
Workshop Informatik '99
Enterprise-wide and Cross-enterprise Workflow Management:

Concepts, Systems, Applications

Paderborn, Germany, October 6, 1999

–  Workshop Proceedings  –

P. Dadam, M. Reichert (eds.)



Workshop Informatik '99
Enterprise-wide and Cross-enterprise Workflow Management:

Concepts, Systems, Applications
Paderborn, Germany, October 6, 1999

Program / Table of Contents

Preface .................................................................................................................................................  click here 

Session 1: E-Commerce (Chair P. Dadam)

P. Dadam (University of Ulm): Introduction

G. Alonso, U. Fiedler, A. Lazcano, H. Schuldt, C. Schuler, N. Weiler (ETH Zürich):
WISE: An Infrastructure for E-Commerce .............................................................................. .  click here 

H. Schuldt, A. Popovici, H.-J. Schek (ETH Zürich):
Give me all I pay for - The Need for Execution Guarantees in Electronic Commerce
Payments ....................................................................................................................................... .  click here 

Session 2: Distribution and Performance Aspects (Chair: G. Alonso)

M. Gillmann, J. Weissenfels, G. Weikum, A. Kraiss (University of Saarbrücken, Dresdner Bank):
Performance Assessment and Configuration of Enterprise-Wide Workflow
Management Systems................................................................................................................... .  click here 

T. Bauer, P. Dadam (University of Ulm):
Efficient Distributed Control of Enterprise-Wide and Cross-Enterprise Workflows ..........  click here 

F. Lindert, W. Deiters (Fhg ISST Dortmund):
Modelling Inter-Organizational Processes with Process Model Fragments ...........................  click here 

Session 3: Adaptiv Workflows (Chair: A. Oberweis)

M. Weske (Uni Münster):
Adaptive Workflows based on Flexible Assignment of Workflow Schemes and
Workflow Instances .....................................................................................................................  click here 

G. Joeris (TZI Uni Bremen):
Defining Flexible Workflow Execution Behaviors ................................................................  click here 

M. Reichert, T. Bauer, P. Dadam (University of Ulm):
Enterprise-Wide and Cross-Enterprise Workflow-Management: Challenges and
Research Issues for Adaptive Workflows ..................................................................................  click here 

Session 4: Applications + System Demonstrations (Chair: R. Siebert)

H. Schuldt, C. Schuler, G. Alonso, H.-J. Schek (ETH Zürich):
Workflows over Workflows: Practical Experiences with the Integration of
SAP R/3 Business Workflow in WISE .......................................................................................  click here 

Demonstrations



Preface

Workflow Management Systems are a relatively young technology which has the potential to change the
implementation of application systems significantly. In fact, only this technology makes it possible to realize
process-oriented application systems in larger quantities and at affordable costs. Very likely, in 10 to 15 years,
Workflow Management Systems will be used for application development as naturally as we use database
management systems for this purpose today. To reach this point, however, there is a lot to do – also at the
technological basis.

The workshop aimed at bringing together researchers, developers, and applicants who deal with the application
of Workflow technology for enterprise-wide or cross-enterprise applications. Focussed presentations helped to
stimulate the discussion and the sharing of experiences.

The workshop was held in the context of the annual meeting of the German Informatics Society (GI) –
Informatik ’99 –  in Paderborn.

Program Committee:

Gutavo Alonso, ETH Zürich
Peter Dadam, University of Ulm (Chairperson)
Frank Leymann, IBM Böblingen
Andreas Oberweis, University Frankfurt,
Manfred Reichert, University of Ulm
Reiner Siebert, University of Stuttgart
Gerhard Weikum, University of Saarbrücken



WISE: An Infrastructure for E-Commerce

G. Alonso U. Fiedler A. Lazcano H. Schuldt C. Schuler N. Weiler

SwissFederalInstituteof Technology(ETH)

ETH Zentrum,ZürichCH-8092,Switzerland

E-mail: wise@ccic.ethz.ch

http://www.inf.ethz.ch/department/IS/iks/research/wise.html

May 7, 1999

1 Introduction

TheInternetandtheproliferationof inexpensive computingpower in the form of clustersof workstations

or PCsprovidethebasichardwareinfrastructurefor businessto businesselectroniccommercein smalland

mediumenterprises.Unfortunately, thecorrespondingsoftwareinfrastructureis still missing.As partof the

WISE project(Workflow basedInternedSErvices),we have takenconcretestepsto addressthis limitation:

within WISE we have developedanddeployedthesoftwareinfrastructurenecessaryto supportbusinessto

businesselectroniccommercein theform of virtual enterprises.Thestartingpointwastheideato combine

thetoolsandservicesof differentcompaniesasbuilding blocksof ahigherlevel systemin which a process

actsastheblueprintfor controlanddataflow within thevirtual enterprise.Fromhere,thegoalhasbeento

build thebasicsupportfor anInternettradingcommunitywhereenterprisescanjoin theirservicesto provide

addedvalueprocesses.

