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Abstract. In this paper, we focus on the definition and adaptation of the execution behavior of a task in
order to support flexible workflows in the presence of distributed workflow enactment. We argue that an
adequate behavior definition is the basis for both, modeling less-restrictive workflows in advance as well
as supporting dynamic workflow changes. We show how different control flow dependency types can be
specified in our approach and can be used to define less-restrictive workflows. Furthermore, we discuss
the definition of an adequate behavior for dynamic modifications in different situations. In particular, we
describe how the application of and reaction to dynamic changes can be adapted in our approach de-
pending on the process context and the behavior of a task itself.

1. Introduction

The development of process-model based workflow management systems (WFMS) has been driven mostly by
focussing well-structured business processes from the viewpoint of transactional processing. WFMSs are ap-
plied following a rigorous methodology of business process (re-)engineering and formal workflow specification
which leads to well-defined processes and is well-suited for production workflows. This restricted view –
which is not inherently caused by the workflow paradigm – is the main reason for the inflexibility of today’s
WFMS and their underlying process representation formalisms. Support for flexible workflows in process-
model based WFMS has to cope with two fundamental challenges:

(a) A-priori flexibility focus on the specification of a flexible workflow execution behavior to express an
accurate and less restrictive behavior in advance; flexible and adaptable control and data flow mechanisms have
to be taken into account in order to support ad hoc and cooperative work at the workflow level (cf. [ElNu96]).

(b) A-posteriori flexibility (flexibility by dynamic adaptation) is provided by the change and evolution of
workflow models in order to modify workflow specifications on the schema and instance level due to dynami-
cally changing situations of a real process (cf. [EKR95, CCPP96, ReDa98, JoHe98]). Note, that in the case of
dynamic modifications we also have to define a-priori when, i.e. in which context and in which state of execu-
tion, certain modifications are allowed in order to ensure the dynamic and semantical consistency of a process.

Thus, the definition of the behavior of workflow execution as well as workflow evolution are the basis for
supporting flexible workflows. In this paper, we focus on the workflow behavior definition and adaptation in
both cases in the presence of a distributed workflow enactment approach which forms the basis for a scalable
workflow management system. First, we sketch our workflow modeling language and show how the behavior
of a task can be defined and adapted in different contexts. In particular, user-defined control flow dependencies,
which allow to define and reuse complex behavior patterns, can be specified and applied in different contexts.
Next, we outline how these concepts can be used to define a-priori less-restrictive workflows, i.e. workflows
where a certain degree of freedom is left open to the actor. Furthermore, we discuss the definition of an ade-
quate behavior for dynamic modifications in different situations without restricting our self on a transactional
view on processes. In particular, we show how the application of and reaction to dynamic changes can be
adapted in our approach depending on the process context and the behavior of a task itself.

2. The Workflow Modeling Approach
2.1 Task and Process definition

The building block of our workflow modeling approach is a task definition (or task type) which consists of a
task interface, that specifies ‘what is to do’, and potentially several process definitions, which specify how the
task may be accomplished. The task interface is defined by attribute, parameter, and process constraint defini-
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tions (all neglected throughout this paper) and by a task behavior definition which specifies the external con-
text-free behavior of a task (e.g., transactional or non-transactional). The context-dependent behavior of task is
defined by its application within a process definition. A process definition1 may be atomic consisting only of a
task description or system invocation, or complex. A complex process is defined in an activity-oriented manner
by a task graph. The decision is taken at run-time, which process definition of a task definition is used to per-
form a task (late binding). This late binding mechanism also allows to create a new process definition at run-
time (late modeling).

A task graph consists of task components, connectors, start and end nodes, and data inlets and outlets,
which are linked by control and data flow dependencies: A task component is an applied occurrence of a task
definition within a process definition. For every task component a split and join type (AND / OR) can be speci-
fied. Furthermore, connector components are predefined which just realize splits and joins.

