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ABSTRACT 
The main goal of the research work is to solve a wide range of data 
problems by offering batch, iterative, and interactive computations 
in a unified architecture. The dissertation proposes an integrated 
architecture to manage a large amount of massively distributed data 
including spatial data. The implementation architecture has three 
major components: data preparation, data analytics, and data 
visualization. As a part of the implementation, a novel big spatial 
data analytics framework is developed to load, store, process, and 
query spatial and non-spatial data at scale. As proof of concept, 
spatial analytics applications are developed using agricultural real-
life datasets.   

1. INTRODUCTION 
In the mobile and Internet era, massive scale data is generated from 
disparate sources with spatial components. Today’s users demand 
high speed, scalable, sophisticated, economic, and accessible 
solutions to perform relevant analytics on complex and distributed 
data including spatial data. The conventional systems for data 
management are becoming less capable to scale out extensively to 
meet the current users’ demand due to limited computational power 
and storage. The modern technologies like Big Data and Big Data 
Analytics (BDA) have a huge potential to handle massive scale data 
with high scalability and low latency. Though the modern big data 
management tools such as Not only SQL (NoSQL) databases, 
Hadoop [1], and Spark [2] are highly efficient, they offer limited 
functions and methods for spatial data management. In addition, in 
modern application development, only one specific big data tool 
would not be able to manage big data efficiently and effectively. 
Hence, it is highly enviable to exploit the potential features of big 
data tools and technologies and propose integrated frameworks and 

architectures built on top of more than one technology to develop 
robust and powerful applications including geospatial data.  

2. REVIEW STATUS 
The research reviewed existing databases, frameworks, and 
architectures for spatial data management.  

2.1 Database technologies for spatial data 
NoSQL databases such as Cassandra [3] do not offer native support 
for spatial data. As an exception, MongoDB [4] offers query 
operations on geospatial data with index support. Though 
MongoDB is the best suitable NoSQL database for geospatial data, 
it does not offer complex spatial operations like KNN search, 
spatial join, and KNN join. It also does not provide support for 
aggregated queries. Ben Brahim et al. [5] have developed a spatial 
extension for the Cassandra database to solve spatial range queries. 

2.2 Big data computational frameworks for 
spatial data 
The Big data computational frameworks such as Spark and Hadoop 
don’t offer native support for spatial data. A number of extended 
systems have made important contributions to extend the 
functionality of Hadoop/Spark engine for spatial data management. 
These extension systems include parallel DB systems such as 
Parallel Secondo, MapReduce systems such as ESRI Tools for 
Hadoop [6], SpatialHadoop [7], Hadoop-GIS [8], and systems that 
use Resilient Distributed Datasets (RDD) [9] such as GeoTrellis 
[10], SpatialSpark [11], GeoSpark [12], Magellan [13], 
LocationSpark [14], and Spatial In-Memory Big Data Analytics 
(SIMBA) [15]. However, these frameworks are only able to execute 
spatial operations on datasets that are available in text-based file 
formats (CSV/GeoJSON/shapefiles and WKT), and stored in 
HDFS or local disk. There is no big data analytics framework 
available which reads data from the NoSQL database and performs 
spatial analytics on those data. 

2.3 Big data architectures for spatial data 
Generally, big data architectures are designed and developed to 
achieve a specific goal. Many big data architectures such as 
Lambda [16], Kappa [17], Liquid [18], BDAS [19], SMACK [20], 
and HPCC [21] have been developed on top of integrated 
infrastructures. However, there have been insufficient discussions 
about how these architectures perform spatial data management.  

The research reviewed the existing platforms and architectures such 
as IBM PARIS [22], SMASH [23], and ORANGE [24] for spatial 
data management. In comparison with the existing big spatial data 
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architectures, the proposed architecture is in-memory and open 
source.  

There are many big spatial data frameworks have been developed 
on top of big data stack composed of Spark and Cassandra. The 
Cassandra-Solr-Spark framework has been developed by Datastax 
to enable spatial query processing on top of the big data stack. The 
framework provides SQL like query interface to perform spatial 
operations. However, it does not support join operations. It has also 
not been evaluated based on the performance metric. P. Shah et al. 
[25, 26] have developed a big data analytics framework including 
geospatial data. The spatial analytics applications in the agriculture 
domain have been developed using third-party GeoSpark libraries. 
The major drawback of the framework is data duplication. 
GeoSpark is a spatial extension for spark which can only access 
data available in HDFS or local disk. 

3. BIG DATA ANALYTICS 
ARCHITECTURE FOR SPATIAL DATA 
The big data analytics architecture [26] is built and implemented on 
big data open source technologies for the enrichment of massive 
scale data including spatial data. The architecture is designed to 
provide scalable, flexible, extendible, and cost-effective solutions 
with available infrastructures and tools for agriculture. Architecture 
implementation has three components: data preparation, big spatial 
analytics, and data visualization. There are four types of user 
interaction with the architecture: 1) System developer, 2) Data 
scientist, 3) Domain expert, and 4) End users. The proposed 
architecture is shown in figure 1. 