Following theseideas,WISE providesa working systemcapableof defining,enacting,andmonitoring

virtual enterprisebusinessprocesses,aswell assupportingrelatedcoordinationactivities. Suchinfrastruc-

tureincludesanInternetworkflow engineactingastheunderlyingdistributedoperatingsystemcontrolling

the executionof businessprocesses,a processmodelingtool for definingandmonitoringthe processes,a

cataloguetool for virtual enterpriseservicesin which to find the building blocksfor the processes,anda

collaborative multimediacommunicationenvironment. Theprojectalsoincorporatesin its designconsid-

erationsaboutsecurity, quality of service,executionguarantees,exceptionhandling,high availability, and

scalability, aswell asdiverseotheraspectsrelatedto WWW basedinteraction,cataloguebasedinformation,

cataloguesearch,andcommunicationframeworks.In thisregard,wehavemadeasubstantialeffort to make

WISEa completesolution,thatis, asystemincorporatingall thenecessaryfunctionalityto beusedin prac-

tice. We firmly believe the real challengein electroniccommerceis how to provide a completesolution.

In our case,this meantto develop a softwaretool capableof supportingthe entire life cycle of a virtual

businessprocess.We seethesebusinessprocessesasvaluableassetswhich needto benot only definedand

enactedbut alsomaintained,updated,andmonitored.WISE supportsall thesechores,therebyavoidingthe

drawbacksof many existing products:ad-hocandcostlydevelopment,expensivemaintenance,andlimited

applicability.

1



������� ���	�
����
 �	���	�
���	���	�������������

� 
 �
��� �� !�	�"�#���$�%� &'�

( � �
&$
�� )*��&'�"


+ ���*���'�
�,&	�$
 ��


�,�������������

�,���	
�� �"


- �	�
��&���*
 �	�"���
& �$�.�$�
&��/��)

��
 �	�����
&

�*��0 � 1��"
 �

2,3�4 5�6�7 8'9;:.4 <�9�4 = >?8'@ :�5�A B

C 9�8
DE9 @�F 4 :�GIHJ7'4 9�6�:K3'8�9

L�4 <�9.4%F 4 :�GM<KN 8 @ 4 N O.3 @ :K4

L�4 <�9.4%F 4 :�GPG�7�>�3�F 7'5 @ 3K4 9.4
2
7'Q�G�9�> @

R	9�S N T�9�4

Figure1: A company incorporatinga virtual processaspartof its own businessprocesses

2 Motivation

2.1 Virtual Enterprises

Themostrelevantactivitieswithin acorporationareoftendescribedin theform of businessprocesses.This

is notsurprisingsincebusinessprocessesmodeltheproceduresandrulesfollowedin orderto accomplisha

concretegoal(opena new bankaccount,obtaina credit,purchasea computer, find out thecurrentlocation

of a parcel,resupplyshops,etc.). Following this idea,we seeelectroniccommerceas the incorporation

of informationandcommunicationsystemstechnologyinto the businessprocessto expandit beyond the

corporationboundaries.In this context, we definea virtual businessprocessasa businessprocesswhose

definition andenactmentcannotbe directly tied to a singleorganizationalentity (be it a departmentor a

company). Fromhere,wedefine virtual enterprisesasthosewhosebusinessprocessesarevirtual business

processes.Giventhetrendtowardsdecentralization,wealsoconsiderthatvirtual businessprocesseslinking

togetherseveraldepartmentsof a singleorganizationdefineaswell a virtual enterprise.Finally, we referto

thesetof companiesparticipatingin avirtual enterpriseasatradingcommunity. Eachmemberof thetrading

communityprovidesa numberof servicesto beusedasbuilding blocksfor the virtual process.Basedon

theseservices,the virtual enterprisecanbecreatedby defininga virtual processin which eachindividual

activity correspondsto oneof theservicesprovidedby theparticipants(Figure1).

We believe tradingcommunities,virtual enterprisesandvirtual processesarea very powerful approach

to interpretandidentify the needsof a wide rangeof electroniccommercepractices.For instance,in the

caseof retailing, a company can provide a much more sophisticatedproductby outsourcingaspectsof

theoperationwhich arenot centralto its activities. A commonexamplearecompaniesoffering a product

(books,CD, flowers)without actuallyhandling(producing,storingor delivering) theproductthemselves.

