
Comprehensive Framework for Sorting Benchmarks

Sergey Madaminov
Department of Computer Science

Stony Brook University
New Computer Science Building

Stony Brook, New York 11794-2424
smadaminov@cs.stonybrook.edu

supervised by Michael Ferdman

ABSTRACT
In the early days, sorting accounted for almost 25% of all
cycles that computers were spending. That led to the devel-
opment of a variety of sorting algorithms and their imple-
mentations, as well as the creation of sorting benchmarks.
However, those benchmarks do not account well for increas-
ing variability in the nature of data and they also fail to
assess architectural features of di↵erent computer systems
depending on the choice of the sorting algorithm. This work
proposes the development of a comprehensive sorting bench-
mark framework to address those issues and to help with
the evaluation of sorting algorithms from both software and
hardware perspectives.

1. INTRODUCTION
Sorting is an important operation that computers have

been performing from the early days [18]. This led to the de-
velopment of various sorting algorithms. As it has proved to
be important at datacenter scale [11, 12] and it targeted dif-
ferent scenarios and systems, various algorithms were devel-
oped for general purpose sorting by using CPUs [22, 15, 5],
for sorting that is suitable for highly parallel systems [2], and
for sorting using other types of architectures [10, 19]. How-
ever, with the rapid pace of increase in the scale of a sorting
problem, the question of which algorithm to choose remains
persistent. To answer this question, one needs to have a
sorting benchmark that is capable of providing enough in-
formation for analyzing the needs and e�ciency of available
and proposed algorithms for a given purpose.

The idea of having benchmarks is not novel and there is
a body of work done on the benchmarks for system compo-
nents such as CPU [6], applications such as databases [25],
and systems for processing cloud workloads [8]. Some exist-
ing studies have targeted sorting specifically [13, 7, 21, 14].
Generally stated, the di↵erent types of benchmarks cover
di↵erent parts of sorting systems from both architectural
perspectives as well as algorithmic and software implemen-
tations.

Proceedings of the VLDB 2019 PhD Workshop, August 26th, 2019.
Los Angeles, California.
Copyright (C) 2019 for this paper by its authors. Copying permitted for
private and academic purposes..

In spite of the rich body of knowledge on benchmarks,
drastic changes in computing today have made some of the
benchmarks obsolete. For instance, benchmarks such as
PennySort and TeraByte Sort are deprecated due to the
substantial growth in computational power that allows han-
dling much larger data sets [13]. Similarly, the nature of
the data itself may also di↵er and while there is a suggested
structure of a record to sort [7] that defines 100-byte records,
not all studies follow it [20, 23]. Moreover, sorting task itself
can vary a lot: it can be local to a single computer machine
or distributed among many nodes in a cluster, or it can tar-
get di↵erent architectures.

The variety of di↵erent factors makes it unnecessarily com-
plicated to evaluate sorting algorithms and sorting systems
and compare them against each other. Without a defined
structure of data record or defined distribution, it may be-
come non-trivial how to compare di↵erent sorting algorithms
or their implementations directly. It becomes even more
complicated when targeted systems are FPGAs as they may
be programmed to process a very specific set of data and
changes in the structure of the data may either significantly
a↵ect results or make it unfeasible to even process that data.

To e↵ectively analyze the choice of a sorting algorithm
or sorting system, one needs to collect both hardware and
software statistics of any viable approach. While hardware
statistics may include cache performance, branch mispredic-
tion, and TLB misses, the software statistics may include
running time on a particular system and scalability of the
sorting algorithm with the increasing number of available
parallelism or growth in the volume of data.

To overcome the above issues, this work proposes develop-
ing a comprehensive framework for sorting benchmarks ca-
pable of evaluating various hardware and software aspects
of sorting algorithms and sorting systems while maintain-
ing ease of use. This work is structured as follows: Section
2 justifies the development of such a framework, Section 3
discusses framework architecture, and Section 4 concludes.

2. THE NEED FOR COMPREHENSIVE
FRAMEWORK

Multiple studies have been done on sorting benchmarks [3,
24, 9]. However, we advocate that there is a need for more
research on that topic. There are three main reasons for
that: first, existing benchmarks do not consider the vari-
ety of input data and its distribution, second, they do not
assess hardware statistics, and, third, they are not a good
fit for a variety of di↵erent computer architectures. The

ceur-ws.org/Vol-2399/paper13.pdf



last one is particularly important as there is a number of
studies targeting various architectures such as GPUs [10],
FPGAs [19], and AVX-based [4]. But without a systematic
approach, the task of comparing them against each other
becomes quite challenging. This task of comparing di↵er-
ent architectures between themselves especially complicated
when only part of the sorting algorithm is implemented. For
example, some studies targeting FPGAs focus on the merg-
ing [20, 23]. As such implementations may require data
transfer to and from the sorting system, some level of data
preparation, or may depend on the problem size, it is un-
clear how to compare results obtained from di↵erent archi-
tectures. Thus, the proposed framework should provide a
facility to perform a comparison between them. For similar
sorting algorithms, it can be achieved by direct compari-
son of similar phases of the algorithms and estimating the
remaining phases, which may include potentially required
communication such as data transfer over the PCIe or an-
other medium.

