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ABSTRACT

For this study, we constructed a system for pre-estimation
of electric vehicle (EV) energy consumption on unfamiliar
roads. Drivers of EVs must make plans based on estimated
energy consumption because they fear that an EV might run
out of power and stop on the road. Our constructed system
pre-estimates ranges at which an EV can be expected to
be forced to stop on a road. The range is calculated using
EV driving simulation on a route that is input by a driver.
The driving simulation requires only map data and the EV
car specifications. Moreover, we assessed a system using a
real EV. Results show that the system produced su�ciently
correct ranges on the roads used for experimentation. Ad-
ditionally, we evaluated the accuracy of ranges output by
our system. For evaluation, we used numerous accumulated
daily driving logs for EVs.

1. INTRODUCTION

In recent years, energy-e�ciency and CO2 emission re-
duction have become necessary worldwide because of cli-
matic variation and scarcity of fossil fuels. Given that back-
ground, electric vehicles (EVs) are attracting global atten-
tion. Reportedly, EVs present the benefit that so-called
well-to-wheels CO2 emissions are lower than those of in-
ternal combustion vehicles (ICVs). In addition, EVs have
no emissions when they are running. Many countries have
formulated EV deployment goals for the future. Therefore,
EVs are expected to penetrate markets gradually worldwide.

Nevertheless, many di�culties arise when a user operates
an EV. One is the di�culty of EV travel planning when
a user navigates unfamiliar roads. Planning must be done
while considering an EV travel range and when and where
one might stop at a charging station. However, EV travel
ranges change drastically because of road gradients and traf-
fic conditions. Therefore, average users have di�culty mak-
ing a precise plan for unfamiliar routes.
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As described in this report, we propose a system that sup-
ports an EV user’s travel planning on unfamiliar roads. We
present a solution for pre-estimating the EV energy con-
sumption range: minimum energy consumption Emin and
maximum energy consumption Emax. We present Emin and
Emax to assist planning. In addition, if Emin and Emax are
correct, actual energy consumption Ereal is in the range of
Emin – Emax. Therefore, to evaluate the accuracy of the
proposed system, we conducted EV driving experiments on
roads with two conditions and confirmed that Ereal is in the
range of Emin – Emax.

2. RELATED WORKS

Studies of many types have estimated EV energy con-
sumption and therefore the EV travel range. Using a mo-
tion equation model and actual driving logs collected by a
probe car, most of these studies have produced methods to
calculate EV energy consumption or travel range. Grubwin-
kler et al. estimated EV energy consumption from statistical
analysis of driving data generated from large amounts of col-
lected driving data[5]. Ito et al. estimated EV travel ranges
from averaging energy consumption maps from a probe car
database[6]. Zhang et al. proposed estimation of EV travel
range using driving logs, tra�c conditions, and weather[12].
Styler et al. proposed a means of controlling a Range EX-
tender (REX) EV more e�ciently using estimated energy
consumption generated from probe car data[9]. Yang et al.
proposed a means of estimating energy consumption and
CO2 emissions from average speed and stop frequency data
acquired by passage sensors at an intersection[11].

Moreover, many studies have solved optimization prob-
lems of energy consumption and driving using motion equa-
tions and other data. Karbowski et al. proposed a means
of controlling plug-in hybrid EVs (PHEVs) using an energy
consumption simulation generated from tra�c, road maps,
and Markov Chain[7]. Kurtulus and Inalhan proposed a
route decision algorithm for REXEV considering energy con-
sumption calculated from tra�c, weather, maps, and the
destination[8]. De Souza et al. proposed a tra�c assign-
ment algorithm that minimizes EV travel time and energy
consumption[1]. Felipe et al. estimated energy consump-
tion using an artificial neural network into which driving
styles and route features are input[4]. Fei et al. proposed
hybrid models incorporating a motion equation model and
a machine learning model[3]. Unlike these studies, we make
our contribution by evaluating the practicality of our system
using large amounts of data acquired in di↵erent regions.
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Table 1: Variables of Expression (1)
Variable Unit Meaning How to get