Mostof thehandlingis left tocompaniesprovidingspecializedservices,whichallowsto significantlyreduce

theoperationalcosts.Thevirtual enterprisemodelnaturallycapturessuchscenariosby simply having the

distribution anddelivery servicesincorporatedasactivities within the businessprocessesof the company

2



sellingtheproductasshown in Figure1.

2.2 E-Comm Processes

In theexampleof Figure1, independentlyof whetherit involvesmainframesandleasedlinesor a few PCs

linked via Internetproviders,anE-Commapplicationhasmany of thecharacteristicsof a distributedcom-

putingenvironment.While thenotionsof tradingcommunityandvirtual enterpriseareconceptuallyuseful,

the real challengeis to usethemin a softwaresolution. Hereis wherethe ideaof processbecomesrele-

vant: thevirtual businessprocesscanbeseenasadistributedprogramrunningonsomeform of middleware

linking togethertheresourcesof the tradingcommunity. Theseresourcesaretheconcreteapplicationsor

servicesofferedto thevirtual enterpriseby thetradingcommunityandareusedasthebasicbuilding blocks

for the distributedprogram(the virtual businessprocess).From here,the type of softwareto develop is

thetypeof softwarethatwould beneededto supportthedefinitionandexecutionof sucha coarsegrained

distributedprogram.

TheanalogybetweenanE-Commprocessanda distributedprogramcanbetakena stepfurther. Any

realisticsolutionto electroniccommercemusttakeinto accountthe true complexity of the problem. We

seeE-Commprocessesas valuableassetsneedingto be properlyspecified,designed,developed,tested,

debugged,andmaintainedin aneffort notunlikesoftwarelife-cycles.In orderto do this, thelanguageused

to describethe processesmustprovide the necessaryprimitives,otherwisethesetasksbecomeextremely

difficult andlargelyad-hocendeavors(asit is today).

2.3 Complete Solution

The WISE projectis an integrationeffort with the final goal of providing a completesolution. Its archi-

tecture(Figure2) is organizedinto four components(definition,enactment,monitoring,andcoordination),

eachoneof themwith the role of addressinga particularissue. Thus, the processdefinitioncomponent

allows virtual businessprocessesto be definedusingasbuilding blocksthe entriesof a cataloguewhere

companieswithin a tradingcommunitycanposttheirservices.Similarly, theprocessenactmentcomponent

compilesthe descriptionof the virtual businessprocessinto a representationsuitablefor enactmentand

controlstheexecutionof theprocessby invokingthecorrespondingservicesof thetradingcommunity. The

processmonitoringandanalysiscomponentis a tool keepingtrackof theprogressmadein the execution

of the virtual businessprocessandof the statusof all active componentsin the system.The information

producedby this tool is usedto createanawarenessmodel[7] usedfor loadbalancing,routing,andquality

of servicepurposesaswell as,lateron,for analysisof thebehavior of theprocess.Finally, thecoordination

andcommunicationcomponentsupportsmultimediaconferencingandcooperativebrowsingof relevantin-

formationbetweenall participantsin thetradingcommunityusingtheinformationproducedby thebusiness

processasthemainsourcefor routing.

In WISE, thesefour componentsaretightly integratedreflectingan approachto electroniccommerce

basedontransparency andeaseof use.While thereis innovationin eachindividualcomponent,ourmeasure

of successis thedegreeof integrationof thesystemasa whole.

3



U!V�W#XZY#[;[]\^Y#_;`.a�` b�` W�a
c#d�e fJg�h�i j�k*l	i mon%j'pPn%f*qsr t,u$vwp*n%f%dox.y%j'e q%g%pPzJj {*| p$l,i}i {P~�h��Z�

�%� � � �.�K�$�%�K� ��� �K� � � ���*� �.�'�.� �

�#�w���$��� �	� ���K�.�
�$� � �*� �J� �  ���¡¢E£ �K� ¤,� � ¥�¦J§K��¨K��¤	� �%� ¦�E� � £ �
�$� � �*� �J� �  ���©

¢E£ �K� ¤,� � ¥�¦J§K��¨K��¤	� �%� ¦�E� � £ �

ª
«
¬K­$® ¯'°

±?² ³K´ ® ¯'°�µ�«�¶}¶}·	¯	® ­ ¸

¹%º » ¼.½�º ¾*¿.» ÀÁ$Â�Ã$Ä Å	Ä Æ	Ä Ç�Å

ÈÊÉKË#Ì}ÍwÎ;Î]ÏÑÐÓÒ�ÌZÔ"ÕÖÍPÐÓÔ
×�Ø	Ù$Ú	Û*Ü Ý Þ*ß�Ü àEá'Þ*Û*â%àsÜ àJÙPã!ä å�×Ñä ßJÜ Ù$á'ßJÙ$Ü�ãoÞ*á'æ*ç è Þ$éê×�ß%âJÝ ß%Ù

