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ABSTRACT
Database replication is an approach for scaling throughput
and ensuring high availability. Using workload knowledge,
we are able to load-balance queries to replica nodes accord-
ing to the data being accessed. However, balancing the load
evenly while maximizing data reuse is a challenging alloca-
tion problem. To address large-size problems, we developed
a novel decomposition-based heuristic using linear program-
ming. We compare our approach with a rule-based state-
of-the-art allocation algorithm using a real-world workload
comprising thousands of queries. Further, we outline how we
plan to extend our approach for versatile allocation prob-
lems, e.g., considering changing workloads and robustness
against node failures.

1. INTRODUCTION
Partitioning and replication are means to allow databases

to process increasing workloads. Analyses of real workloads
show that read-only queries account for the largest workload
share [1, 11]. Scaling read-only queries is relatively simple,
as we can execute them on read-only replicas without vio-
lating transactional consistency [6, 16].

Using a naive load-balancing approach, one can distribute
queries independently of the accessed data. As a result,
one has to store all data and apply all data modifications
on all nodes. Further, queries are unlikely to profit from
caching e↵ects, because similar queries are not guaranteed
to be assigned to the same replica.

In our research, we investigate query-driven workload dis-
tributions, i.e., load-balancing queries based on their ac-
cessed data. In particular, we reduce the amount of re-
quired memory on all nodes, while balancing the load evenly.
Query-driven workload distributions are also beneficial to
maximize caching e↵ects. Further, when adding new nodes
to a database cluster, we are able to decide which data to
load first to quickly process a large share of the workload.

In practice, there are varying constraints and goals to dis-
tribute the workload and/or required data on nodes. By
using linear programming (LP) we are able to address ver-
satile allocation problems, which include robustness against
potential node failures or e�cient reallocations to react to
changing workloads.
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The remainder of this paper is structured as follows: We
introduce the basic allocation problem in Section 2. In Sec-
tion 3, we discuss related work. In Section 4, we summarize
our scalable decomposition-based approach [9] to calculate
workload distributions for large problem sizes. Further, we
demonstrate it using a real workload. Our current research
and plans for future work are described in Section 5. Sec-
tion 6 concludes the paper.

2. PROBLEM DESCRIPTION
The allocation problem being examined is a coupled work-

load distribution and data placement problem. We assume
a horizontally and/or vertically partitioned database with
N disjoint data fragments. Each fragment i has a size ai,
i = 1, ..., N . Note, we assume a separation of the data par-
titioning and the allocation process, which is common [13].
In this way, existing workload-aware data partitioning algo-
rithms can be used to generate the input fragments for our
allocation approach.

Further, we assume a workload consisting of Q queries
(query classes). Each query class j is defined by the subset of
fragments qj ✓ {1, ..., N}, j = 1, ..., Q, it accesses. Queries
account for workload shares, defined by query frequencies fj
and query costs cj , j = 1, ..., Q.

Last, we assume a number of nodes K to load-balance the
workload evenly. In practice, the number of nodes K can be
chosen manually by a database administrator or automati-
cally by a replication framework with regard to the desired
query throughput.

We want to decide which query should be executed to
which extent on a node in order to minimize the overall
memory consumption for all nodes. Processing query j on
node k requires to store all fragments qj on the node. In [9],
we derive an LP model to calculate optimal solutions.

Figure 1 shows an example workload and an optimal so-
lution, i.e., an even workload distribution for Q = 5 queries,
accessing N = 10 fragments, that minimizes the overall
memory consumption for a database cluster with K = 4
nodes. (We assume an equal size for each fragment, i.e.,
ai = 1, i = 1, ..., N .)

