description logics, provided that the rational closure can be consistently defined
for the knowledge base under consideration [32]. Indeed, for a KB in an expressive
DL, the consistency of rational closure is not guaranteed and, from the semantic
point of view, the knowledge base might have no canonical models. Partial
solutions to this problem have been considered in [38, 22] for the low complexity
logics in the EL family, and a notion of stable rational closure is proposed in [7]
to extend the rational closure to a wider class of expressive description logics,
which do not satisfy the disjoint model union property.
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T. Janhunen and I. Niemelä, editors, Proceedings of the 12th European Conference
on Logics in Artificial Intelligence (JELIA 2010), volume 6341 of Lecture Notes in
Artificial Intelligence, pages 77–90, Helsinki, Finland, September 2010. Springer.

18. G. Casini and U. Straccia. Defeasible Inheritance-Based Description Logics. In
Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), pages 813–818, Barcelona, Spain, July 2011.
Morgan Kaufmann.

19. G. Casini and U. Straccia. Lexicographic Closure for Defeasible Description Logics.
In Proc. of Australasian Ontology Workshop, vol.969, pages 28–39, 2012.

20. G. Casini and U. Straccia. Defeasible inheritance-based description logics. Journal
of Artificial Intelligence Research (JAIR), 48:415–473, 2013.

21. G. Casini and U. Straccia. Towards rational closure for fuzzy logic: The case of
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