ëMì í;îwî	ï ðJñ ï ò
ó ò*ô õ$ñ õ�ö ò*ï ÷�òí*ò�÷�ø%ô ñ ö ù
úMûJü íî'ý�ò.÷'þEÿ�ø��	ô �$ï ö ò�ò�õ
��� �$ñ � ���%ñ � ñ ö ù
��� �*ô ò*ï ò.õ'õ
	���
.ò��
� ñ õ�ö�ô ñ �Kø.ö�ñ �%ï

��� �������������

���������  ���!� ���

"$# %'&
&�( )�* ( +
%-,�.�+0/�1�2 * ( )
35406 6 2 +-( +0,�7 8
9 * :;* ( )
< 4�= / 3�= 2 = ( ,�* ( )" 4�> 70* ( )@? =0A�= ,-* 6 BC +-( + > = 2�# ( D 4�> : =E6 * 4 (% 6 =�6 1�8

FHG�I�J KEG�LEJ IEM

N�O P Q�REO S�T�P U

V-P W0REU0XEXZY[W0\�] O W�P^T�\0_`Y@] \�] \�a[bcW�W0d

eZf g�h�i j�k

l�m�n�ocp q�q r@q o�s t�q r@q u�v@wEr�xZy�ocp z
y�{ r0|�} ~�} p �[q u^} �'�Ev�{ |c} w�v-�

� r���{ r�n
� � r0r�y�v-{ o�q�} |Ev���{ r�n���} p ����^� s q�} x�v�~�} o � r�p � v-{ v-p wc} p �o�p ~ � r�r-{ ~�} p o0q�} r�p��5r�r-s �

l�m�n�o�p q�q r@q ocs t�q r@q u�vr�p v�{ v��Ey�r�p �c} ��s vH� r-{!q u�vp v��0q�o0wEq�} |�} q z
} p�q u�v'y^{ r�wEv0�0���

���;���������H���Z� ���
���-��� ��¡�¢ £�¤�¥ ¢ �c¡�¤-¡�¦�£��-�c§E¦�¢ ¡�¤-¥ ¢ �-¡�¥ ¨�§E���-©-¨ª���-«�§E�-¬

­¯®�° ± ²�®�³�±0°@´¶µ�°[·¹¸º°[µ�» ¼�½�± ½
¾�¿-À�Á Â ¿-ÃEÁ À�Ä�Å�À�Æ�Æ�Å-Â Å�Å-À�Å�Ç È�É5Á ÉªÊ�Ë�Ì Í[ÎÐÏ-À�Ä-Á À�Ï�Ñ�Æ�Á É�Ò�Ç Å�È�Ï-Æ�Á À�Í[Â Ã�Ó-Ô!Â Õ@Å�Ã Ï

Figure2: Thedifferentcomponentsof theWISE project

3 Architecture and Components

3.1 Modeling

In WISE,virtual businessprocessesareconstructedby usingtheservicesofferedby differentcompaniesas

building blocks.Thevirtual businessprocessintegratestheservicesof thedifferentcompaniesestablishing

the order of invocation,the control logic and the dataflow betweenthe participantsin the sameway a

workflow processorchestratesbusinessmodelswithin a singlecorporation. To makethis ideaa reality,

therearetwoelementsthatWISEmustprovide. Thefirst is amechanismfor theparticipantsto publishtheir

services.Thesecondis a way to definea processbasedon suchservices.For thesepurposes,WISE usesa

WWW catalogueandabusinessprocessmodelingtool (Figure2).

TheWWW catalogueusesJavaapplet/servlettechnologyto allow companiesin thetradingcommunity

to advertisetheir servicesandto “see” thesemanticsof theservicesprovidedby othercompanies[15]. The

cataloguecontainsobjectsencapsulatingthebehavior of eachservice.A Java versionof a businessmod-

eling tool supportingsimulationandanalysis(seebelow) is thenusedto allow a company to seetheexact

characteristicsof eachentry in thecatalogue.Whena company wantsto makeanentry in thecatalogue,it

specifiestheserviceusingthemodelingtool.

