
Optimized Spatio-Temporal Data Structures for Hybrid
Transactional and Analytical Workloads on Columnar

In-Memory Databases

Keven Richly
supervised by Prof. Dr. h.c. Hasso Plattner

Hasso Plattner Institute, University of Potsdam

August-Bebel-Str. 88

Potsdam, Germany

keven.richly@hpi.de

ABSTRACT
Rapid advances in location-acquisition technologies have led
to large amounts of trajectory data. This data is the founda-
tion for a broad spectrum of services driven and improved
by trajectory data mining. However, for hybrid transac-
tional and analytical workloads, the storing and process-
ing of rapidly accumulated trajectory data is a non-trivial
task. In this paper, we propose an approach to optimize
the trajectory data management capabilities for relational
database systems. Based on the observations that the re-
lational database structure is well-suited to store trajectory
data in the sample point format and that the access pat-
terns for trajectory data change over time, we develope a
concept for optimized spatio-temporal data structures for in-
memory column stores and describe a workload-aware tiered
data compression approach. The first evaluations of the ap-
proach demonstrate that the observed data access patterns
of di↵erent real-world use cases are supporting the proposed
system architecture.

1. INTRODUCTION
In recent years, rapid advances in location-acquisition tech-

nologies have led to large amounts of time-stamped loca-
tion data. Positioning technologies like GPS-based or com-
munication network-based systems enable the tracking of
various moving objects. This data is the foundation for a
wide spectrum of applications [6, 10, 9]. A trajectory is
represented by a series of chronologically ordered sampling
points. Each sampling point contains spatial information,
which is represented by a multidimensional coordinate in a
geographical space, and temporal information, which is rep-
resented by a timestamp. Additionally, an object identifier
assigns each sampling point to a specific moving object and
the corresponding trajectory. Thereby, the duration and
sampling rate depends on the application. Based on the
characteristics of spatio-temporal trajectory data, there ex-
ist four key challenges: the data volume, the high update
rate (data velocity), the query latency of analytical queries,

Proceedings of the VLDB 2019 PhD Workshop, August 26th, 2019. Los
Angeles, California. Copyright (C) 2019 for this paper by its authors.
Copying permitted for private and academic purposes.

and the inherent inaccuracy of the data. For these reasons,
it is a nontrivial task to manage and store vast amounts of
these data, which are rapidly accumulated. Especially, if we
consider hybrid transactional and analytical workloads (so-
called HTAP or mixed workloads) on spatio-temporal data,
which are challenging concerning space and time complexity.

The most common format to store trajectory data is the
sample point format. Here, each observed location is stored
as a tuple with the following attributes: trajectory iden-
tifier, moving object identifier, multi-dimensional location,
and timestamp. In trajectory query processing, we distin-
guish the four query types: (i) trajectory-based queries, (ii)
spatio-temporal range queries, (iii) KNN queries, and (iv)
top-k queries [7]. Trajectory-based queries refer to the tra-
jectory of a single moving object and return the entire trajec-
tory, a specific segment of the trajectory, or related informa-
tion like the length of the trajectory. Relational databases
are able to store data in the sample point format and pro-
cess queries of the four mentioned types. For that reason,
it could be promising to investigate this research area. Fur-
thermore, relational data management systems have some
further advantages that could be used for trajectory data
(e.g., standardized query language, highly optimized data
processing capabilities). To process spatio-temporal data
e�ciently, we have to develop optimized data structures for
spatio-temporal data.

Due to the large amount of trajectory data, which have to
be stored in various use cases, we also have to evaluate di↵er-
ent compression mechanisms for trajectory data to reduce
the data footprint. Particularly for in-memory databases,
we have to utilize the available memory e�ciently. Addi-
tionally, in di↵erent use cases we can observe that a spe-
cific trajectory segment is less accessed over time. Also, the
query types and granularity of queries, which access a spe-
cific segment change over time. Similar characteristics can
be observed in time-series data analysis. For that reason,
it is necessary to analyze how we can adopt compression
mechanisms for such kind of data access patterns to further
reduce the memory consumption and increase the perfor-
mance by minimizing the number of sample points.