g m/s
2 gravitational

acceleration
constant

⇢ kg/m
3 air density constant

µ -
rolling

resistance
coe�cient

constant

Cd -
air resistance
coe�cient

car
specification

A m
2 face area of

the vehicle
car

specification

M kg
mass of

the vehicle
car

specification

Mi kg
inertia mass of
the vehicle

car
specification

↵ rad road gradient map data

v m/s velocity
constant

speed is set

⌘ -
conversion
e�ciency

car
specification

3. PRE-ESTIMATION SYSTEM

To pre-estimate EV energy consumption, the EV user in-
puts only an origin and a destination and anticipated stop
locations (sightseeing spots or stores, etc.) during a trip.
Next, the system generates origin-destination (OD) trip sim-
ulation logs running on candidate routes at a constant speed
vc from these inputs. Trip simulation logs are normalized
by time. We set speed vc in advance, for example, a speed
limit on a road.

Then, trip simulation logs are input to an EV energy con-
sumption model. We use a model based on a motion equa-
tion[2]. Then Emin and Emax are calculated from outputs
of the EV energy consumption model.

3.1 Emin Calculation

This subsection presents a description of minimum energy
Emin calculation. For this report, Emin is defined as “energy
consumption when an EV runs at constant speed vc and does
not stop.”

First, an EV energy consumption log is calculated every
second by inputting a trip simulation log into the EV en-
ergy consumption model. Expression (1) represents the EV
energy consumption model. Table 1 presents variables of
Expression (1), in which c represents 1/3600/1000 J/kWh,
and t denotes a time.

et = c((
1
2
⇢CdAv

2 + µMg cos↵+Mg sin↵

+(M +Mi)
dv

dt
)⇥ 1

⌘
⇥ v) [kWh] (1)

Finally, Emin is calculated as the summation of et (Ex-
pression (2)). Also, n represents the number of simulation
logs of an OD trip.

Emin =
nX

t=0

et [kWh] (2)

3.2 Emax Calculation

This subsection presents our description of how to calcu-
late maximum energy Emax. We define Emax as “energy
consumption when an EV runs at constant speed vc, and

Table 2: Experiment Trips
Route ID Distance Type Charging Spot

kitami 1 163 km Long 121 km point
kitami 2 126 km Long 67 km point

kitami 10 163 km Long
85 km point
121 km point

outward 27 km Short do not care
homeward 24 km Short do not care

Figure 1: Altitude and Distance of Experiment
Trips.

accelerates and decelerates when stopping at every stop lo-
cation and every signal, assuming bad conversion e�ciency
during acceleration and deceleration.”
Therefore, we define Emax as shown in Expression (3)

because we want to express it easily. Eacc is described in
Expression (4). Additionally, N stands for the number of
stops when an EV stops at every stop location and every
signal.

Emax = Emin + Eacc [kWh] (3)

Eacc = N ⇥ 1
2
(M +Mi)v

2
c ⇥ 1

⌘
[kWh] (4)

In Eacc, we consider two situations. First, an EVmakes no
gains from kinetic energy through regenerative braking when
slowing the vehicle. Second, we chose ⌘ = 0.7 empirically
for estimating the worst conversion e�ciency.

4. EXPERIMENT

This section presents comparison of Emin and Emax with
Ereal. The actual energy consumption was Ereal for our
experiment. We used trips of two types for experimenta-
tion: long trips and short trips (Table 2). Figure 1 presents
the altitude and distance of experiment trips. We ignored
charging spots on short trips because the trip distance is
su�ciently short that additional charging is not required.

4.1 Long trips

4.1.1 Experiment conditions
We conducted EV driving experiments for long trips in

Hokkaido in 2017 and 2018. Hokkaido has an area that



Figure 2: Experiment Routes in Hokkaido in 2017.

Figure 3: Experiment Routes in Hokkaido in 2018.

is the longest interval in Japan between charging stations.
In this area, a fundamental problem arises of whether an
EV can arrive at the next charging station after it leaves
a charging station. Therefore, we conducted experiments
on three routes to ascertain which route is best for an EV
driver.