Fromthecatalogue,a draganddroptypeof interfaceis usedto build thevirtual businessprocess.The

tool weusefor processdefinitionis Structware[12], aproductof IvyTeam,oneof thepartnersin theproject.

Structware,which is internally basedon Petri-nets,supportsnot only the modelingof businessprocesses

but alsosophisticatedanalysisof its behavior (bottlenecks,averageexecutiontimes,costs,delays,what

if analysis,etc.). In termsof processdefinition,Structwaresupportsthe standardflow controlprimitives

4



of a workflow tool. It is possibleto defineconditionalbranching,nestedprocesses,andassignadditional

informationto eachtaskwithin the process.This lastpoint is importantfrom the point of view of WISE

sinceit allows to usethis additionalinformationas the configurationinformationnecessaryto enactthe

process

We seethis entireprocedureasa form of high level, coarsegrainedprogramming.We have success-

fully appliedthis idea of “workflow programming”within WISE and otherprojectsin order to provide

sophisticatedlanguageprimitivesnotavailablein commercialworkflow tools.For instance,wecanprovide

a completeexceptionhandlingcapability[10], anevent handlingmechanismandinter-processcommuni-

cation[11]. This functionality is missingin currentsystemsandwe considerit to be crucial in realistic

environments.

3.2 Enactment

Theenactmentof thevirtual businessprocessesis performedby theWISE engine,which is basedonwork

donewithin theOPERAproject[9, 2]. TheWISE engineextendsideasfrom workflow management[6, 3],

andusesknown techniquesfor distributingthis functionality[18, 13, 4]. In addition,aconsiderableamount

of extensionshave beenintroducedto makeworkflow a suitablefoundationfor electroniccommerce(for a

differentapproachto electroniccommercebasedonworkflow technologysee[16]). Amongthem,thereare

threethatdeservespecialattention:security, qualityof service,andexecutionguarantees.

Given the natureof the dataexchangedbetweenthe differentparticipantsin the trading community,

WISE incorporatesthe necessarysecuritymechanismsin the form of encryptionof datafor transmission

over thenetworkaswell asacompletesetof authenticationmeasuresfor bothexecution,access,andmoni-

toring of theprocesses.Also, to makethenotionof tradingcommunityviablegiventhecurrentlimitations

of bandwidth,theWISEengineincorporatesqualityof serviceguaranteesbasedonexecutionstatisticsand

networkcharacteristics.Our currentapproachis basedon distinguishing differentprocesscategories(crit-

ical, important,normal)andproviding for eachof thema differentquality of service. Finally, the WISE

enginealsoincorporatesexecutionguarantees,wherebyaprocessis alwaysguaranteedto finish in aconsis-

tentstateeitherby removing all changesit hasintroducedor by forcing it to terminatefollowingasequence

of actionswith apre-determinedoutcome[17]. Theexecutionguaranteesarebasedonthenotionof spheres

of atomicityandisolation[8, 5,1, 14], whichallow usto specifywhichpartsof thebusinessprocessneedto

bemadeatomicfor recoverypurposesandwhichpartsof theprocessneedto beisolatedfrom interferences

of otherprocesses.

3.3 Audit and Monitoring

WISE provides tools to find out the statusof any runningprocessin the systemin order to allow users

to keeptrack and troubleshootthem whennecessary. In addition, processdesignis a difficult task. In

virtual enterpriseenvironmentsit is difficult to foreseeall possibleeventualitiesuntil someexamplerunsare

available. Processdesignis aniterative procedurewhereWISE canbeof greathelpby providing accurate

measurementsof all the characteristicsaffecting theexecutionof a process:overall duration,bottlenecks,

relativedurationof eachtaskwith respectto thedurationof theentireprocess,loadsateachparticipantsite,

deadlinesmissed,andsoforth.

In orderto provide this functionality, WISE incorporatesthe necessarymoduleswithin the execution

5



engineto keeptrackof executingprocesses.In addition,it usesa historyspacewhereinformationaboutall

alreadyexecutedprocessesis storedandorganizedin a way that facilitatesits analysis.For displayingthis

information,we planto takeadvantageof thecapabilitiesof Structware.In thesameway thata Structware

processis compiledandtranslatedinto notationunderstandableby theWISE engine,theinformationpro-

ducedby theWISE enginewill betranslatedinto theappropriateformatto bedisplayedusingStructware’s

interface.

Finally, WISE will also includean awarenessmodel[7] that will allow the engineto makedecisions

basedon its own statusandthatof theparticipants.This awarenessmodelis necessaryfor loadbalancing,

increasedavailability, conflict resolution,notificationmechanisms,andthehandlingof exceptions.

