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ABSTRACT

Preference queries present two main challenges: di�culty
for users to express their preferences and the computational
complexity. For skyline queries, the preferences can be on
attributes, e.g., some user may look for the best flights re-
garding price and number of stops, and others may look
for the best flights regarding number of stops and dura-
tion. In addition, preference can be expressed as a (par-
tial) order on attributes domains, e.g., some user may pre-
fer flight company A over B while another one may have
the opposite preference. For top-k queries, users define a
score function to rank objects, e.g., users who give more
importance to price could define the following score func-
tion: price ⇤ 2 + duration of the flight. In general, several
rounds are required before converging towards a satisfying
answer where at each round, more precise preferences are
given by the user. This is due to the di�culty to figure out
the precise formulation of the user’s preferences. Therefore,
a more or less high number of queries need to be evaluated.
Our research work aims to make these queries answering
faster through dedicated index structures and precomputed
views. The main challenges when adopting this strategy are
(i) lightweight memory consumption and (ii) fast mainte-
nance process. Our first step was NSC, an index structure
that optimizes skyline queries. However, the structure was
designed for a static context making it unsuitable when data
can be inserted/deleted. We redesigned NSC to cope with
dynamic data and in some cases, we proposed further ap-
proaches when the structure is not suitable. In this paper,
we summarize our previous contributions and present some
perspective research regarding the link between regret min-
imization queries and what we did so far.

1. INTRODUCTION

Preference queries aim to retrieve points among a set of
points that can be considered interesting regarding the pref-
erences of the user over a set of parameters. They are e�-
cient tools which reduce the amount of data returned to the
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user ,and consequently, avoids him an endless comparison of
data.

The information retrieval regarding user preferences have
historically been a ranking problem, i.e., given a set of key
words, retrieve the elements that ”best” match these key-
words, we call it often ”top-k” query . Its adaptation to
relational databases has been addressed in [7]. Users are
requested to put weights on the attributes in order to select
points that have the higher values on attributes with the
higher weights. Top-k queries gives the advantage of con-
trolling the size of the output, however the selection of the
weights remain very hard. There has been several works to
simplify this process, e.g., selection of a range of weights,
elicitation and regret minimizing, among others. Authors in
[6] proposed the skyline operator as an alternative to rank-
ing queries. A skyline query returns a set of points which are
not dominated by any other point of the dataset. A point x
dominates a point y i↵ x is better or equal on all attributes
and strictly better on at least one attribute. The skyline
query provides the advantage to not rely on a score function
however, the size of the output is not controllable and it
requires a quadratic computational time regarding the size
of the dataset. Many studies have been done to optimize
the skyline query execution time either by optimizing the
number of comparisons or by indexation.

In previous work [9], the structure NSC has been presented
as an index to optimize skyline queries. Its main idea con-
sists in comparing every record r of a dataset to all remain-
ing records r0 and store the subspaces where r

0 dominates r
in a form of pair of subspaces compare(r, r0) = hX|Y i where
X represents the attributes where r

0 is strictly better than
r and Y represents the attributes where r and r

0 are equal.
Now given a subspace Z, a record r belongs to Sky(Z), i.e.
the skyline over the subspace Z, if and only if there does
not exist a pair hX|Y i associated to r that covers Z, i.e.
Z ✓ XY and Z 6= Y . We denote by cover(hX|Y i) the
set of subspaces covered by hX|Y i. For example, consider
a dataset with attributes A, B and C. The pair hAB|Ci
covers the subspaces {A,B,AB,AC,BC,ABC}. The time
complexity of NSC is quadratic wrt the size of the dataset as
well as the space complexity. However, not every pair should
be kept. Let Pairs(r) be the set of pairs associated to r, this
set can be minimized by computing a subset Q ✓ Pairs(r)
such that cover(Q) = cover(Pairs(r)), i.e. the set of sub-
spaces covered by Pairs(r) are covered by Q as well. We say
that Q is an equivalent subset of Pairs(r), Q ⌘ Pairs(r).
The minimization problem is NP-Hard and a polynomial
greedy approximate algorithm has been proposed.
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In the literature, works that optimize skyline queries can
be divided in three groups, works that (i) design fast al-
gorithms without precomputation, (ii) design index struc-
tures (iii) materialize the results. We note BSkyTree [11] the
state of the art algorithm to process skyline queries without
precomputing. We note HashCube [4], a bitmap like index
structure which associates a 2d Boolean vector v to every
record r where d is the number of attributes. v[i] is set i↵ r

belongs to Sky(Z) such that Z is encoded by i. HashCube

is highly e�cient for skyline query answering, however, au-
thors only proposed an algorithm to construct the structure
from scratch in [5]. No obvious maintenance procedure is
noticed. Materialized skyline views are very time and mem-
ory consuming as the number of skylines wrt to a dataset
is exponential to the number of dimension. However, they
provide the best query answering performance.