Many studies related to sorting use record structure sug-
gested by Datamation sorting benchmark [7], but it is not
universally accepted. Due to variations in record struc-
ture, comparing the results of di↵erent studies directly is not
straightforward. On the other hand, the Datamation sorting
benchmark that defines the structure of a data record be-
ing 100-byte with ten-byte key and ninety-byte value could
have become outdated. The current database vendors and
users should be surveyed to collect prevailing structures of
records and data distributions. However, as some works
may use the di↵erent input data, it is important to allow
variations in the input data. First, it will allow analyzing
studies that use di↵erent input data. Second, it will enable
the comparison with prior work.

It deems important to understand how sorting algorithms
scale with an increasing number of parallelism or volume of
data, which requires collecting corresponding information.
To perform a more thorough evaluation of the sorting algo-
rithm it is crucial to collect systems statistics such as mem-
ory bandwidth and caches miss rate. While it is possible
to use existing tools for profiling, it requires the algorithm
developer to install and learn a variety of tools. It can be
avoided by adding such functionality into the framework it-
self. Some of the algorithms exhibit di↵erent behavior on
systems level, e.g., Quicksort algorithm is known for good
cache behavior and utilization. Gathering more information
can help to get a clear picture of the sorting algorithm, which
in turn can help to reason about the di↵erences between dif-
ferent sorting algorithms. We suggest that the framework
should not just provide statistical data as feedback, but also
provide an analysis report that identifies weak points of the
algorithm and what potentially can be improved. Moreover,
modern benchmark systems are not easy to use. Thus, the
proposed framework should be user-friendly and should pro-
vide reports for further analysis in a readable format.

With a variety of studies on sorting including recent works
on exploring new computer architectures such as FPGAs [19,
20, 23] and GPUs [10] and their suitability for sorting, com-
paring their result becomes a challenging task. The pro-
posed framework will strive to address these challenges and
needs while maintaining ease of use. It may be still unclear
how to compare di↵erent computer architectures but this
work sets resolving this problem as one of its targets.

Table 1: Example of the data distribution.

Uniform Bernoulli
Poisson Exponential
Gaussian Log Normal
Gamma Beta

3. FRAMEWORK ARCHITECTURE
This section provides a brief overview of potential frame-

work components and argues for their need. It discusses
various aspects of proposed framework such as data distri-
bution, collectible system statistics, and some of the other
aspects that include record structure.

3.1 Data Distribution
The record generator used in the Sort Benchmark [13] can

produce two types of data distribution. Despite a bigger va-
riety of data being considered by Helman et al. [14], their
work focuses on the structure of the data rather than its dis-
tribution. Based on the nature of the data, it is possible to
have more options in the data distribution and the proposed
framework should account for both data structure and data
distribution. Often, these two features may be independent
of each other so the framework should provide facilities to
combine them together. Thus, it may become possible to
have both staggered data structure with Gaussian distribu-
tion or any other combination of data structure and data
distribution. Table 1 provides the list of some of the pos-
sible distributions to account for. However, similar to the
Datamation [7], a comprehensive list should be compiled us-
ing input from the database vendors and the database users
to represent the actual workloads that may be found outside
of research groups.

3.2 System Statistics
Currently, to assess systems performance such as mem-

ory bandwidth, the developer has to use tools such as Intel
VTune [17]. While in some cases it may be inevitable to
use external software, the framework should collect statis-
tics where it can and at least provide the list of various
metrics to account for. Table 2 provides the list of some of
the suggested systems statistics to collect.
Many modern sorting algorithms have optimal or near-

optimal complexity, but real implementations may result in
noticeable di↵erences between them. Collecting such statis-
tics may help to identify bottlenecks that may lead to fur-
ther research on how those bottlenecks can be mitigated.
As a näıve example, hugepages may help to reduce TLB
misses [16] and using recently introduced high-bandwidth
memories may help to handle the memory bandwidth bound
parts of the sorting algorithms. Moreover, identifying such
bottlenecks may steer hardware research. One can imagine
building a sorting specific accelerator to overcome them. For
example, it may be an FPGA that accelerates a particular
task or even a special-purpose processor that has an ISA
targeting the sorting task.

3.3 Miscellaneous
The data distribution and systems statistics cover many

di↵erent aspects of sorting but there are still some imple-
mentation details and guidelines that may become useful for



Table 2: Example of the collectible system statistics.

I/O Intensity TLB Miss Rate
IPC Intensity Caches Miss Rate

Cache Utilization Branch Misprediction
Memory Bandwidth Memory Peak B/W

algorithm developers. They include using custom compara-
tors, avoiding using indirect function calls [1], and di↵erent
record types with latter being tightly coupled with custom
comparators. Ultimately, evaluation of sorting algorithms
and sorting systems may have more factors to consider that
we have previously defined and it is deemed important to
identify them and leave the framework open to including
them.