3.4 Coordination

Unlike in conventionalworkflow engines,WISE will operatein anenvironmentwherethedifferentpartici-

pantsandthedifferentelementsof theprocessarenotnecessarilyin a positionto easilyexchangeinforma-

tion amongthem.Notethat,astheconceptof tradingcommunityimplies,eachparticipantcouldbenotonly

onadifferentlocationbut in anentirelydifferentcompany. It is neverthelessimportantfor theparticipantsto

beableto communicatein orderto resolve theunavoidableinconsistenciesandminor problemsassociated

with any process(Figure2). An essentialaspectof this communicationandcollaborationis that it will be

context based.That is, a userwill not necessarilyaskto communicatewith a concretepersonbut, rather,

with thepersonwhoplayedagivenrole in theexecutionof theprocess.To achievethisgoal,WISEusesthe

resultsof theCoBrow (CollaborativeBrowsingin InformationResources)project[19].

4 The WISE system

Thecurrentversionof WISE usesIvyFrame(a commercialproductof IvyTeam)asfront end,both for the

definitionandthemonitoringof processes.WISEis platformindependent(Server runsonUNIX, Clientson

UNIX, OS/2,andWindows)andcaninteractwith avarietyof applications(existing interfacesincludeSAP

R/3 andIBM FlowMark). Froma practicalpoint of view, WISE canbeusedasa genericworkflow engine

but its realpotentialliesasanenginefor electroniccommerce.Onepossiblescenariofor thedeploymentof

WISEis asthecentraltool for acompany providing supportfor othercompanieswantingto engagein elec-

troniccommercebut notwilling or ableto dothenecessaryinvestmentsin resourcesandexpertise.Another

possibility is to useWISE asa tool for implementingvalueaddedbusinessprocessesso that a company

canoffer new servicesby combiningservicesprovidedby othercompanies.In particular, the application

to virtual storefrontsfor genericcustomerservices,computerequipment,bookstores,andappliancesis im-

mediate.Wearecurrentlyworkingonsupportingotherpossiblescenariosrelatedto paymentprotocolsand

electronicdocumentexchanges.

5 Conclusions

In this extendedabstract,we have presenteda basicinfrastructurefor businessto businesselectroniccom-

merce. In this form of e-commerce,differentcompaniesjoin their servicesto form a virtual enterprise,

which providesa businessprocessthat canbe executedover the Internet. WISE includesdifferentcom-

6



ponentsto define,enactandmonitor visual enterpriseprocesses,supportingalsothe communicationand

coordinationbetweentheparticipants.

WISEshouldbeseenasanintegrationeffort whereseveralknown technologiesaswell asnew ideasare

beingbroughttogetherin ordertoprovideacoherenttechnologicalsolution.Weexpectthattheresultsof the

projectwill bothenhanceconsiderablythescopeof applicationandexpressive power of currentworkflow

systemsandopenupsignificantopportunitiesin theareaof electroniccommerce.

Project Data

TheWISE projectis fundedby theSwissNationalScienceFoundation.It startedin Decemberof 1997andwill have a duration

of 29 months.Therearethreeacademicandtwo industrialpartnersin theproject. On theacademicside,theparticipantsarethe

DatabaseResearchGroup,theComputerEngineeringandNetworksLaboratory, andtheInformationandCommunicationsSystems

ResearchGroupof ETH Zürich. TheindustrialpartnersareIvyTeam,andonlineSOLUTIONS.

References

[1] G. Alonso, D. Agrawal, and A. El Abbadi. ProcessSynchronizationin Workflow ManagementSystems. In 8th IEEE

Symposiumon Parallel andDistributedProcessing(SPDS’96).New Orleans,USA., October1996.

[2] G. Alonso,C. Hagen,H.J. Schek,andM. Tresch. DistributedProcessingover Stand-aloneSystemsandApplications. In

Proceedingsof the23rd InternationalConferenceon VeryLargeDatabases(VLDB’97), Athens,Greece,August1997.

[3] F. Casati,P. Grefen,B. Pernici,G. Pozzi,andG. Sanchez.WIDE Workflow ModelandArchitecture.TechnicalReport96-19,

Universityof Twente,1996.

[4] StefanoCeri, Paul W.P.J. Grefen,andGabrielSanchez.WIDE: A DistributedArchitecturefor Workflow Management.In

Proceedings7thInternationalWorkshoponResearchIssuesin DataEngineering(RIDE’97), pages76–79,Birmingham,UK,

April 1997.