The experiments performed in [9] assess the construction
time and memory performance of NSC against its competi-
tors as well as query execution time. However, the structure
was designed for a static context. An insertion/deletion of a
record or a change in an attribute domain order may require
rebuilding the structure from scratch.

For this thesis, we studied the ability of NSC to deal with
updates. Precisely, we addressed its maintenance in case
of (i) dynamic data, i.e., points are removed and inserted at
any time and (ii) streaming data, i.e., append-only database
and sliding window model. We redesigned the structure to
cope with each context. Presently, we are working on skyline
queries optimization over a dataset with nominal attributes
and dynamic order. We found that NSC is not suitable for
this context, hence we established a novel approach based on
views. Finally, we aim to investigate relationship between
multidimensional skylines and regret minimization queries.

2. SKYLINE QUERIES OPTIMIZATION IN

PRESENCE OF UPDATES

In the following, we present the adaptation of NSC for,
first, dynamic data, i.e., insertion/deletion of one or multiple
records at any time, then, streaming data, i.e., insertion of
records at regular intervals. We studied separately both
contexts because they present di↵erent challenges.

2.1 Dynamic Data

In the case of dynamic data, i.e., insertion/deletion of one
or multiple records at any time, NSC should be updated in
accordance to the new dataset. The baseline approach is to
build NSC structure from scratch, however this approach is
costly.

Related work pointed out that dealing with deletion is
harder than insertion. We note the work [17] which ad-
dressed the maintenance of a materialized skyline view in
case of deletion. For NSC, deletion is a hard task as well.
Let r

� be the deleted record then for every record r, we
remove from Pairs(r) the pair p

� computed wrt r�. How-
ever, p� may have exclusively covered some pairs that have
been deleted from Pairs(r) during the minimization pro-
cess. Recovering these pairs requires recomputing Pairs(r)
from scratch. We propose a solution that detects when
Pairs(r) should be recomputed. For every distinct pair p

in Pairs(r), we set a counter of how many records are the
source of p. Hence, we recompute Pairs(r) only if p

� is

in Pairs(r) and its counter set to 1. In theory, this ap-
proach could be seen as building the structure from scratch
at each deletion, however, in practice, only a small fraction
of the dataset requires their set of pairs to be recomputed.
In terms of time complexity, let the size of the dataset be n.
Let I be the set of records for which their respective set of
pairs requires to be recomputed. Identifying I takes O(n)
time and recomputing Pairs(r) 8r 2 I takes O(|I| · n). Re-
garding memory consumption, NSC size is augmented by a
constant due to the additional counter.
Now for insertions, let r+ be a record to be inserted then

we compute Pairs(r+). Regarding the existing records in
the dataset, let r be one, we compute p

+ = compare(r, r+).
However, Pairs(r) is already a minimal set of pairs, hence
we address the problem: should Pairs(r) [ compare(r, r+)
be minimized now? or should the minimization process be
triggered after a number of pairs appended? In absence of
an incremental greedy algorithm, we propose a linear algo-
rithm wrt the size of Pairs(r), called min inclusion, which
takes every pair p 2 Pairs(r) and compare it to p

+. The
pair covered by the other one is discarded. This algorithm
does not provide any approximation guarantee. However,
in practice, min inclusion allows a good compression ratio
wrt the greedy algorithm.

2.2 Streaming Data

We consider the following stream model. Records are
streamed at regular interval time ✓. They have a validity
period of size ! which can also be seen as a sliding window
over the dataset. Hence, records are considered outdated !

timestamps after their arrival time. The semantic of con-
tinuous queries [15] states that the query result should be
available and accurate at each time. However, this condition
is hardly attainable, especially for skyline queries. We point
out two main di�culties for continuous skyline queries. Let
Qsky be a skyline query, then (i) a record r belonging to
Ans(Qsky) at a timestamp t may leave Ans(Qsky) at times-
tamp t