2. RESEARCH ISSUES
In this section, we want to highlight the research aspects,

that we derived from the observations mentioned in the pre-
vious section. We propose a concept to integrate storage

ceur-ws.org/Vol-2399/paper10.pdf



mechanisms for trajectory data into a relational in-memory
database with particular attention to leverage the capabil-
ities of the columnar database layout and the adoption to
observed data access patterns. The objective is to reduce
the data footprint and to better utilize the available mem-
ory bandwidth. We accordingly focus on data structures
and compression techniques.

1. Optimized temporal and spatial data structures for
columnar in-memory databases: The sample point for-
mat, which is used to store trajectory data by the ma-
jority of spatio-temporal data management systems [7],
is well suited for the table schema of relational database
systems. Also, di↵erent database systems integrated
optimized spatial data types [4]. In di↵erent applica-
tions, we could observe that the performance of spatio-
temporal range queries is strongly dominated by the
temporal scan operation. For that reason, it is nec-
essary to develop new concepts, which eliminate this
bottleneck. The di↵erent types of time awareness that
various use cases provide should be considered [7]. Ad-
ditionally, we should evaluate the spatial functions of
database systems with regard to trajectory data man-
agement.

2. Compression techniques for trajectory data: Zhang et
al. [13] evaluated the compression ratio and quality of
various trajectory simplification algorithms. Colum-
nar in-memory databases and databases, in general,
use additional data compression techniques apart form
delta encoding (e.g., dictionary or run-length encod-
ing). For that reason, it is necessary to evaluate the
e↵ect of these compression techniques in the context of
columnar in-memory databases and analyze the poten-
tials of compression mechanisms that combine tradi-
tional database compression approaches with special-
ized trajectory simplification algorithms.

3. Workload-aware tiered data compression: The struc-
tures of various trajectory data management systems
have a simar blueprint (see Figure 2). In this blueprint,
the trajectory data is stored in data partitions. In gen-
eral, the systems do not distinguish the di↵erent data
partitions and treat all equally. In various applications
and especially in systems, which analysze times series,
we could observe that the data access pattern for a
database entry changed over time [1, 5]. In time series
data management, an approach is to increase the com-
pression ratio for old values [5]. Considering the mas-
sive amounts of trajectory data, which are tracked by
various companies (e.g., transportation network com-
panies), a tiered compression approach could reduce
the data footprint reasonably.

3. RELATED WORK
As shown in Figure 1, there are several systems, which fo-

cus on the storage, indexing, and compression of trajectory
data. Various systems were primarily designed to store spa-
tial data points but they are also used for trajectory data.
With the increased availability of spatio-temporal data man-
agement system were built for di↵erent system infrastruc-
tures, which leverage the specific characteristics of trajec-
tory data. The optimization focus of the developed system

strongly depends on the addressed use cases: (i) scalability,
(ii) footprint reduction, (iii) elasticity, (iv) e�ciency, or (v)
query performance [7].