[5] D. Georgakopoulosand M. Hornick. A Framework for EnforceableSpecificationof ExtendedTransactionModels and

TransactionalWorkflows. InternationalJournalof IntelligentandCooperativeInformationSystems, 3(3),September1994.

[6] D. Georgakopoulos,M. Hornick,andA. Sheth.An Overview of Workflow Management:FromProcessModelingtoWorkflow

AutomationInfrastructure.DistributedandParallel Databases, 3(2):119–153,April 1995.

[7] Dimitrios Georgakopoulos.Collaborationmanagementinfrastructurefor comprehensiveprocessandservicemanagement,

May 1998. Presentationin InternationalSymposiumon AdvancedDatabaseSupportfor Workflow Management,Enschede,

TheNetherlands.

[8] Dimitrios Georgakopoulos,Mark Hornick, Piotr Krychniak, and F. Manola. Specificationand Managementof Extended

Transactionsin DOMS. In RIDE-IMS’93, pages253–257,Vienna,Austria,April 1993.

[9] C.Hagen.Atomariẗat in Workflow- undProzessunterstützungssystemen.In 9.GI-Workshop“GrundlagenvonDatenbanken”,

Friedrichsbrunn,Germany, May 1997.In German.

[10] C. Hagenand G. Alonso. Flexible exceptionhandlingin the OPERAprocesssupportsystem. In Proc. of the 18th Intl.

Conferenceon DistributedComputingSystems, Amsterdam,TheNetherlands,May 1998.

[11] C. HagenandG. Alonso. Beyond theblackbox: Event-basedinter-processcommunicationin processsupportsystems.In

Proc.of the19thIntl. ConferenceonDistributedComputingSystems, Austin,Texas,USA, May 1999.

[12] IvyTeam.Structware’98ProcessManager.Availablethroughhttp://www.ivyteam.com,1998.

[13] S.JablonskiandC. Bussler. WorkflowManagement. InternationalThomsonComputerPress,1996.

[14] SushilJajodiaandLarry Kerschberg,editors.AdvancedTransactionModelsandArchitectures, chapter1,pages3–34.Kluwer

AcademicPublishers,1997.

[15] H. Lienhard. IvyBeans- Bridge to VSH andthe projectWISE. In Proceedingsof the Conferenceof the SwissPriority

ProgrammeInformationandCommunicationStructures,Zürich, Switzerland, July 1998.

7



[16] P. Muth, J. Weissenfels,andG. Weikum. WhatWorkflow TechnologyCanDo For ElectronicCommerce.Technicalreport,

Universityof theSaarland,Departmentof ComputerScience,Saarbr̈ucken,Germany.

[17] H. Schuldt,G. Alonso, and H.-J. Schek. Concurrency Control and Recovery in TransactionalProcessManagement. In

Proceedingsof theACM SymposiumonPrinciplesof DatabaseSystems(PODS’99), Philadelphia,PA, May 31- June2 1999.

[18] H. Schuster, S. Jablonski,T. Kirsche,andC. Bussler. A Client/Server Architecturefor DistributedWorkflow Management

Systems.In Proc.of Third Int’l. Conf. onParallel andDistributedInformationSystems, Austin,Texas,September1994.

[19] G. Sidler, A. Scott,andH. Wolf. CollaborativeBrowsingin theWorld Wide Web. In Proceedingsof the8th Joint European

NetworkingConference, Edinburgh,Scotland, May 1997.

8



Givemeall I payfor — ExecutionGuaranteesin
ElectronicCommercePaymentProcesses

Heiko Schuldt AndreiPopovici Hans-J̈org Schek

DatabaseResearchGroup
Instituteof InformationSystems

ETH Zentrum,8092Zürich,Switzerland
Email:

�
schuldt,popovici,schek � @inf.ethz.ch

Abstract

ElectronicCommerceover theInternetis oneof themostrapidly growing areasin todaysbusiness.
However, consideringthemostimportantphaseof ElectronicCommerce,thepayment, it hasto benoted
thatin mostcurrentlyexploitedapproaches,supportfor at leastoneof theparticipantsis limited. From
ageneralpointof view, acoupleof requirementsfor correctpaymentinteractionsexist, namelydifferent
levelsof atomicityin theexchangeof money andgoodsof asinglecustomerwith differentmerchants.In
thispaper, weidentify thedifferentrequirementsparticipantsdemandonElectronicCommercepayments
fromthepointof view of executionguaranteesandpresenthow paymentinteractionscanbeimplemented
by transactionalprocesses.Finally, weshow how theseexecutionguaranteescanbeprovidedfor payment
processesin a naturalway by applyingthe ideasof transactionalprocessmanagementto anElectronic
CommercePaymentCoordinator.

