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ABSTRACT
Spatial data has become ubiquitous everywhere, e.g., GPS
data, medical data, with increasingly sheer sizes. This raises
the need for e�cient spatial machine learning and analysis
solutions to extract useful insights from such data. Mean-
while, Markov Logic Networks (MLN) have emerged as pow-
erful framework for building usable and scalable machine
learning tools. Unfortunately, MLN is ill-equipped for spa-
tial applications because it ignores the distinguished spatial
data characteristics. This paper describes SMLN, the first
full-fledged MLN framework with native support for spatial
data. SMLN comes with a high-level datalog-like language
with spatial constructs, and spatially-equipped grounding,
inference and learning modules. We show the e↵ectiveness
of SMLN by illustrating three systems, namely, Sya, Tur-
boReg, and Flash, that are already built using SMLN.

1. INTRODUCTION
Data scientists and developers have been spending signif-

icant e↵orts applying machine learning and artificial intelli-
gent methods, e.g., deep learning, to analyze and turn their
massive data into useful insights. However, the expertise
skills and e↵orts needed to deploy these methods become a
major blocking factor in having a wide deployment of ma-
chine learning applications. As a result, Markov Logic Net-
work (MLN) [19] was recently introduced to reduce this gap.
In particular, MLN combines first-order logic [5] with prob-
abilistic graphical models to e�ciently represent statistical
learning and inference problems with few logical rules (e.g.,
rules with imply and bit-wise AND predicates) instead of
thousands of lines of code. With MLN, data scientists and
developers do not need to worry about the underlying ma-
chine learning work. Instead, they will focus their e↵orts on
developing the rules that represent their applications. Re-
cently, MLN has been widely adopted as a research vehicle
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for deploying machine learning in various applications, in-
cluding knowledge base construction [25], data cleaning [18],
genetic analysis [23], among others.

Meanwhile, in recent years, there has been a prolifera-
tion in the amounts of spatial data produced from several
devices such as satellites, space telescopes, and medical de-
vices. Various applications and agencies need to analyze
these unprecedented amounts of spatial data. For example,
epidemiologists use spatial analysis techniques to track in-
fectious disease [2]. News reporters use geotagged tweets for
event detection and analysis [24]. Unfortunately, researchers
never take advantage of the recent advances of Markov Logic
Networks (MLN) to boost the usability, scalability, and ac-
curacy of spatial machine learning tasks (e.g., spatial re-
gression [9]) used in these applications. Furthermore, MLN-
based applications (e.g., knowledge base construction [25])
would miss important results and have less accuracy when
dealing with spatial data. The main reason is that MLN
is oblivious to the spatial data. The only way to support
spatial data in MLN is to simply ignore its distinguished
properties (e.g., spatial relationships among objects) and
deal with it as non-spatial data. While this would work to
some extent, it will result in a sub-par performance.

The goal of our work is to provide the first full-fledged
MLN framework with a native support for spatial data,
called Spatial Markov Logic Networks (SMLN). In partic-
ular, SMLN pushes the spatial awareness inside the internal
data structures and core learning and inference function-
alities of MLN, and hence inside all MLN-based machine
learning techniques and applications. SMLN consists of
four main modules, namely, language, grounding, inference
and learning. The language module extends the DDlog lan-
guage [25] with spatial data types and predicates to express
spatial semantics when writing rules. The grounding mod-
ule constructs a spatial variation of the factor graph [28],
namely Spatial Factor Graph, to e�ciently represent SMLN
graphical models. The inference module provides a novel
algorithm of Gibbs Sampling [30] that combines the Con-
clique [11] concept from spatial statistics with query-driven
independent Metropolis-Hastings approach [12]. The learn-
ing module employs a new distance-based optimization tech-
nique based on the gradient descent method [31] to e�-
ciently learn SMLN model parameters.

Users of SMLN would be able to seamlessly build a myr-
iad of scalable spatial applications, without worrying about
the underlying spatial machine learning and computation
details. We show three case studies that use SMLN as a
backbone for their computation. These case studies include
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Figure 1: SMLN System Architecture.

Sya [21], a system for spatial probabilistic knowledge base
construction, TurboReg [20], a framework for scaling up spa-
tial autologistic regression models, and Flash [22], a frame-
work for scalable spatial data analysis.