By W/V , we denote the replication factor of an alloca-
tion, where the total amount of data used W is normalized
by the minimal amount of used data V . Because each of the
ten fragments is accessed by at least one query, the minimal
amount of used data is equal to the number of fragments
V = N = 10. The replication factor of our exemplary allo-
cation for four nodes is W/V = 1.4.
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Figure 1: Workload-driven fragment allocation (based on [8]). The left-hand side of the figure visualizes the
model input. The database consists of N = 10 fragments. Q = 5 queries correspond to di↵erent workload
shares. Processing a query requires to store its accessed fragments. The objective is to minimize the overall
memory consumption of the replication cluster while evenly balancing the load among K = 4 nodes. The
right-hand side of the figure illustrates an optimal allocation with a total replication factor W/V = 1.4 and
even workload distribution with 1/4 of the workload share assigned to each node.

3. RELATED WORK
Our workload distribution problem (see Section 2) is an

allocation problem in the field of distributed database sys-
tems. Özsu and Valduriez [13] give an overview of related al-
location problems. We summarize their overview as follows:
(i) Constraints and optimization goals, e.g., performance,
costs, and dependability, for allocation problems di↵er (see
also [4]). (ii) Many formulations for allocation problems are
proven to be NP-hard [5]. As a result, heuristics have to be
used for large problem instances. (iii) As constraints and
optimization goals di↵er, heuristics are often tied to specific
formulations of allocation problems.

Our problem formulation is similar to the one presented
by Rabl and Jacobsen [15]. We want to balance the load
evenly to nodes to enable linear throughput scaling. Opti-
mal solutions via LP do not scale, e.g., for the 22 TPC-H
queries and using vertical partitioning with each of the 61
columns as an individual fragment, we were able to calculate
optimal allocations for up to 8 nodes (termination after 8 h
using a current laptop) [9].

To address large problem sizes, with thousands of queries,
fragments, and dozens of nodes, Rabl and Jacobsen propose
a greedy heuristic that assigns queries to nodes one after an-
other. In specific, they order queries by the product of their
workload share and the overall size of accessed fragments.
Queries are then assigned to the node with the largest frag-
ment overlap with already assigned queries. Nodes with no
assigned queries are treated as if they have a complete over-
lap. If the load of the assigned query exceeds the capacity
of a node, the query is inserted back to the assignment list
with its remaining load.

We implemented Rabl and Jacobsen’s algorithm and in-
vestigated the steps chosen during allocations for TPC-H
and TPC-DS [8]. We made the following observation: Load
capacities of nodes are often filled one after another, be-
cause nodes with many assigned queries are more likely to
have high fragment overlap: Assigning a query to a node
(may increase the number of allocated fragments and thus)
increases the probability that the next query is assigned to
the same node unless the node’s load capacity is exhausted.

Our research addresses two shortcomings of Rabl and Ja-
cobsen’s approach: (1) When ordering queries and deter-
mining overlap, the algorithm does not consider the specific
accessed fragments, but only their sizes. (2) When assigning
queries to nodes, the remaining queries are not analyzed. In
contrast, our decomposition approach (see Section 4) divides
the problem into subproblems which preserves the structure
of the problem. Specifically, we regard all queries (whose
load we try to divide into workload chunks) with all indi-
vidual fragments the queries access.
Solutions/allocations of our algorithm can be used for

replicated databases, e.g., SAP HANA [12], Postgres-R [10]
and in replication middleware [2, 3, 14]. Further, the cal-
culated workload distributions support caching e↵ects for
systems like Amazon Aurora [17], which separate compute
from storage.
Using LP to solve allocation problems is flexible compared

to rule-based heuristics. We can add or change constraints,
and modify the objective function to address varied alloca-
tion problems, e.g., requiring to store only a certain subset
of fragments (instead of all) or demanding a similar mem-
ory consumption per node. Including such constraints into
a rule-based heuristic is more challenging, because it is more
di�cult to decide how and in which part to adapt the algo-
rithm without losing sight of the optimization goal.

