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ABSTRACT

A natural language interface (NLI) to databases is an inter-
face that supports natural language queries to be executed
by database management systems (DBMS). However, most
NLIs are domain specific due to the complexity of the nat-
ural language questions, and an NLI trained on one domain
is hard to be transferred another due to the discrepancies
between different ontology. Inspired by the idea of stripping
domain-specific information out of natural language ques-
tions, we propose a cross-domain NLI with a general pur-
pose question tagging strategy and a multi-language neural
translation model. Our question tagging strategy is able
to extract the “skeleton” of the question that represents
its semantic structure for any domain. With question tag-
ging, every domain will be handled equally with a single
multi-language neural translation model. Our preliminary
experiments show that our multi-domain model has excel-
lent cross-domain transferability.

1. INTRODUCTION

Relational databases are widely adopted in real-world ap-
plications [15, 14]. However, it requires a certain knowledge
of query languages to operate on DBMSs, which motivated
the study of NLI to databases [1] with the purpose of making
DBMSs operable by anyone without training.

The challenges of NLI to databases lies in the discrepan-
cies of different ontology, which makes general-purpose NLI
hard to achieve. Most existing general purpose NLIs ex-
ploit syntax-guided decoding and require the grammar of
the structured queries (domain specific grammar) as part of
the model. Such a model cannot be shared between different
grammars, while we propose a general purpose model where
different types of queries and difference domains share the
same components. To overcome the obstacles of general-
izing one NLI model to different domains or even unseen
domains, we perform a pre-processing step inspired by the
strategy of separating domain-specific information from the
question [22]. By detaching domain-specific data elements,
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the NLI model is able to focus on the semantic meaning and
agnostic of the natural language question, which facilitates
the cross-domain generalization.

We first “strip” a natural language question (shown in
Figure 1), each type of the query (SQL and Lambda ex-
pression in our examples) is treated equally, then translate
the tagged question to a structured query. The definition of
“strip” is enclosing a phrase that describes a data element
(tables, columns, values, keywords, etc.) appearing in the
query by inserting a symbol (ki, vi, etc.) representing the
type and index of the data element in front of the phrase,
and an “end of element” symbol (e.g., (eoe)) at the end
of the phrase. In Figure 1, we show two types of queries
(Lambda Expression and SQL), k represents a column field,
a table name, or a keyword, and v represents a value.

Question  Which cities are located in Virginia ?
Query  city(A), location(A, B), const(B, stateid(“Virginia”))

Question (lambda) Which (ki) cities (eoe) are (k2) located in (eoe)
(v2) Virginia (eoe) ?
Query  ki1(A), k2(A, B), const(B, stateid(vs2))
)
Question  Which movies were scheduled to release on May 19 2019 7
Query SELECT movie WHERE release date = May 19 2019

Question  (SQL) Which (ki) movies (eoe) were scheduled
(k2) to release on (eoe) (v2) May 19 2019 (eoe) ?
Query SELECT ky WHERE ks = vs
(2)

Figure 1: Two types of queries (SQL and Lambda expres-
sion) with corresponding Natural language questions.

Another challenge of our cross-domain task is to handle
different query types. The aforementioned symbol insertion
strategy is able to handle questions of different types equally
but fails to differentiate them. Inspired by Google’s multi-
lingual translation model [11] where an artificial token is
introduced at the beginning of the input sentence to indi-
cate the target language. We prefix a query type symbol to
indicate the target query type the NLI model should covert
to (e.g., (SQL), (lambda)). For instance, consider the fol-
lowing question —> SQL pair:

Which is the highest score? —> SELECT MAX(score)

It will be modified to:

(SQL) Which is the highest score? —> SELECT MAX(score)
Such an approach only needs to prefix one additional token,
we will validate in the preliminary experiments that it is the
simplest but effective approach.