0
> t if a streamed record r

0 dominates r. And (ii) a
record r can join Ans(Qsky) at timestamp t

0 later than its
arrival time if skyline records that dominate r get outdated.
We note the contribution of [14]. Authors propose to main-
tain a skyline set DBSky and a set of potentially skyline
records DBRest, i.e., records which may join DBSky in the
future. They propose an algorithm to maintain these sets
together with an event list recording timestamps where a
record in DBRest may join DBSky. Still, this approach
makes a big number of records comparison which makes it
non scalable wrt dimensionality and data cardinality. More-
over it maintains a single skyline query, hence maintaining
several skylines may require an exponential space wrt to the
number of attribute. We note as well the approach presented
in [12] which is based on R-trees. Regarding NSC structure,
the approaches presented for dynamic data are not suitable
for two main reasons: (i) the timestamp where a record is
no more valid is known and (ii) the frequency of streaming
is often high. Generally, real time data processing is hard
in streaming context. Batch processing mode provides a
larger time to process data, however, the query result is not
accurate with the current dataset. We proposed a frame-
work called MSSD which handles three data structure, (i)
a bu↵er B, (ii) a main dataset R and (iii) NSCt, a redesigned
version for NSC. Incoming records are first bu↵ered during
an interval of time of size k, then inserted into the main



dataset R. NSCt only indexes records in R, hence, queries
evaluated through NSCt, consider only records in R. We
sacrifice the accuracy of the queries, nonetheless, we ensure
a fast maintenance that allows faster query answering than
state of the art works. Next we explain the main novelties
for NSCt. We organize the set of pairs of a record r as a se-
quence of buckets of pairs Pairs(r) = [Buck1, . . . , Buckm],
where each bucket corresponds to the pairs computed wrt a
batch of data. We adopt this approach for the following pur-
pose. Let b1 and b2 be two batches such that their respective
timestamp are TS(b1) and TS(b2), and TS(b1) < TS(b2).
As we consider a sliding window data model with an inter-
val of size !, records in b1 get outdated before records in
b2. Therefore, let r be a record, the bucket computed wrt b1
is located before the bucket computed wrt b2 in Pairs(r).
During maintenance, Buck1, i.e. the oldest bucket, is sim-
ply discarded as it contains pairs computed wrt an outdated
batch. Moreover, during the minimization process, a bucket
Bucki is minimized only wrt successor buckets. We for-
malized the problem of buckets minimization for NSCt and
proved its NP-Hardness by a reduction to MSC (Minimum
Set Cover) problem. We provided a greedy approximate al-
gorithm as well. We present in [2] early experiments we per-
formed. It shows that despite the maintenance time, NSCt
answers much more queries during the batch interval than
BSkyTree [11].

3. SKYLINE QUERIES OPTIMIZATION IN

PRESENCE OF DYNAMIC ORDER

In many real world applications, users are allowed to ex-
press their preferences over the values of nominal attributes.
In such case, we say that the attribute domain has a dynamic

order. For example, on a movie platform website, users want
the best rated movies but have preferences over the genre as
well. Also, on a flight booking website, users are interested
in cheap and fast flights but may have preferences over the
airline companies. To ease the comprehension, we consider
datasets with only one nominal attribute A and some num-
ber of numerical attributes. A user preference over A is a
partial order that can be written as a set of (a1, a2) such
that a1, a2 2 A and a1 is preferred over a2. In such sce-
nario, NSC is not suitable to answer skyline queries as it
is constructed depending on a given partial order over A.
Hence it should be updated every time a query with a dif-
ferent partial order is issued, or it may require to construct
NSC for each possible partial order over A. In the litera-
ture, there is two major approaches to handle the problem
of answering skyline queries over datasets with attributes
having dynamic order, (i) algorithms which, given a query
Q, maps a nominal attribute into a set of virtual numerical
attributes in accordance to the user preference Q.R. Then,
a skyline query is processed over the transformed dataset
[18]. And (ii) answers the given query through a set of
cached views, each computed wrt a partial order [16, 10].
These works adopt refinement and chain product decomposi-

tion techniques in order to evaluate an issued query through
materialized views. Let Q be an issued query and let Q0 be
a view then Ans(Q) ✓ Ans(Q0) if Q

0
.R ✓ Q.R. We say

that Q is a refinement of Q0. Now let {Q1, . . . , Qn} a set of
views such that Qi.R 8i 2 [1 . . . n] is a chain, i.e., the val-
ues of A are totally ordered, then Ans(Q) =