4. DECOMPOSITION APPROACH
The complexity of our query-driven workload distribu-

tion problem increases with an increasing number of nodes,
queries, and fragments. It is challenging to find good heuris-
tics, as minimizing data redundancy and balancing the load
on additional replicas are in conflict with each other.
The core idea of our decomposition heuristic is to split

the workload iteratively using easier to solve but similar
subproblems, forming a tree. In specific, we split the work-
load into chunks of queries, which access similar fragments.
Thereby, we reduce the data redundancy in each splitting
step. In the following, we describe the approach using an
example. In [9], we present the corresponding LP model.
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Figure 2: Decomposition approach (based on [9]).
Iteratively splitting a workload for K = 2 + 2 nodes,
leading to an even workload share of 1/4 at all
leaves. The total replication factor is W/V = 1.4.

Figure 2 shows a decomposition of a workload, represented
by the top node, to K = 2 + 2 = 4 final nodes, represented
as leaves. Each parent node can have an arbitrary number
of child nodes. The workload share of each child must cor-
respond to the workload share of the leaves in its subtree.
In Figure 2, the top node has two children. Both children
have two leaves in their subtree. Therefore, their workload
share is 2 ⇤ 1

4 = 1
2 .

Using the decomposition approach, we can split the work-
load into an arbitrary number of final nodes with equal work-
load shares. Note, the existence of a solution with equal
workload shares is guaranteed, because our model (like Rabl
and Jacobsen’s) allows to split query loads arbitrarily with-
out regard to query frequencies and costs, which both are
discrete (see [9, 15]).

With each decomposition, the problem gets easier as fewer
relevant queries and accessed fragments have to be consid-
ered. For chunk 1 in Figure 2, the distribution problem is
shrunken to Q = 3 queries and N = 5 fragments. By choos-
ing the number of child nodes, we can control the problem
complexity. For large problem instances, it is advisable to
split the top node into a low number of chunks for lowest
computation times. If the problem is still too large, other
heuristic approaches, e.g., [15], can be used to split the work-
load close to the top node. Towards the leaves, our approach
can be used.

4.1 Application to a Real-World Workload
In this section, we demonstrate our heuristic using a real-

world workload. We analyzed queries against an accounting
table, comprising of N = 344 columns/fragments. We ex-
tracted Q = 4461 query classes, whose query costs are dis-
tributed exponentially. In particular, 38 queries account for
more than 95% of the workload share.

We compare our solution to the greedy heuristic by Rabl
and Jacobsen [15]. Table 1 summarizes the results for 3 
K  6. Our solution reduces the replication factor in com-
parison to the greedy heuristic by 32-42%.

Table 1: Performance comparison: data replica-
tion factors of the rule-based heuristic by [15] (WS)
vs. our heuristic (W ), see [9], with one decompo-
sition level of B chunks and associated nb nodes,
b = 1, ..., B, summing up to K.

K chunks B nodes nb W/V solve time W/WS

3 2 2+1 1.81 384 s -32%
4 2 2+2 2.13 225 s -42%
5 2 3+2 2.60 18 min -33%
5 3 2+2+1 2.50 99 min -36%
6 2 3+3 2.86 13 min -37%

We used the Gurobi Optimizer [7] with a single thread.
The computation times were between 2 min and 99 min,
while focusing on reducing the replication factor. Di↵erent
chunkings, e.g., 3+ 2 and 2+2+1, trade computation time
for memory consumption. To reduce the computation time,
we can also cluster fragments or queries, e.g., grouping the
4423 queries with lowest costs as a single query class with
an aggregated workload share lower than 5%.