The core design of our symbol insertion strategy lies in
how to identify the phrase that describes a data element
appears in the corresponding query. The phrase might not



be the exact words of the data element. In Figure 1(1),
the data element “release date” is described as “to release
on” in the question. Inspired by gradient-based adversarial
text method, we propose an adversarial method towards a
data element detector. Given a natural language question ¢
and a data element e, the data element detector will predict
whether e is mentioned in q.

Figure 1 presents two examples. In example (1), the ques-
tion (imply natural language question in this paper) is con-
verted to a lambda expression, and example (2) is converted
to a SQL query.

2. ADVERSARIAL TEXT METHOD

It has been demonstrated that adding a carefully crafted
small noise is able to fool the deep neural network models
into wrong predictions, while the small noise makes unno-
ticeable visual difference [4]. Most of the adversarial attack
methods on the text [12, 19, 10] try to perturb the features
(e.g., words, characters, and phrases) that are the most in-
fluential on the predictions. Inspired by gradient-based ad-
versarial text attacks [5], we propose our own solution to
identify the position of a data element in a question.

3. DESIGN

3.1 Overview

Given a (question, query) pair, our core methodology is
to insert pre-designed symbols and enclose data elements
mentioned in the question to achieve the purpose of handling
every sample (of different domain/type) equally. Figure 2
shows the framework of our approach bottom-up.

1. Build a binary classifier BC' as a data element detec-
tor to predict whether a data element e appears in
a question ¢’s corresponding query p by the semantic
meaning of the question, which takes g and e as inputs
without referencing p.

2. Inspired by [5], we search for the most influential phrase
in the question using gradient-based adversarial text
methods. We refer “the most influential phrase” as
the phrase that describes the data element e theoreti-
cally.

3. We insert symbols in ¢ to enclose the phrases that
describes the data elements, denoted as ¢’. Since a
query type symbol (e.g., (SQL)) is prefixed to ¢, a
user is able to select a desired query type.

4. Build a multi-lingual cross-domain sequence-to-sequence

(seq2seq) model to translate ¢’ to p’, and p’ is a query
where the data elements are replaced by symbols in-
serted in gq.

5. Inserted symbols are replaced with data elements to
form the original query (convert p’ back to p).

Figure 2 shows two examples of (q,q, p’, p) correspond to
Figure 1. In Figure 1(1), data elements “city” and “Vir-
ginia” are able to be detected by comparing against the
database using string match directly. So are “movie” and
“May 19 2019 in Figure 1(2). However, detecting data
elements “location” and “release date” is problematic, so
we use the pre-trained binary classifier BC. If BC is well

trained, it will produce positive predictions for data element
e = [“location” ,“release date’]. As the true label, p is not
involved in the process. After translating ¢’ to p’, where
data elements are represented as symbols, we perform the

final step of converting p’ back to p.

city (A), location (A, B), const(B, stateid(Virginia)) p1

<kg>(A), <k2>(A,B),  const(B, stateid(<v,>)) p1

1
h

<lambda> Which <ky> cities <eoe> are <kz> located in <eoe> <v,> Virginia <eoe> a1

e
’—v ’7Advevsarial Text m:mod4

<« Which cities are located in Virginia ? a1

ez < Which movies were scheduled to release on May 19 2019 7 az
date

<SQL> Which <ky> movies <eoe> were scheduled <kp> to release on <eoe> <vy> May 19 2019 <eoe>

SELECT  ky WHERE k2 EQUAL v2 Py ——
SELECT movie WHERE release date EQUAL  May 19 2019 P2

Figure 2: An example of cross-domain framework corre-
sponds to Figure 1, different query types are treated equally.

3.2 Data Element Search

Data elements include table names, column fields, and col-
umn values in databases, and keywords in query grammar.
For example, “movies”, “release date”, and “May 19 2019’
are data elements in SQL query “SELECT movie WHERE
release date EQUAL May 19 2019”, and the other el-
ements SELECT WHERE EQUAL belong to the template of
SQL sketch. In “city (A), location (A, B), const (B,
stateid (Virginia))”, “city’ is a table name, “stateid’
is a column field, “Virginia” is a column value, and “lo-
cation” is a keyword in lambda expression grammar. The
challenge is to discover all the data elements from the ques-
tion , and for symbol insertion purpose, we need to discover
which phrase describes each data element. With such sym-
bols insertion, we relieve the burden of identify the data
elements from seq2seq model, and makes it focus on learn-
ing semantic structure of the question and logic of the data
elements.