Task components (and start and end node) are linked by control flow dependencies. Iterations within this
task graph are modeled by a special predefined feedback relationship. A condition can be associated to every
dependency to support conditional branches. We allow to define different control flow dependency types which
can be applied and reused within several process definitions. The semantics of a control flow dependency type
is defined by ECA rules as shown in the next section and illustrated in figure 2.

Similar to the definition of control flow dependencies we support the definition of group relationship types.
A group relationship is used within a process definition in order to group arbitrary task components of a task
graph; it applies the behavior defined by the group relationship to its components. A task component can be
part of several not necessarily nested groups. A special kind of a group is a block. Blocks are nested and con-
tain a subtask-graph with exactly one start and end component (particularly useful for exception handling).

Finally, task components can be linked by dataflow relationships according to the input and output pa-
rameters of their task definitions. Furthermore, a data inlet (or outlet) is used as a data source (or sink) in order
to realize a vertical dataflow between the parameters of the task definition and their use within the workflow.

2.2 Distributed Workflow Enactment and its Execution Semantics

The execution semantics of tasks and of the task graph is defined by a statechart variant and event-condition-
action (ECA) rules. Our enactment model is based on treating tasks as reactive components which encapsulates
their internal behavior and interact with other tasks by message/event passing. This is a natural basis for a dis-
tributed enactment of workflows which was one of the design goals of our approach (beside of flexibility), and
it is essential for scaling up to enterprise-wide workflow support.

A task has several built-in operations, which can be categorized into state transition operations, actor as-
signment operations, operations for handling of (versioned) inputs and outputs, and workflow change opera-
tions. For every operation, the task has the knowledge about when to trigger the operation, a condition that
must hold for executing the transition and that acts as guard, and a list of receivers to which events are passed
(to avoid communication overhead, we use no broadcast).

Before we introduce the behavior definition and adaptation on schema level, we briefly sketch syntax and
semantics of our ECA rules (see [JoHe99a] for details; examples are given in figure 1 and 2): First of all, an
ECA rule is always associated with an operation/transition, which defines the action part of the rule. Thus,
ECA rules are structured according to the task’s transitions. Additionally, an ECA rule consists of a list of event
captures, a condition, and a receiver expression. Events define when an operation is to be triggered: when a task
receives an event that matches an event capture in the event capture list, and when the task is in the source state
of the corresponding transition, the event is consumed and the task tries to perform the transition. The invoca-
tion of a transition causes the evaluation of its condition. This transition condition acts as a guard, i.e., the tran-
sition is performed only when the condition holds (otherwise nothing is done). Thus, we follow a state-based
semantics where a transition can be triggered by (internal and atomic) events or externally by user invocation.
Invocation and applicability of a transition are strictly separated. The matching of an event with an event cap-
ture can be qualified to the causing task. For example, this allows a task to react differently on the event ’fin-

                                                     
1 Note, that we use process definition in a more restricted sense defining only how a task has to be done. To avoid misunderstandings, we use workflow

and workflow specification as a general term (independent from our approach) in the usual more broader sense.
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ished’ depending on whether the event was received from a predecessor or from a sub-task. Furthermore, a trig-
ger condition can be specified within an event capture which must hold for a valid event capture. Otherwise,
the next event capture which matches the event is searched.

2.3 Definition and Adaptation of the Execution Behavior

The context-free behavior of a task is given by the behavior definition of a task definition by means of a state-
chart variant. It defines the states, their decomposition, and the operations/transitions which can be invoked in a
certain state. Furthermore, exactly one context-free ECA rule can be defined for every transition. A task defini-
tion can inherit from an abstract task
definition, i.e., a task definition with
no process definitions, in order to de-
fine behavior classes of tasks (e.g.,
non-transactional, transactional; cf.
[KrSh95, Wes98]). Within an inher-
ited statechart, states can be refined
and transitions can be added and rede-
fined by changing their associated
ECA rule. This allows to adapt the
context-free behavior of tasks. Every
task definition inherits from a prede-
fined task definition, which consists of
a statechart that defines the basic
states, transitions, and context-free
ECA rules as illustrated in figure 1.