Figure 1: A classification model for trajectory data
management systems

Although the various systems are designed for di↵erent
infrastructures and optimized for di↵erent use cases, simi-
larities in the general structure can be determined and sum-
marized in a general blueprint. Most trajectory data man-
agement systems are optimized for spatio-temporal range
queries or k-nearest neighbor queries. They use a hybrid
partitioning approach to e�ciently skip data partitions dur-
ing the query execution. To archive spatio-temporal data lo-
cality the data is partitioned by the temporal dimension first
and the spatial dimension second. The trajectory of a mov-
ing object is not stored together in one partition. The sys-
tems divide a trajectory into di↵erent trajectory segments
and distribute them on the data partitions on the basis of the
partitioning scheme. Inside a data partition, the observed
locations are often stored in a sample point data format,
whereby the sample points are ordered by the trajectory
identifier to increase the performance of trajectory-based
queries. To compress the data all systems use delta com-
pression. Additionally, a wide range of systems applies fur-
ther compression techniques for all data partitions. To op-
timize the query performance, the trajectory data manage-
ment systems use a layered index structure. As displayed in
Figure 2, the structure consists of a three-level hybrid index.
The first layer is a temporal index structure, which divides
the temporal dimensions into di↵erent time intervals. There
are di↵erent implementations for this index (e.g., skip-list,
range index). For each time interval in the first layer, there
exists a spatial index. In most cases, the spatial index is
represented by a traditional KD-tree, quad-tree or oct-tree.
The last layer is normally a tree structure (e.g., b+ tree),
which index the di↵erent spatio-temporal partitions.
There are also several systems, which already integrate

data structures to store spatial data and spatio-temporal
data in relational database systems [4, 12]. Integrating tra-
jectory data management into relational database systems
has the advantages that there is a standardized query lan-
guage, the spatio-temporal data can be combined with other
data (e.g., business data), and it is possible to leverage the
highly optimized data processing capabilities of these sys-
tems.



Figure 2: General blueprint of trajectory manage-
ment systems

4. RESERACH PLAN
In this section, we describe the approach we propose to

optimize the capabilities of relational databases to store
and process trajectory data. Furthermore, we explain our
planned evaluation of the concept.

4.1 Approach
The foundation of the proposed approach is the chunk

concept implemented by the relational in-memory research
database Hyrise [3]. As displayed in Figure 3, a database
table is divided into chunks, which are temporally ordered
horizontal partitions of a certain size. A chunk contains
fragments of all columns of a database table, which are
called segments. Besides e�cient multiprocessing and chunk
pruning, this structure enables the creation of auxiliary data
structures (e.g., indices) on a per-chunk basis. Additionally,
it provides the possibility to change the order criteria be-
tween di↵erent chunks (e.g., trajectory identifier, location)
and enables the application of varying trajectory simplifi-
cation algorithms. We can apply the same concept to the
encodings of segments. For that reason, some segments of a
column can be unencoded, others dictionary-encoded, and
further segments can be encoded with additional compres-
sion techniques [2].

4.1.1 Optimized temporal and spatial data structures

for columnar in-memory databases

These capabilities enable the workload-aware selection of
compression techniques. Furthermore, it is possible to adopt
the ordering of data tuples per chunk. For example, if we
assume a workload that consists of mainly trajectory-based
queries on recent trajectories and in contrast mainly spatio-
temproal range queries on past trajectories it would be ben-
eficial to order the newer chunks by trajectory identifier and
the older ones by location (see Figure 3). Also, space-filling
curves might be used to improve the scan performance of
spatial filter queries. Moreover, this approach allows adop-
tion to changes in the data distribution or the workload.
Zhang et al. [14] also address this topic in TrajSpark by
using a time-decay model to monitor the data distribution
and adopt the used indexing schema correspondingly. In

our proposed system, these changes lead to a new optimal
ordering of data tuples in chunks or compression technique.
Additionally, we developed an approach to store times-

tamps more e�ciently in columnar databases to address the
previously mentioned problem that the temporal scan per-
formance often dominates the execution time of trajectory
database queries. For that reason, we propose a separate
columns approach. The values for year, month, day, hour,
minute, second, and fractional second are each stored in a
separate column. This approach has some advantages over
traditional timestamp concepts. Since there are only sev-
eral possible values for the di↵erent columns, dictionary en-
coding is e↵ective due to saturated and small dictionaries.
Another aspect of reducing the data footprint is that in one
chunk only a subset of the di↵erent columns (e.g., minutes
or seconds) is modified. For that reason, we could mini-
mize the memory consumption of the unmodified columns
by applying run-length encoding. Also, we could improve
the bandwidth utilization for temporal scan operations. A
disadvantage is that for between queries, it is necessary to
scan eventually multiple columns.