We simulated kitami 1 and kitami 2 using the system in
2017. Figure 2 shows kitami 1 and kitami 2 routes. We
designated charging points as CPs. The kitami 1 travel
distance is greater, but the elevation di↵erence is smaller.
Furthermore, the kitami 2 travel distance is shorter, but
the elevation di↵erence is greater. We simulated kitami 10

in 2018 (Fig. 3) because a new charging station is located
there.

4.1.2 Experiment results
Table 3 shows the pre-estimated results. We conducted

EV driving experiments using a Nissan Leaf (Nissan Motor
Co. Ltd.) as the experiment EV in 2017 and 2018. We used
estimated energy consumption logs[10] calculated from GPS
data as Ereal. In 2017, the experiment EV’s remaining bat-
tery charge was the equivalent of 13.4 kWh when its battery
was 80% charged. That charge was achieved through charg-
ing time of 30 min. We selected and ran kitami 2 because
kitami 1 Emin was 15.27 kWh (greater than the 13.4 kWh
@80%), as Table 3 shows. These calculations indicate that
the EV can run the whole kitami 10 route if the remaining
battery charge is greater than 15.01 kWh. The experiment
EV was 16.7 kWh @100% (more than 15.01 kWh). There-
fore, we chose the kitami 10 route for the 2018 experiment.
Table 4 shows Ereal for the actual driving experiments. We
can infer that the system outputs “Emin and Emax” are
correct because Ereal is between Emin and Emax.

4.2 Short trips

Figure 4: Ereal in Outward Trips.

Figure 5: Ereal in Homeward Trips.

4.2.1 Experiment conditions
After we accumulated EV energy consumption logs[10] in

a database, we evaluated the accuracy of Emin and Emax

using EV energy consumption logs accumulated from daily
commuting. We therefore accumulated a large amount of
one commuter’s data. The total number of trips was 786:
outbound trips were 434, homeward trips were 352. There-
fore, we use these logs as Ereal. We then compare Emin and
Emax with Ereal to evaluate their accuracy.

4.2.2 Experiment results
Table 5 presents pre-estimated results. Figures 4 and 5

portray histograms of Ereal values. These graphs show that
any Ereal values are always between Emin and Emax.

4.3 Overall experiment results

As shown in Figure 6, we verified that any Ereal values are
always between Emin and Emax, even though EVs run on
long trips or short trips. Ereal of outward and homeward

are mean values of numerous accumulated trips.

5. CONCLUSION

As described in this report, we proposed a system for pre-
estimation of maximum and minimum electric vehicle (EV)
energy consumption for use with unfamiliar roads. We de-
fined the minimum energy consumption is achieved when an



Table 3: Emax and Emin in Long Trips

Route ID
Origin
to CP
Emax

Origin
to CP
Emin

CP
to next CP

Emax

CP
to next CP

Emin

CP
to Destination

Emax

CP
to Destination

Emin

kitami 1 19.17 kWh 15.27 kWh - - 6.62 kWh 5.88 kWh
kitami 2 12.20 kWh 9.18 kWh - - 5.95 kWh 5.75 kWh
kitami 10 15.01 kWh 11.98 kWh 4.16 kWh 3.29 kWh 6.62 kWh 5.88 kWh

Figure 6: Overall Experiment Results.

Table 4: Ereal on Long Trips

Route ID
Origin
to CP
Ereal

CP
to Next CP

Ereal

CP
to Destination

Ereal

kitami 2 9.66 kWh - 5.81 kWh
kitami 10 13.04 kWh 4.11 kWh 6.40 kWh

Table 5: Emax and Emin in Short Trips
Route ID Emax Emin

outward 5.00 kWh 3.10 kWh
homeward 4.08 kWh 2.83 kWh

EV travels at a constant speed. Maximum energy consump-
tion occurs when an EV travels at a constant speed, but
also stops at controlled intersections and set places, such as
sightseeing spots and stores.

Moreover, we conducted actual driving experiments, which
yielded actual energy consumption logs with data in a range
showing the estimated minimum energy consumption and
estimated maximum energy consumption. Our next chal-
lenge is to estimate a range that is specialized for individuals
and routes using numerous daily life logs. Another challenge
is consideration of an air conditioner’s energy consumption
to output more correct EV energy consumption.
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