We have two challenges to tackle for data element search
(use Figure 2 as an example):

1. Identify whether a data element is described in the
question. Ultimately, we are trying to detect all the
data elements that constitute the query, and we have
to infer those data elements from the natural language
question based on its semantics. In q1, we need to
identify all the data elements that are described in the
question (e.g., “city’, “location”, and “Virginia’). In
q2, we need to identify “release data”, “movie”, and
“May 19 2019".

2. The phrase that describes a data element needs to be
identified by its semantic meaning and contextual com-
prehension. In g1 of Figure 2, “located in” is identified
as the most influential phrase while describing the key
word “location”. In g2, “to release on” is identified as
the phrase that describes “release date”.

To address these two challenges, we propose our general
purpose data element search strategy with two steps:

e We propose a Data Element Detector (Sec 3.2.1)
for the first challenge, which is a binary classifier with



a question g and data element e as an input. The de-
tector is able to detect whether the data element e is
mentioned in question g. As presented in Figure 2,
a Data Element Detector is shared among all the do-
mains.

e In the case of positive prediction in the previous step,
we propose an Adversarial Text Method (Sec 3.2.2)
for the second challenge, which relies on the informa-
tion learned by the binary classifier from the first step.

3.2.1 Data Element Detector

We use a bi-directional attentive recurrent neural network
to achieve question understanding. For a question ¢ com-
posed of n tokens [q1, ..., ¢n] and a data element e composed
of m tokens [e1, ..., en], we use a pre-trained Glove embed-
ding to initiate a word embedding layer. On top of the em-
bedding layer, we use LSTM cells to produce hidden states

for each time step (each word in ¢). We build a similar
structure for e. We denote the top layer hidden states as

hq:[h‘l’,--»ﬁhfl] he =[h{, - ,hS]

» P m

We build a bi-directional LSTM layer on h? with attention
over h°.

do =0
h¢
== ™
v [ﬁt]
N
d; = LSTM., (7, di—1)

where Wy, Wi, Wa jand v are model parameters. Here ¢
enumerates each time step for e, and j enumerates each
token in gq. We compute bi-directional output d¢ = [d:, d],
and feed it to a multi-layer perception for binary prediction.

3.2.2 Adversarial Text Method

With the adversarial text method, given a data element e
that has a positive prediction from the binary classifier, we
propose to search a phrase of the question that describes e.
We describe our adversarial text method as follows.

1. We have trained a Data Element Detector that takes a
question ¢ and a data element e as inputs and predicts
whether e is described in gq.

2. We search for the most influential phrase in ¢ using
gradient-based adversarial text methods [5]. There are
three possible directions (the loss gradient of the Data
Element Detector with ¢ and e as inputs is VL(g, e)):

- DeepFool [13]. We iteratively search the optimal
direction in which only a minimum perturbation is
needed to affect the prediction. Theoretically, the op-

i i ion is — —J(a.€) . _
timal direction is TS Lg.o3 VL(q,e) where f(-) de

notes the Data Element Detector.

- Fast Gradient Method FGM [6]. We add a noise
that is proportional to either V.L(g, €) or sign(V L(q, €))
to the original sample to change the prediction of the

Data Element Detector. In particular, the noise for
each token ¢; is proportional to %j,’e)

- JSMA [16]. We calculate the Jacobian-based saliency
map based on VL(q,e), and perturb one token at a
time. The chosen token has the highest saliency value.

Since all the methods are trying to add minimum noise
that influences the prediction the most. The locations
where the noise is added will be the positions of tokens
that constitute the most influential phrase — i,e., the
phrase that describes the data element e.