 
Figure 1 Big data analytics architecture 

3.1 Data Preparation Framework 
The data preparation framework is implemented to fetch consistent 
and clean data from disparate sources and store into a persistent 
database. It provides two layers of data abstraction. First, it hides 
all physical data sources from the data repository. Second, it further 
unifies the data available in a data repository using various complex 
tools and techniques such as data fusion algorithms, schema 
mapping tools, and record linkage algorithms. The implementation 
architecture for data preparation framework is shown in figure 2.  

 
Figure 2 Implementation architecture for data preparation 
Framework 

3.2 Big Spatial Data Analytics Framework 
The main purpose of a big spatial data analytics framework [27] is 
to enable spatial data management on large scale data. The 
consistent datasets generated by data preparation services are 
processed and analyzed using data analytics framework. It is an 
integrated infrastructure designed to manage spatial data efficiently 
and effectively by exploiting the potential features provided by the 
standard storage and processing big data frameworks. It is realized 
on top of big data stack with Spark as a core processing engine and 
Cassandra as a data storage. The big spatial data analytics 
framework is shown in figure 3. 

 
Figure 3 Big spatial data analytics framework 

A NoSQL i.e. Cassandra based spatial data storage framework is 
built and implemented. The framework offers distributed and 
scalable APIs for spatial operations such as location search, 
proximity search, and KNN search.  

The framework provides a convenient web-based REST interface 
to the end user. Cassandra performs fast data retrieval based on 
partition key and clustering key compared to Spark. The application 
architecture facilitates end users to execute ad-hoc queries on a 
suitable framework either Spark or Cassandra via a common user 
interface. The low latency queries are executed on Cassandra, 



whereas complex queries (e.g. aggregated and spatial queries) are 
executed on the Spark framework. The analytical results are 
explored to end users through visualization and REST interface. 

The performance of the framework is evaluated in terms of latency 
against the variable size of data. The performance of the framework 
is compared with the baseline technology, i.e. Cassandra for low 
latency queries. 

3.3 Data Visualization Framework 
Data visualization makes complex data more accessible, 
understandable, and usable. The implementation architecture 
provides a web-based user interface by developing analytical and 
visualization services through Restful ad-hoc APIs and interactive 
maps. 

The Data visualization framework [26] is implemented to showcase 
the analytical results with dynamic layouts. A dashboard 
application is designed and implemented to depict the analytical 
results in the agriculture domain. 

4. REALIZATION OF ARCHITECTURE IN 
APPLICATION DOMAIN 
The challenges related to big data application development in 
agriculture is different in developed countries and developing 
countries. In developing countries, the major barriers for big data 
application development in agriculture are lack of tools, 
infrastructures, data standards, semantics, integrated data models, 
developers APIs, unified access points for public and private data, 
technical expertise, and finally the data. 

The prototype applications in the agriculture domain are developed 
on top of the big data analytics architecture. Spatial and non-spatial 
data on weather, crop, and market are collected from different 
sources like meteorological departments, agriculture universities, 
and web portals. The summary of data collection is given in Table 
1. The snapshots of the dashboard results are shown in figure 4 and 
5. 

Table 1 Data Collection 
Datasets Data source Data format 
Weather data for seven  
districts of Gujarat   
(1992 – 2007) 

Archived data, 
www.Indiastat.com 

Spreadsheet/ 
document  

Crop data for cotton 
crop for eighteen 
districts of Gujarat 
 (1960 – 2007) 

www.Indiastat.com,  
http://apy.dacnet.nic.in/cro
p_fryr_toyr.aspx, 
Archived data  

Spreadsheet/ 
document  

Market data for 429 
agro-markets in 
Gujarat 

http://agmarknet.gov.in/  PDF 
document 

Spatial data for 
Gujarat 

www.diva-gis.org Shapefile 

5. Implementation Status – Present and 
Future 
The big data analytics architecture is designed and developed for 
massive scale data management including spatial data. The 
architecture is developed to address two big data challenges: 
Variety and Volume. The data preparation framework is designed 
with two levels of data abstraction. As a part of implementation, the 
REST interface is designed and implemented to fetch and collect 
data from different data sources with different formats such as PDF, 

spreadsheets, documents, web pages, and online services. The 
integration of data collected through the REST interface is the most 
critical module in data preparation framework. An algorithmic 
solution is to be devised to link a variety of data from diverse 
sources in aid of the unified search, query, and analysis.  
The core component of big data analytics architecture, i.e. big data 
analytics framework is implemented for spatial data management. 
The framework is to be extended by developing complex spatial 
operations like spatial join and kNN join. The spatial applications 
like spatial aggregation and spatial auto-correlation are to be 
developed on top of the framework. The complex applications in 
the agriculture domain are to be developed by identifying new data 
sources, formats, and data types. The real-life datasets including 
real-time and streaming data are to be collected and stored in a data 
repository to perform further analytics. The near real-time data 
analytics and visualization algorithms are to be devised to process 
real-time data like weather, disaster, etc. The analytical services 
like rainfall prediction, crop recommendation, crop price 
prediction, agro-inputs procurement, supply chain management, 
crop disease alert, fertilizer recommendations, etc. are to be 
implemented. These services can be used to generate customized 
and multilingual solutions in the form of weather-based crop 
calendar and alerts based on adverse events.  

 
Figure 4 Snapshot of agro-market search analysis 

 
Figure 5 Snapshot of crop yield data aggregation 
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