2. SMLN OVERVIEW
Figure 1 provides an overview of SMLN architecture.

There are three types of users who interact with SMLN,
namely, developers, casual users, and administrators. De-
velopers should have expertise with MLN and use the pro-
vided high-level language by SMLN to create new applica-
tions. We briefly review three example applications includ-
ing Sya [21], TurboReg [20], and Flash [22] in sections 3, 4
and 5, respectively. Casual users can either use standard
querying or visualization APIs to perform inference and
learning queries over the built applications (e.g., what is
the probability of a specific event to happen?). Adminis-
trators can monitor the system and tune up the inference
and learning configurations. SMLN adopts an extensible ap-
proach, where it injects the spatial awareness inside the four
main modules of MLN, namely, language, grounding, infer-
ence, and learning. In the rest of this section, we highlight
our contributions in each of these four modules.

2.1 The Language Module
SMLN employs a high-level language to help users write

on-top applications as a set of rules and save huge coding
e↵orts. Instead of providing a completely new language,
SMLN extends DDlog [25], a datalog-like language for defin-
ing MLN rules, with spatial data types and predicates that
conform to the Open Geospatial Consortium (OGC) stan-
dard [16]. Such extensions allow users to express their spa-
tial semantics without the need for re-implementing user-
defined functions in each application. For example, SMLN
adds four spatial data types, namely, point, rectangle,
polygon, and linestring, to the schema declaration of
relations in DDlog. Figure 2 shows an example of two
schema declarations S1 and S2 with point spatial at-
tributes. In addition, SMLN extends the derivation, su-
pervision and inference rules in DDlog with spatial predi-
cates (e.g., overlaps, within, and distance) and functions
(e.g., union and buffer) to e�ciently evaluate the relation-
ships between spatial objects. Such predicates and functions
can be composed. For example, the inference rule R1 in

Schema Declaration
S1: County (id bigint, location point, hasLowSanitation bool).
S2: HasEbola? (id bigint, location point).
 

Inference Rule
R1: HasEbola(C1, L1) => HasEbola(C2, L2) :- 

County(C1, L1, -), County(C2, L2, S2)
               [distance(L1, L2) < 2.5, within(liberia_geom, L1), S2 = true].

Figure 2: Example on Spatial Extensions in DDlog.

Figure 2, which captures the e↵ect of Ebola infected coun-
ties on each other, is composed of two spatial predicates
distance and within that measure the distance between
infected counties, and check whether they are located in
Liberia or not, respectively. Once submitting the SMLN
program, this module checks the syntax correctness of used
spatial constructs, compiles the program, and forwards the
output to the grounding module.

2.2 The Grounding Module
Grounding is an essential operation in the MLN execu-

tion pipeline, where it constructs a data structure called
factor graph [28] that will be used later to perform infer-
ence and learning operations on. Such factor graph is ef-
ficiently constructed by evaluating the compiled rules from
the language module as a sequence of SQL queries (e.g.,
[25]). To accommodate for the newly introduced spatial
constructs, e.g., distance, in rules, SMLN adapts a scalable
in-database grounding technique from [14] to translate and
evaluate rules with these constructs as a set of spatial SQL
queries (e.g., range query and spatial join). The generated
queries are then executed through standard spatial database
engines, e.g. PostGIS, to produce a spatial variation of the
factor graph, namely, Spatial Factor Graph, that consists
of: (1) logical and spatial random variables. (2) logical and
spatial correlations among these variables.
SMLN provides two e↵ective optimizations in the ground-

ing process: (1) It supports creating on-fly spatial indices
(e.g., R-tree [7]) on relations with spatial attributes, making
the evaluation of complex predicates (e.g., overlap) more
e�cient. (2) It provides a simple heuristic query optimizer
that re-orders the execution of nested spatial queries that
come from rules with multiple spatial predicates. Moreover,
SMLN provides an abstract database driver that supports
defining spatial storage, functions and query capabilities.
Such abstract can be extended by users to run their spatial
database engine choice inside SMLN.