The context-dependent behavior is given by the control flow dependencies and groups within a process defini-
tion. Rather than providing a limited set of different built-in control flow dependency types and group relation-
ship types, arbitrary control flow types can be defined and adapted by a process engineer (cf. [JaBu96]). They
are defined by a label, an informal description, and a set of ECA rules, which give the semantics of the depend-
ency type. Within the task graph, the control flow dependencies or group relationships can be used by their la-
bels abstracting from the detailed definition and reusing complex behavior patterns. Control flow dependency
types are used to define ECA rules which establish intertask dependencies (e.g. end-start, start-start, deadline).
Group relationship types are used to apply a behavior pattern to an arbitrary set of components.

As an example, we briefly explain the definition of the standard end-start dependency which consists of
several rules partially shown in figure 2. We concentrate on the first rule which is defined for the enable transi-
tion and is applied to the target component of the dependency. The event capture defines that the enable transi-
tion is triggered whenever an event ’finished’ has been received along the standard dependency under the con-
dition that the corresponding dependency condition (specified by the placeholder ’dependency_condition’)
evaluates to true. The condition of the transition is defined by an reference to the source component requiring
that it is an state done. The receiver expression is omitted in all examples.

In order to obtain the behavior of a task instance, the (partially) defined ECA rules of the context-free behavior
are joined with the ECA rules that the task instance inherits from its context, i.e. from its dependencies and
group relationships within a process definition. An example is shown in figure 2 for the ’FunctionalCheck’ task
which obtains the behavior of the incoming standard end-start dependency from ’Design’, of the group type ’Ex-
clusion’, and of the context-free statechart. There are different modes for merging the context dependent be-
havior definitions. These modes are defined for every ECA rule (omitted in Fig. 2) and are applied to the tran-
sition condition: (a) conjunctive (default for group relationships) (b) disjunctive (c) using the join type of the
component (default for dependencies) (d) using the inverted join type of the component (e) overriding. De-
pendency or group types using the overriding mode for the same transition cannot be applied simultaneously to
a component. The overriding mode is normally used for adapting the application condition of change opera-
tions (see section 3.3).
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donefailed

waiting

running
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finishabort

terminated

not_executediterate*,
repeat

truncate*, skip start

   FOR enable DEFINE:
       ON resumed, /* event capture list */
             iterated BY self
             process_selected BY supertask,
             output_released BY supplier,
             predecessor_removed,
             incoming_dependency_changed
             [...]
       IF supertask.state=active AND
            mandatory_inputs_available

   FOR disable DEFINE:
      ON suspended,
             output_unreleased BY supplier,
             predecessor_added,
             incoming_dependency_changed
             [...]
      IF NOT condition_of(enable)

   FOR add_predecessor DEFINE:
      IF state=waiting
[...]

add_supplier, remove_supplier, add_predecessor,
remove_predecessor, change_incoming_dependency, ...

select-
workflow

(A) Predefined state transition diagram (B) Predefined context free ECA rules

created

get_input,
produce_output

* = system-internal transition; not controllable by the user

Figure 1: Predefined context-free execution behavior
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3. Behavior Definition and Adaptation for Flexible Processes

In this section, we show how the introduced concepts of behavior definition can be used to define a priori flexi-
ble workflows and to adjust the application condition of and the reaction to dynamic changes depending on the
behavior of the task itself and the context.

3.1 Defining Less-restrictive Workflows

We give two examples of defining a-priori less-restrictive workflows, i.e. workflows where a certain degree of
freedom is left open to the actor, using the introduced concepts of user-defined control flow types.

The first example is the definition of the group relationship type ‘exclusion’ which is shown in figure 2. It
forces its members to execute mutually exclusive. In conjunction with parallel branches, we can define that
certain tasks should be executed sequentially, but without defining the actual ordering of the tasks. So, the user
can choose which task he or she wants to perform next. In our example, a QA engineer may decide whether
he/she wants to check a specification first against the functional or against the ergonomic requirements.