5. CURRENT AND FUTURE WORK
Numerical experiments show that our heuristic calculates

allocations with lower memory consumption than the heuris-
tic by Rabl and Jacobsen [15] for TPC-H [9] and a real-world
workload (cf. Section 4.1). Currently, we conduct end-to-end
evaluations by deploying the calculated fragment allocations
in a PostgreSQL cluster and measuring the query through-
put. In Section 5.1, we describe our preliminary insights.
In addition, we plan to investigate the impact of di↵erent

database fragmentations and query clusterings on the allo-
cation, especially, in the case of skewed model input (cf. Sec-
tion 4.1). When running workloads in practice, fragment al-
locations and workload distributions must consider further
factors, e.g., data modification costs, robustness against fail-
ures, or changing model inputs, that are not included in the
basic allocation problem (cf. Section 2). We describe our
plans to address these factors in the following sections.

5.1 End-to-End Evaluations
In practice, workloads consist of a number of active data-

base connections sending a stream of queries. We model
a workload as a set of queries in a potentially long period
of time. The performance of an allocation in practice de-
pends on the query timing, especially, whether all (or at
least many) nodes are used for processing while there are
pending queries. This can be supported by query schedul-
ing: in case an incoming query is executable on multiple
nodes, we send the query to the node with the lowest load.
Further, we can calculate allocations that trade memory

consumption (allocating additional fragments to nodes) for
flexibility (increased share of query loads to be processed
by multiple replicas). Flexibility is also beneficial to handle
imprecise query costs, e.g., caused by concurrency e↵ects at
runtime. Currently, we use average query execution times
as query costs metric, because they are easy to obtain and
widely applicable.

5.2 Data Modifications
As a result of inserts, updates, or deletes, data may change

over time. We can adapt our basic model to include data



modification costs. We are able to model update costs ei-
ther as execution costs similar to costs for read queries (see
also [15]), or as fragment modification costs depending on
the stored fragments per node, both in a linear way. Inte-
grating modification costs for the decomposition heuristic is
also possible. When splitting the workload into leaf nodes,
we can include update costs precisely for node allocations.
In upper levels, we may have to approximate update costs,
because the exact number of leaf nodes for which update
costs occur may be unknown.

5.3 Node Failures
Besides scalability, data replication enables high availabil-

ity. Thereby, a database cluster can support di↵erent levels
of robustness in case of node failures. Basic robust alloca-
tions ensure that each fragment is stored on multiple nodes,
or queries can be processed on multiple nodes [15]. How-
ever, the workload distribution after node failures can be
highly skewed. In future work, we will investigate alloca-
tions that allow an evenly balanced workload, even in the
case of potential node failures.

5.4 Reallocation Costs
Workloads (including query costs) or fragment sizes may

change. As a result, a current data allocation may not al-
low an even workload distribution anymore or a di↵erent
allocation may reduce the memory consumption.

If workload changes are known in advance, Rabl and Ja-
cobsen propose to calculate allocations for each scenario and
merge all of the allocations to a combined allocation that is
robust with regard to the workload changes [15]. An alter-
native approach may reallocate fragments to match the new
workload. To avoid costly reallocations, we currently in-
vestigate how to take the current allocation into account in
the algorithm. To avoid frequent reallocations, allocations
should be robust with regard to minor workload changes
(see Section 5.1).

5.5 Online Approach
As workloads and underlying data, and thus model in-

puts change, we want to adapt allocations over time, ideally
without downtime or performance degradation. The previ-
ous sections described building blocks to implement a fault-
tolerant and adaptive replication cluster. We can monitor
the workload to detect when we have to adapt a current al-
location. At that time we can calculate a new allocation,
which is better suited to the current workload and which
can be created with reasonable reallocation costs.

6. CONCLUSION
We presented the current status and plans to extend our

work in the field of query-driven workload distribution and
fragment allocation. While balancing the query load evenly,
our decomposition approach calculates cluster configurations
with lower memory footprint than state-of-the-art heuris-
tics. We believe that our approach allows integrating further
factors, such as data modification costs, robustness against
node failures, and economical reallocations. Using LP, we
can express these factors as constraints without changing
the structure of the algorithm. In future work, we plan to
not only extend our LP approach, but also demonstrate the
extensions in end-to-end evaluations.
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