2.3 The Inference Module
The main objective of the inference module in MLN is to

infer the values of variables in the constructed factor graph
and compute their associated probabilities in an e�cient
and scalable manner [14]. Gibbs Sampling [30] is consid-
ered the most widely used inference algorithm in MLN sys-
tems, mainly because its simplicity and e�ciency. However,
there are two main limitations in using the existing Gibbs
sampling techniques when inferring the values of the spatial
factor graph variables. First, these techniques infer values
that maximize the satisfaction of the logical semantics (e.g.,
imply) encoded in the factor graph. Therefore, in case of
spatial factor graph, these inferred values will be suboptimal
because they never consider the spatial correlation between
variables. Second, these techniques require a large num-



ber of sampling iterations (i.e., slow convergence) to obtain
an acceptable output in case there are spatial correlations
among variables, because they perform sequential sampling
over the factor graph nodes [11].

To overcome the above two limitations, SMLN employs
a novel Gibbs Sampling algorithm, namely Spatial Gibbs
Sampling, that can e�ciently perform inference on the spa-
tial factor graph coming from the grounding module. To
take the spatial correlations into account, the proposed sam-
pling algorithm adapts a new variation of the query-driven
independent Metropolis-Hastings approach [12] that uses
inverse-distance method [13] to spatially weigh the correla-
tions among variables in the spatial factor graph, and hence
yields more accurate inferred values.

To alleviate the slow convergence issue, a straightforward
solution is to randomly partition the variables into a set
of buckets and then sample these buckets in parallel. Even
though this solution will finish the sampling iterations faster
than the sequential one, it may not converge to an accept-
able solution as spatially-dependent variables might run in
parallel (i.e., independent of each other). This will force the
sampler to run additional sampling iterations to converge,
and hence incur a significant latency overhead. As a re-
sult, SMLN employs an approach that combines in-memory
spatial partitioning technique, namely pyramid index [1],
with a well-known spatial statistics concept, namely con-
cliques [11], to heuristically partition the spatial factor graph
into a set of spatially-independent partitions, and sample
them in parallel. Defining concliques ensures the neighbour-
ing independence between nodes in the same conclique set,
and hence these nodes can be e�ciently sampled in parallel.

2.4 The Learning Module
In general, the learning module in MLN mainly focuses on

optimizing the weights of correlations defined in the factor
graph. However, in case of spatial factor graph, the rela-
tive distance between spatial variables participating in any
correlation should be considered as well to learn optimal
weights. In particular, correlations between spatially close
variables should have higher e↵ect on learned weights than
correlations between distant variables. We refer to this con-
cept as correlation locality. Recently, the gradient descent
optimization [31] has been widely used in optimizing the
weights in MLN models that use Gibbs sampling inference
(e.g., [25]). However, standard gradient descent optimiza-
tion techniques fall short in supporting the correlation local-
ity concept. As a result, SMLN introduces a new variation
of gradient descent optimization that applies distance-based
weighing technique. Given a correlation c, defined over m
spatial variables v1, v2, ..., vm in the spatial factor graph, its
weight wc is optimized as follows:

wc = wc +
m(m� 1)

2
Pm�1

i=1

Pm
j=i+1 d(vi, vj)

↵g (1)

where g is the gradient sign (either 1 or -1), ↵ is the
step size, and d(vi, vj) is the Euclidean distance between
the variables vi and vj .

3. SYA SYSTEM
Knowledge base construction (KBC) has been an active

area of research over the last two decades with several sys-
tem prototypes coming from academia and industry, along
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Figure 3: Initial Experiments.

with many important applications, e.g., web search, digi-
tal libraries, and health care. Most recently, KBC systems
employed the idea of MLN to associate each extracted rela-
tion with a probability of how confident is the system that
this relation is factual. DeepDive [25], an MLN-based sys-
tem, has emerged as one of the most popular probabilistic
KBC systems, applied in di↵erent domains (e.g., law en-
forcement [10], geology [29], and paleontology [17]).
Unfortunately, DeepDive does not fully utilize the under-

lying spatial information, which results in less accuracy in
the factual scores. This is because of two reasons: (1) Deep-
Dive treats any predicate in the knowledge base inference
rules as a boolean function, which yields either true or false
(i.e., satisfied or not). So, although one can define spatial
predicates in DeepDive, internally DeepDive and its infer-
ence engine do not do anything special for any spatial predi-
cate. (2) DeepDive estimates the factual scores of extracted
relations only based on how much support for these rela-
tions in training data. However, in case spatial information
exists, the relative distance between entities participating in
the extracted relations should be considered as well.
To overcome the above limitations in DeepDive, we pro-

posed Sya [21]; a spatial MLN-based KBC system, built
using our SMLN framework. We re-implemented the exist-
ing grounding, inference and learning modules in DeepDive
using the corresponding modules in SMLN. We initially eval-
uated Sya through building two real spatial knowledge bases
about: (1) the water quality in Texas [27], namely, GWDB,
and (2) the air pollution in New York city [15], namely,
NYCCAS. Figure 3(a) shows the quality (i.e., accuracy) for
both Sya and DeepDive, measured by the F1-score, when
building these two knowledge bases. Sya has an improve-
ment of 120% and 27% over DeepDive in GWDB and NY-
CCAS, respectively.