The second example focuses on skipping a task. Since skipping a task is normally not desirable (except
from the viewpoint of the actor) and probably cause serve problems when needed output data has not been pro-
duced, its application should be restricted. Furthermore, in our state-based semantic, skipping a task would re-
sult in a deadlock since the successor tasks would wait for termination of the skipped task. Both problems are
solved by the control flow dependency type ‘softsync’ (cf. [ReDa98], which also show useful applications in
the case of dynamic changes). It waits only for the termination of a task when the task still can be executed (see
relaxed enable condition in figure 2). Furthermore, the dependency allows to control when skipping is enabled.
The skip transition is disabled for tasks which have at least one outgoing standard dependency. Thus, the proc-
ess modeler can define which tasks can be skipped in a certain workflow.

3.2 Supporting Collaborative Workflows

Collaborative workflows are supported in our approach by version and workspace control capabilities which
are integrated with the workflow model on conceptual level. Consumed and produced versions are managed
within a task-oriented workspace. Versions can be released for dedicated tasks which allows a versioned data

(B) Definition of different dependency / group types

CONTROL FLOW DEPENDENCY standard
   FOR enable OF target DEFINE:
       ON finished BY predecessor standard WHEN dependency_condition
       IF source.state=done AND dependency_condition
   FOR truncate OF target DEFINE: /* for dead path elimination */
       ON truncated BY predecessor standard,
             finished BY predecessor  WHEN NOT dependency_condition
       IF (NOT dependency_condition AND source.state=termnated)
           OR source.state=not_executed /* inverted mergingis mode used here!*/
   FOR skip OF source DEFINE: /* disable skip for the source task */
      IF false /* using the and merging mode */
   [...]

CONTROL FLOW DEPENDENCY softsync /* in contrast to ‚standard‘ also */
   FOR enable OF target DEFINE: /* enabled when predecessor */
     ON truncated BY predecessor softsync, /* has been truncated */
            finished BY predecessor softsync WHEN dependency_condition
      IF source.state=done AND dependency_condition
          OR source.state=not_executed
   FOR skip OF source DEFINE: /* enable skip for the source task */
      IF true
 [...the rest similar to control flow dependency standard]

CONTROL FLOW GROUP exclusion /* mutual exclusion */

   FOR disable DEFINE:
      ON started BY groupmember_of  exclusion

   FOR enable DEFINE:
       ON disabled BY groupmember_of exclusion,
              finished BY groupmember_of exclusion
       IF FORALL related_members_of  exclusion: state != running

(C) Derived ECA rules for ‚FunctionalCheck‘

DO enable
    ON disabled BY { ErgonomicCheck },
           finished BY { Design, ErgonomicCheck }
           [...]
    IF Design.state=done AND        /* from ‚standard‘ */
        ErgonomicCheck.state != running AND  /* from ‚exclusion‘ */
        supertask.state=active        /* from contxt-free beh.*/
        [...]

DO  disable
    ON started BY { ErgonomicCheck },
           suspended BY supertask
           [...]
    IF NOT condition(enable)
[...]

(A) Workflow with different dependency / group types.

Design an
d

Functional
Check

and

Ergonomic
Check

SoftSync

Exclusion

Figure 2: Different control flow types and their application for the definition of flexible workflows
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flow and the exchange of intermediate results between tasks. Furthermore, the data flow can be also used for
control flow purposes. The availability of input data can be checked and the operations for releasing outputs
generate events as any other transition so that tasks can react on these events. For example, the event ‘out-
put_released’ triggers the evaluation of the enable transition of the consumers (see figure 1 and 3).
It is out of the scope of this paper to present details about the workspace capabilities (see [Joe98]). Rather, we
like to show, how data exchange between simultaneously active instances can be controlled on the workflow
level by means of the simultaneous dependency (cf. [HJKW96]). The definition of this dependency is illus-
trated in figure 3. It relaxes the activation condition so that the dependent task does not have to wait for the
termination of the preceding task; a task is enabled when all mandatory inputs are available and the preceding
task has been started. The main purpose of the simultaneous dependency is to ensure that the dependent task
does not terminate before the preceding task. This termination synchronization guarantees that the latest results
of the supplier is processed by the consumer. An example application is the design and review of a technical
document where the designer may request for an early feedback from the reviewer (see figure 3).