4.1.2 Workload-aware tiered data compression

Based on the observation that the data access patterns
for a trajectory segment change over time, we propose a
tiered data compression approach. To select a suitable com-
pression configuration, detailed knowledge about the data
characteristics and the workload are required. Most cur-
rent databases use simple heuristics to choose a compres-
sion scheme for a given column [2]. However, we propose
a heuristic that selects a compression configuration, which
defines the applied compression technique for columns on a
per-chunk basis.
Depending on the workload, the determined configuration

defines for each chunk, if the spatio-temporal data should
be stored uncompressed, lossless compressed with a specific
compression algorithm or simplified based on a trajectory
simplification algorithm. Additionally, it should also spec-
ify the compression ratio of the simplification algorithm per
chunk. In general, we expect that recent chunks are uncom-
pressed or only compressed with lossless compression tech-
niques. In contrast, the compression ratio increases with the
age of a chunk (see Figure 3). Besides reducing the mem-
ory footprint, the selected configuration has also impact on
the query performance as well as the accuracy of the re-
sults. We see potential to optimize the compression schema
for a given memory budget and error-based application con-
straints (e.g., accuracy metrics [11]). It might be prefer-
able to lose performance or accuracy for less often accessed
chunks to leverage the gained space to apply only light-
weight compression methods on frequently accessed chunks.

4.2 Planned Evaluation
For the evaluations of our approach, we plan to use two

real-world use cases. The first one is in the sports sector
and includes positional information of soccer players during
professional soccer games [8]. The data is collected with spe-
cialized camera systems, which track around 3.5 million data
points per game. By analyzing this data, we could observe
data access patterns that support our approach [6]. In the
post-processing mainly the data of the last game is analyzed.
Additionally, algorithms are used to detect and classify spe-
cific game events (e.g., passes) on the fine-grained trajectory



Table T

Chunk #1

Segment d
dictionary-
encoded

Segment b
run length-

encoded

Segment a
unencoded

Chunk #2

Segment c
dictionary-
encoded

Chunk #n-1

Segment a
unencoded

Segment b
unencoded

Segment c
unencoded

Chunk #n

…

Segment c
dictionary-
encoded

Segment a
unencoded

Segment b
dictionary-
encoded

Segment d
dictionary-
encoded

Segment d
unencoded

Segment a
unencoded

Segment b
unencoded

Segment c
unencoded

Segment d
unencoded

immutable

Sorted by: 
Location

Trajectory Simplification: 
Strong 

immutable

Sorted by: 
Location

Trajectory Simplification: 
medium 

immutable

Sorted by: 
Object Identifier

Trajectory Simplification: 
- 

immutable

Sorted by: 
Time

Trajectory Simplification: 
- 

Column T.TrajobjColumn T.Trajid Column T.Trajlocation Column T.Trajtime

Figure 3: Depiction of the storage layout for an ex-
emplary table T with n chunks and four trajectory
relevant attributes

data. The trajectory data of other games of a season is not
analyzed in that depth. All analyses on data of past seasons
are typically only on an event-based level. The second one
is a dataset of a transportation network company, which in-
cludes several million driver positions per hour. Due to the
amount of the collected data, it is only possible to perform
analysis on compressed data or subsets of the data. For vari-
ous use cases (e.g., driver-passenger assignment) only recent
data is analyzed. Also, older trajectories might not repre-
sent the current tra�c situation.

5. CONCLUSIONS
In this paper, we have presented our approach to store

trajectory data in a relational database system. Based on
our observation that data points of trajectories are less fre-
quent accessed over time, we developed a workload-aware
tired data compression approach to reduce the data foot-
print and better utilize the available memory bandwidth.
Additionally, we presented an optimized data layout for tem-
poral data in the context of in-memory column stores. The
first evaluations of the approach demonstrate that the ob-
served data access patterns of di↵erent real-world use cases
are supporting the proposed system architecture. Upcoming
tasks include the further analysis of trajectory compression
techniques for columnar databases, the implementation of
workload-aware metrics to select compression techniques for
chunks, assessing the impact of di↵erent configurations and
an extensive evaluation with real-world systems.