4. TURBOREG SYSTEM
Autologistic regression [9] is an important statistical tool

for predicting spatial phenomena. Unlike standard logis-
tic regression that assumes predictions of spatial phenom-
ena over neighbouring locations are completely indepen-
dent of each other, autologistic regression takes into ac-
count the spatial dependence between neighbouring loca-
tions while building and running the prediction model (i.e.,
neighbouring locations tend to systematically a↵ect each
other). Myriad applications require the autologistic regres-
sion model to be built over large spatial data. However, ex-
isting methods for autologistic regression (e.g., see [9]) are
prohibitively computationally expensive for large grid data,
e.g., fine-grained satellite images, and large spatial epidemi-
ology datasets. It could take about week to infer the model



parameters using training data of only few gigabytes [9].
To solve this issue, we introduced TurboReg [20]; a scal-

able framework for building autologistic models with large
number of prediction and predictor variables. In TurboReg,
we employed the inference and learning modules of SMLN
to estimate the autologistic model parameters in an accu-
rate and e�cient manner. Basically, TurboReg provides
an equivalent first-order logic [5] representation to depen-
dency relations among neighbours in autologistic models. In
particular, TurboReg transforms each neighbouring depen-
dency relation into a predicate with bitwise-AND operation
on all variables involved in this relation. For example, a
binary dependency relation between neighbouring variables
C1, and C2 is transformed to C1 ^ C2. This simple logi-
cal transformation allows non experts to express the depen-
dency relations within autologistic models in a simple way
without needing to specify complex details.

We experimentally evaluated TurboReg using a real
dataset of the daily distribution of bird species [26], and
compared its scalability performance to a state-of-the-art
method, namely ngspatial [8]. Figure 3(b) shows the run-
ning time for both systems while building an autologistic
model over grid sizes ranging from 250 to 84k cells. Tur-
boReg has at least three orders of magnitude reduction in
the running time over ngspatial, while preserving the same
accuracy in estimating the model parameters.

5. FLASH FRAMEWORK
Same as MLN made it possible for data scientists and

developers to embrace the di�culty of deploying machine
learning techniques, we aim to use our proposed SMLN
framework as a backbone infrastructure to support long last-
ing spatial analysis techniques that lack scalability as well
as su↵er from di�culty of deployment (e.g., [3, 4]).

To that end, we proposed Flash [22]; a framework for
generic and scalable spatial data analysis. Flash focuses on
building a major class of spatial analysis techniques, called
spatial probabilistic graphical modelling (SPGM) (e.g., [3, 4,
6]), which uses probability distributions and graphical repre-
sentations to describe spatial phenomena and make predic-
tions about them. In Flash, we built a generic transforma-
tion module that is responsible to generate a set of weighted
logical rules representing any SPGM input. The generated
rules are then executed normally through the SMLN frame-
work, where the weights of these rules represent the param-
eters of the original SPGM and will be inferred using the
SMLN inference and learning modules. Currently, Flash
supports transformation for three spatial graphical mod-
els; spatial Markov random fields [4], spatial hidden Markov
models [6] and spatial Bayesian networks [3].

6. CONCLUSION
In this paper, we introduce SMLN; a framework that in-

jects the spatial awareness inside the core functionality of
Markov Logic Networks (MLN). SMLN equips the MLN
framework with a spatial high-level language, and spatially-
optimized grounding, inference and learning modules. Data
scientists and developers can exploit SMLN to build numer-
ous scalable and e�cient spatial machine learning and anal-
ysis applications. We showed three on-top applications; Sya,
a system for spatial probabilistic knowledge base construc-
tion, TurboReg, a framework for scaling up spatial autolo-

gistic regression models, and Flash, a framework for scalable
spatial data analysis.
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