3.3 Situation-dependent Handling of On-the-fly Changes

Our approach to dynamic changes of enacting workflow instances is based on applying ECA rules also to
change operations. Every change primitive is encapsulated by a pre-condition which restricts its application,
and by raising a corresponding event which is handled by the affected instances in order to ensure the behav-
ioral consistency of the execution states. Thus, conceptually a change operation can be treated like a state tran-
stion, and on-the-fly changes are supported in the presence of distributed workflow enactment since every task
instance object has the knowledge about how to react on a change. The basic idea of this approach has been
presented in our previous work DYNAMITE [HJKW96] on software process management, and all details of
our approach to managing evolving workflow specifications can be found in [JoHe99b].

Whether a change is allowed and how to react on it highly depends on the particular situation and the be-
havior of the involved tasks. In this paper, we concentrate on the situation-dependent handling of dynamic
changes. As an example, we outline useful application conditions and reactions for adding a new predecessor
task (as an insertion between two sequential tasks or as a new parallel branch). In this case, the insertion of a
new control flow dependency is important. It affects the target component which depends on a new predecessor
task. Depending on the behavior of the affected task and on the context in which the task is applied, different
application conditions and reactions can be useful for this change which all can be realized in our approach:
1) In general, this modification can be allowed for target components which have not yet been started. When

the dependent task is already in the state ready, the event 'predecessor_added', which is raised by the
change operation, results in triggering the disable transition. This transition is performed only if the enable
condition no longer holds (see figure 1). Thus, re-evaluation of the enable condition ensures the behavioral
consistency. However, adding a new predecessor task may be also useful and can be handled for target
components which are already active or have been finished. In contrast to [EKR95], [CCPP96], [ReDa98],
or [HoJa98], we do not restrict ourselves to situation-independent theoretical correctness criteria:

2) If the dependent task is already active, a meaningful reaction for example for an automatic batch process is
to abort the task and to restart it later on (probably performing additional compensation activities). Fur-

Design

Document X

output:
designed_doc

Review

input:
designed_doc

V.1 V.2

1) ceckin(V.2)
2) release(V.2, Review) 3) checkout / update

Ê output_released(X, V.2)

release between supplier/consumer

simultaneous

output:
review-
report

output:
feedback

produced consumed

CONTROL FLOW DEPENDENCY simultaneous

   FOR enable OF target DEFINE:              /* relaxed activation condition: */
       ON finished BY predecessor simultaneous   /* allows start after activation */
              started BY predecessor simultaneous    /* of the source task  */
       IF (source.state=done OR source.state=active)

   FOR finish OF target DEFINE:              /* ensure that target does not */
      IF source.state=done              /* finish before source is done */

 [...the rest similar to control flow dependency standard]

process definition

: control flow dependency : data flow relationship : references to document model Ê : event sent to related task

Figure 3: Data exchange between running tasks – controlled cooperation on workflow level
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thermore, a manual task may just be suspended and can be resumed when the new preceding task is done.
A human actor can easily work on the changed input values/documents.
Both behaviors can be realized by defining different behavior classes for batch tasks and manual tasks. In
the former case, we add a trigger ‘ON predecessor_added’ to the context-free ECA rule of the abort transi-
tion, in the latter case, we add the same trigger to the suspend transition. Furthermore, we relax the transi-
tion condition of add_predecessor to ‘IF state=waiting OR state=running’.