6. REFERENCES
[1] Reducing the footprint of main memory htap systems:

Removing, compressing, tiering, and ignoring data. In
PhD Workshop at VLDB, volume 2175 of CEUR

Workshop Proceedings. CEUR-WS.org, 8 2018.
[2] M. Boissier and M. Jendruk. Workload-driven and

robust selection of compression schemes for column
stores. In 22nd International Conference on Extending

Database Technology (EDBT), pages 674–677, 3 2019.

[3] M. Dreseler, J. Kossmann, M. Boissier, S. Klauck,
M. Uflacker, and H. Plattner. Hyrise re-engineered:
An extensible database system for research in
relational in-memory data management. In 22nd

International Conference on Extending Database

Technology (EDBT), pages 313–324, 3 2019.
[4] V. Pandey, A. Kipf, D. Vorona, T. Mühlbauer,

T. Neumann, and A. Kemper. High-performance
geospatial analytics in hyperspace. In Proceedings of

the 2016 International Conference on Management of

Data, pages 2145–2148. ACM, 2016.
[5] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro,

Q. Huang, J. Meza, and K. Veeraraghavan. Gorilla: A
fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment,
8(12):1816–1827, 2015.

[6] K. Richly. Leveraging spatio-temporal soccer data to
define a graphical query language for game recordings.
In IEEE International Conference on Big Data, Big

Data 2018, Seattle, WA, USA, December 10-13, 2018,
pages 3456–3463, 2018.

[7] K. Richly. A survey on trajectory data management
for hybrid transactional and analytical workloads. In
IEEE International Conference on Big Data, Big Data

2018, Seattle, WA, USA, December 10-13, 2018, pages
562–569, 2018.

[8] K. Richly, M. Bothe, T. Rohlo↵, and C. Schwarz.
Recognizing compound events in spatio-temporal
football data. In International Conference on Internet

of Things and Big Data (IoTBD), 4 2016.
[9] K. Richly, F. Moritz, and C. Schwarz. Utilizing

artificial neural networks to detect compound events
in spatio-temporal soccer data. In SIGKDD17

Workshop on Mining and Learning from Time Series

(MiLeTS), 2017.
[10] K. Richly, R. Teusner, A. Immer, F. Windheuser, and

L. Wolf. Optimizing routes of public transportation
systems by analyzing the data of taxi rides. In
Proceedings of the 1st International ACM

SIGSPATIAL Workshop on Smart Cities and Urban

Analytics, UrbanGIS@SIGSPATIAL 2015, Bellevue,

WA, USA, November 3-6, 2015, pages 70–76, 2015.
[11] P. Sun, S. Xia, G. Yuan, and D. Li. An overview of

moving object trajectory compression algorithms.
Mathematical Problems in Engineering, 2016, 2016.

[12] H. Wang, K. Zheng, J. Xu, B. Zheng, X. Zhou, and
S. Sadiq. Sharkdb: An in-memory column-oriented
trajectory storage. In Proceedings of the 23rd ACM

international conference on conference on information

and knowledge management, pages 1409–1418. ACM,
2014.

[13] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and
H. T. Shen. Trajectory simplification: an experimental
study and quality analysis. Proceedings of the VLDB

Endowment, 11(9):934–946, 2018.
[14] Z. Zhang, C. Jin, J. Mao, X. Yang, and A. Zhou.

Trajspark: A scalable and e�cient in-memory
management system for big trajectory data. In
Asia-Pacific Web (APWeb) and Web-Age Information

Management (WAIM) Joint Conference on Web and

Big Data, pages 11–26. Springer, 2017.