S
i2[1...n] Qi if

Q.R =
N

i2[1...m] Qi.R. We say that {Q1, . . . , Qn} is a chain

product decomposition of Q. We adopted a novel approach
which theoretically and experimentally provided better re-
sults than the above approaches. We define the single partial
order spo over an attribute domain Dom(A) as a partial or-
der where only two values inDom(A) are comparable and all
other values are incomparable. Given a query Q with user
preference Q.R, Ans(Q) is the intersection of the skylines
wrt spos composing Q.R. Every spo skyline query is consid-
ered a view whether it is materialized or not. Our experi-
ments showed that answering a query through non material-
ized spo views is even faster than online algorithms, mainly
because skyline algorithms are highly weakened by dimen-
sionality added by mapping a nominal attribute to several
numerical attributes. Moreover, this approach, namely the
single partial order decomposition, presents the advantage of
easily selecting the right views in order to evaluate a given
query compared to the chain product decomposition which
is an NP Hard Problem. Regarding the memory consump-
tion, let |dom(A)| = m, there exists m! total orders wrt
dom(A), hence m! views to store for chain product decom-
position approach. For refinement approach, the higher the
number of views stored, the faster will be query answering.
Note that there exists an exponential number of partial or-
ders wrt m. Our approach requires 2 ·C2

m views as for every
two values, two views are stored. This can be further opti-
mized by selecting only a subset of spo views to materialize.
We addressed the following problem: given a workload Q

and an integer k, select a set of views of size at most k to
materialize such that the cost of answering the queries in
Q through the views is minimum. We are working on the
proof of the Hardness of this problem. Finally we extended
the work to the case where datasets have several nominal
attributes.

4. REGRET MINIMIZING QUERIES AND

MULTIDIMENSIONAL SKYLINES

In this section, we mainly present state of the art of regret
optimization queries and we place some questions that we
plan to investigate during this thesis.
Skyline and Top-k queries share the same objective which

is selecting the best elements. However, on one hand, skyline
queries return a non constrained size of result by relying on
just the dominance relation between elements, and on the
other hand, Top-k queries require a score function from the
user to restrain the result size to k.
Recently [13] presented “regret minimizing set” to avoid

the limitations of skyline and Top-k queries by not requiring
a score function while bounding the result size. The main
idea is to select a representative subset S of a dataset T . Let
f be a score function, k be an integer, then let fk(T ) be the
score of the kth ranked point using f . The regret of a subset
S wrt f is f1(T )� f1(S) and the regret ratio is f1(T )�f1(S)

f1(T ) .
Given a family of functions F , the problem here is to find
S of size r which minimizes the maximal regret ratio among
all f 2 F . A greedy approximate algorithm to solve this
problem has been proposed in [13]. Consequently, [8] pro-
posed a relaxation, namely the k-regret minimizing set: the
regret of S considered here is max(fk(T )� f1(S), 0). More-
over, they proved the NP-hardness of the regret minimiza-
tion problem, with or without the relaxation. [3] addressed
the query evaluation optimization. They proposed a linear
time dynamic programming algorithm based on the skyline



set for a two-dimensional dataset. In addition, for datasets
with more than 3 dimensions, they proposed an approach
where they discretise the family of linear function F , into
a set of function F wrt a parameter � given by the user.
This discretisation allows a controlled approximation of the
optimal regret ratio. A notable contribution to the regret
minimization line of research is given by [1]. They provide
a reformulation of a regret representative set. Let S ⇢ T .
Then S is a (k, ✏)-set i↵ 8f 2 F , fk(T )�f1(S)

fk(T )  ✏. They

formulate two regret minimizing set problems, (i) by size
minimization, i.e., find the smallest (k, ✏)-set, and (ii) by re-
gret minimization, compute the (k, ✏)-set of size r and ✏ is
minimum.

Our previous work addressed two aspects of skyline queries:
index structure to optimize multidimensional queries and its
e�cient maintenance upon updates. We aim to extend this
material to optimize regret minimization queries. We plan
to investigate more deeply the relationship between skyline
sets and regret minimizing sets (RMS). Let T be a dataset
over a set of dimensions D = {D1, . . . , Dd}. One question
that could be interesting to investigate is to find a relation-
ship between the regret minimization sets when considering
subspaces of D. More precisely, let X ✓ Y ✓ D and S(X),
resp. S(Y ), be the RMS wrt X, resp. Y . How these two
sets do compare? Which situations make them comparable?
Which functions families make them comparable? How can
the RMS’s wrt all subspaces can be computed e�ciently?
Consider the RMS frequency of a tuple to be the number
of RMS’s it belongs to, then retrieving the k most frequent
tuples could be seen as a way to define the ‘best” k tuples.
Let t 2 T . Is the knowledge we have about the skylines to
which t belongs, can give us hints about its belonging to an
RMS? Let the skyline frequency of a tuple be the number
of skylines it belongs to. Let L be the set of tuples that
are at least l skyline frequent, what approximation, if any,
gives the restriction of regret minimizing set computation
wrt L compared to the whole dataset? In case of a positive
answer, it would be interesting to see how to adapt NSC to
optimize the calculation of the set L and consequently, an
approximate regret minimization set.
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