3) If the target task has been already finished, we may compensate all succeeding task of the new task (if pos-
sible). In figure 4, the behavior of tasks which provide compensation facilities is shown. In our example,
compensation is done with a two phase protocol which takes the ordering of the tasks’ execution into ac-
count (cf. [Ley95, KaRa98]): First, all tasks which are compensational dependent are prepared for compen-
sation. Next, these tasks are compensated in the opposite ordering of their former execution. This complex
behavior is realized by the compensation dependency. A compensation which is not order-dependent can
be realized easily by a group type which just define an ECA rule that triggers the compensation when a
certain event occurs.
However, assume that the affected tasks are part of an iteration loop and that we are interested only in the
future execution; then, we can insert the new task without any impact on the current pass of the loop (in the
sense "now it's too late, but next time we should perform the additional task"). The new task becomes rele-
vant only for the next iteration. This is realized by a group relationship type ‘allow_post_execu-
tion_change’ (shown in figure 5) which is used in a process definition to mark those regions where the
above mentioned situation should be supported (obviously, this policy is not useful in general). Note, that
the interplay of context-free and context-dependent behavior definition results in the appropriate behavior
for all mentioned situation. E.g.,  for a manual task changes may be allowed in any state whereas for a
automatic task changes may be disallowed when the task is active (if rollback/compensation is not possible
or desirable).

4) Finally, for some parts of a process a process engineer may want to disallow dynamic modifications. In this
case, a group relationship type ‘disallow_change’, which disables all change operations using the overrid-
ing mode, can be used to mark the relevant parts of the process (cf. figure 5).

donefailed

finishabort

terminated

not_executed

iterate

prepared_for_compensation

compensated

prepare_for_compensation

truncate

compensate

CONTEXT-FREE ECA rules
   FOR prepare_for_compensation DEFINE:  /* changes to finished task triggers */
      ON predecessor_added, ...  /* preparation for compensation */

   FOR compensate DEFINE:  /* compensation starts when all */
      ON prepared_for_compensation BY self,  /* successors have been compensated */
      IF FORALL sucessors compensational: state = compensated

CONTROL FLOW DEPENDENCY compensational
   FOR disable OF target DEFINE:  /* disable ready tasks when predecessor */
       ON prepared_for_compensation BY predecessor compensational   /* will be compensated */
   FOR abort OF target DEFINE:  /* and abort running tasks in this case */

       ON prepared_for_compensation BY predecessor compensational
   FOR prepare_for_compensation OF target DEFINE: /* transitively prepare for compensation */
       ON prepared_for_compensation BY predecessor compensational,
   FOR compensate OF source DEFINE:  /* trigger compensation in reverse order */

       ON compensated BY successor compensational

Extended Statechart for tasks with compensation

Figure 4: Behavior definition for tasks with compensation

B Cxor

A  

xor

allow_post_execution_change

CONTROL FLOW GROUP disable_changes
   FOR add_predecessor DEFINE:   /* same definition for all */

      override: IF false         /* change operations */

   [...]

CONTROL FLOW GROUP allow_post_execution_change
   FOR add_predecessor DEFINE
      IF state=terminated

an
d

D E

disable_changes

and

Figure 5:Situation-dependent adaptation of the behavior of dynamic changes
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4. Conclusion

The definition and situation-dependent adaptation of the tasks execution behavior is the basis for both, provid-
ing a priori flexible workflows and supporting dynamic changes in every possible situation. For the latter case,
it is essential to note that there exist several practical cases where theoretical correctness properties, in particu-
lar the compliant property (cf. [CCPP96]), are too restrictive. We have shown, that the definition of control
flow dependency and group relationship types on the basis of ECA rules is a powerful concept for behavior ad-
aptation and dynamic changes in the present of distributed workflow enactment. Finally, human actors can re-
act very flexible on changes of the context of a task. The integration of version and workspace control capabili-
ties substantially supports adequate reactions to workflow changes in the case of manual and cooperative tasks.

The workflows which can be defined in this approach are by far more complex than in the case of workflows
which consists only of conditional and parallel branches. Therefore, the analysis of correctness properties (e.g.
deadlock-freeness) of the resulting task behaviors and their interaction are is a hard problem on which we cur-
rently work. The introduced concepts have been implemented in the project MOKASSIN which is funded by
the German Ministry for Research and Technology (BMBF). Experiences as well as the architecture of our
system which is realized as an distributed object system based on CORBA will be discussed in subsequent pa-
pers.
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