3. We search for a phrase in the question where adding a
small perturbation will affect the prediction dramati-
cally.

The challenge of our adversarial text method is the discrete-
ness of the text domain. Words or characters are discrete
variables thus indifferentiable. To overcome such problem,
we propose to calculate the loss gradient (VL) of the tar-
get model w.r.t. the embedding of each word, where the
embedding space is smooth.

3.3 Neural Machine Translation

We denote an question post symbol insertion as ¢’ and
the corresponding query post symbol replacement as p’. We
train a seq2seq model to translate ¢’ to p’:

p’ = sEQ2sEQ(q")
Encoder is a stacked bi-directional multi-layer recurrent neu-
ral network (RNN). Decoder is a one-layer attentive RNN.
We use a single multilingual neural translation model for
our cross-domain NLI task. We believe with a prefixed query
type symbol (e.g., (SQL)), a multi-domain model is able to

handle different query types, and each query type is treated
equally.

4. RELATED WORK

NLI to databases was first formally introduced in [1]. Se-
mantic parsing [17, 23, 9] and cross-domain semantic pars-
ing [7, 20] are applied in NLI to databases. However, due to
the incompatibility among different domains, cross-domain
task remains unsolved. The sketch-based solutions are also
extensively studied, which is first proposed in [24]. A deep
model is trained to fill the slots in the sketch. An exten-
sion of sketch-based solution [26] relies on a knowledge base
to identify the column values. Such a strategy is confined
in pre-defined sketch and existing knowledge base. seq2seq
model are also exploited to serve as a translator [8, 28],
which has no limitations on query sketch.

5. PRELIMINARY EXPERIMENTS

Test
Accgm  AcCea

Seq2SQL [28]  51.6%  60.4%
SQLNet [24]  61.3%  68.0%
TypeSQL [26] 75.4% 82.6%

Domain Dataset Method

Single WikiSQL

WikiSQL 74.5% 82.7%
Multi ~ OVERNIGHT  Ours-multi 76.8% -
Geo880 84.1% -

Table 1: Comparison of models.



5.1 Evaluation

We conduct our preliminary experiments using a seq2seq
model with stacked GRU. We use query-match accuracy
Accgm for evaluation, we match synthesized queries against
the ground truth p. We also compare the execution results
as [28], denoted as Acces, if applicable.

We jointly train our multi-domain model on WikiSQL [28],
Geo880 [27] , and OVERNIGHT [23], their query types are
SQL, Lambda expression, and SQL (we use the dataset that
manually converted to SQL in [22]). Some of the domains
are over sampled to balance the number of training samples
among all the domains. Our method is shown in Table 1
as Ours-multi. Since all the domains are trained with in
a single model, the accuracy of multi-domain model does
not exhibit a large improvement. However, we believe it is a
model capacity issue since the accuries of all the domains are
very close or better than state-of-the-art performance. We
observe that the seq2seq model is able to infer both SQL and
Lambda expression as long as a tag (e.g., (SQL), (lambda)
) indicating the query type is provided.

5.2 Spatial Domain

Geo880 Restaurant
Method Accgrn Method Accgm
SEQ2TREE [2] 87.1% PEKO03 [18] 97.0%

Single ~ TRANX [25]  88.2% TM00 [21]  99.6%
JL16 [9] 89.3% FKZ18 [3] 100%
Qurs-multi 90.7% 100%

Domain

Table 2: Comparison of models in Spatial Domain.

We conduct preliminary evaluations on the spatial domain
(Geo880 [27] and Restaurant [21]), which is a more difficult
task since the dataset in the spatial domain is sparse. We
adopt the data element detector as a spatial comprehension
model, and inject spatial semantics using symbol insertions.
In this setting, we jointly train a multi-domain model with
both Geo880 and Restaurant training sets (Restaurant is
oversampled to balance all the domains), and evaluate on
the test set of each separately (since both are for lambda ex-
pression queries, a prefix symbol is not inserted). As shown
in Table 2 (we use denotation match accuracy Accam for
evaluation), our method (Ours-multi) outperforms previous
methods.
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