4. CONCLUSIONS
This work advocates for the development of a compre-

hensive framework for sorting benchmarks, which accounts
for various aspects of sorting algorithms starting with defin-
ing the input data and measures both their software and
hardware statistics. Such a framework may help to create
a system to foster the development of sorting algorithms as
well as designing new computer architectures for sorting. We
envision that it will be beneficial for many communities out-
side of a group of scientists who work on the development
of new sorting algorithms or modifying the existing ones.
While the work in its preliminary stage, there are many de-
sign choices that have to be done and collecting feedback
from database vendors and users is essential for what are
the common data features and hardware statistics they do
care.

5. REFERENCES
[1] V. Agrawal, A. Dabral, T. Palit, Y. Shen, and

M. Ferdman. Architectural Support for Dynamic
Linking. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 691–702,
New York, NY, USA, 2015. ACM.

[2] M. Axtmann, T. Bingmann, P. Sanders, and
C. Schulz. Practical Massively Parallel Sorting. In
Proceedings of the 27th ACM on symposium on
Parallelism in Algorithms and Architectures, pages
13–23. ACM Press, June 2015.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks -
Summary and Preliminary Results. In Proceedings of
the 1991 ACM/IEEE Conference on Supercomputing,
pages 158–165, New York, NY, USA, 1991. ACM.

[4] B. Bramas. A Novel Hybrid Quicksort Algorithm
Vectorized using AVX-512 on Intel Skylake.
International Journal of Advanced Computer Science
and Applications, 8(10), 2017.

[5] C. Bron. Merge Sort Algorithm [M1]. Communications
of the ACM, 15(5):357–358, May 1972.

[6] J. Bucek, K.-D. Lange, and J. v. Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In

Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, pages 41–42,
New York, NY, USA, 2018. ACM.

[7] A. et al, D. Bitton, M. Brown, R. Catell, S. Ceri,
T. Chou, D. DeWitt, D. Gawlick, H. Garcia-Molina,
B. Good, J. Gray, P. Homan, B. Jolls, T. Lukes,
E. Lazowska, J. Nauman, M. Pong, A. Spector,
K. Trieber, H. Sammer, O. Serlin, M. Stonebraker,
A. Reuter, and P. Weinberger. A Measure of
Transaction Processing Power. Datamation,
31(7):112–118, April 1985.

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 37–48, 2012.

[9] P. Garcia and H. Korth. Multithreaded Architectures
and the Sort Benchmark. In Proceedings of the 1st
International Workshop on Data Management on New
Hardware, New York, NY, USA, 2005. ACM.

[10] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: High Performance Graphics
Co-processor Sorting for Large Database Management.
In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data,
pages 325–336, New York, NY, USA, 2006. ACM.

[11] G. Graefe. Sorting And Indexing With Partitioned
B-Trees. In In Proceedings of the 1st International
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 2003.

[12] G. Graefe. Implementing Sorting in Database Systems.
ACM Computing Surveys, 38(3), September 2006.

[13] J. Gray, C. Nyberg, M. Shah, and N. Govindaraju.
Sorting Benchmark. http://sortbenchmark.org/.

[14] D. R. Helman, D. A. Bader, and J. JáJá. Parallel
Algorithms for Personalized Communication and
Sorting With an Experimental Study (Extended
Abstract). In Proceedings of the eighth annual ACM
symposium on Parallel Algorithms and Architectures,
pages 211–222. ACM Press, June 1996.

[15] C. A. R. Hoare. Quicksort. The Computer Journal,
5(1):10–16, January 1962.

[16] J. Hu, X. Bai, S. Sha, Y. Luo, X. Wang, and Z. Wang.
HUB: Hugepage Ballooning in Kernel-based Virtual
Machines. In Proceedings of the International
Symposium on Memory Systems, pages 31–37, New
York, NY, USA, 2018. ACM.

[17] Intel. Intel VTune.
https://software.intel.com/en-us/vtune.

[18] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison-Wesley
Professional, 2nd edition, 1998.

[19] D. Koch and J. Torresen. FPGASort. In Proceedings
of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pages 45–54. ACM
Press, 2011.

[20] S. Mashimo, T. V. Chu, and K. Kise.
High-Performance Hardware Merge Sorter. In 2017
IEEE 25th Annual International Symposium on



Field-Programmable Custom Computing Machines
(FCCM), pages 1–8. IEEE, April 2017.

[21] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. AlphaSort: A Cache-sensitive Parallel
External Sort. The VLDB Journal, 4(4):603–628,
October 1995.

[22] T. Peters. Timsort.
https://bugs.python.org/file4451/timsort.txt.

[23] M. Saitoh, E. A. Elsayed, T. V. Chu, S. Mashimo, and
K. Kise. A High-Performance and Cost-E↵ective

Hardware Merge Sorter without Feedback Datapath.
In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pages 197–204. IEEE, April 2018.

[24] K. Thearling and S. Smith. An Improved
Supercomputer Sorting Benchmark. In Proceedings of
the 1992 ACM/IEEE Conference on Supercomputing,
pages 14–19, Los Alamitos, CA, USA, 1992. IEEE
Computer Society Press.

[25] TPC. Active TPC Benchmarks.
http://www.tpc.org/information/benchmarks.asp.