1 Intr oduction

Along with the enormousproliferationof the Internet,ElectronicCommerce(E-Commerce)is continu-
ouslygainingimportance.Thespectrumof applicationsthat aresubsumedunderthe termE-Commerce
leadsfrom rathersimpleordersperformedby Email to the purchaseof shoppingbasketsconsistingof
severalgoodsoriginatingfrom differentmerchantsby spendingelectroniccashtokens.

Remarkably, E-Commerceis a very interdisciplinaryresearcharea.As existing approachesarepow-
eredby differentcommunities(i.e.,cryptography, networking,etc.),they areveryheterogeneousin nature
andthusalwaysfocuson differentspecialproblems.Fromthepoint of view of thedatabasecommunity,
atomicitypropertieshave beenidentifiedasonekey requirementfor paymentprotocolsin E-Commerce
[Tyg96, Tyg98]. Themorecomplex interactionswith consumersandmerchantsbecome,themoredimen-
sionsof atomicityhave to beaddressed.In thesimplestcase,only money hasto betransferredatomically
from the consumerto the merchant.However, consideringcomplex shoppingbasketsfilled with (elec-
tronic) goodsfrom severalmerchants,atomicitymayalsoberequiredfor thepurchaseof all thesegoods
originatingfrom differentpossiblyindependentandautonomoussources,alongwith theatomicexchange
of money andall goods.

Dueto their distributednature,protocolsthathave beensuggestedto supportpaymentatomicityin E-
Commerceimposehighrequirementsontheparticipatinginstances(e.g.,NetBill [CTS95]). However, with
a centralizedpaymentcoordinator, thecomplex interactionsof thevariousparticipantscanbeembedded
within a paymentprocess,thusreducingthe prerequisitesfor merchantsandcustomersto participatein
E-Commerce.Transactionalprocessmanagement[SAS99] canthenbeexploited in orderto provide the
necessaryexecutionguaranteesfor transactionalE-Commercepaymentprocessesin a naturalway.

This paperis structuredasfollows: In Section2, we provide a generalframework for E-Commerce
paymentinteractions.Basedon this framework, we analyzethe differentatomicity requirementsfor E–
Commercepayment(Section3). Then,in Section4, wesummarizetransactionalprocessmanagementand

1



presentthestructureof a transactionalpaymentprocessallowing therequiredexecutionguaranteesto be
providedby a PaymentCoordinator. Section5 finally concludesthepaper.

2 Schemafor PaymentProtocolsin E-Commerce

Thedescriptionof salesinteractionsin non-electronicmarkets[Sch98] encompassesthreephases:infor-
mation,negotiation,andpayment.During the informationphase,a customerevaluatesandcomparesthe
offers of several merchants.After selectingthe bestoffer, shenegotiateswith the chosenmerchantthe
conditionsfor thedeal(negotiation). If they reachanagreement,the laststep(thepayment)involvesthe
money transferfrom customerto merchantandtheservice(themerchantfulfills hiscontract).

Most electronicpaymentsystemsfocusonly on themoney transferof the lastphase.Our view of an
electronic paymentschemealsoconsidersthe systemsandprotocolsfor accomplishingboth the money
transferandtheservice.

2.1 Participants

An electronicpaymentschemeinvolvesparticipantsoriginatingfrom two distinctworlds: on theInternet
side thereare the customer, the merchantand a third entity, the paymentserver which coordinatesthe
two. The othersideis representedby the financialworld with its proprietarynetwork infrastructureand
protocols. Theparticipantsarefinancial institutesandagainthepaymentserver, that hasto consistently
transformthedataflow ontheInternetsidein corresponding“real world” money flow. Theparticipantsare
depictedin Figure1.

2.2 Stepsof an E-CommerceTransaction

Prior to thepaymenttransaction,theparticipantsareinvolvedin an initialization phase,depictedin Figure
1 by dashedarrows. Bothcustomerandmerchanthave to establishaccountswithin thefinancialinstitutes
“issuer” (or “acquirer”,resp.).Thetransformationof electronicmoney into realmoney is performedusing
theseaccounts.Also in this phasethecustomerreceivesfrom his banka customersecret which enables
him to performelectronicpayments.Thecustomersecretis visible only for thecustomerherself,for the
issuingbankand(eventually)for the paymentserver. Themostcommonform of the customersecretis
a credit cardnumber, in electroniccashschemes(suchaseCash��� [Dig99]), the customersecretis an
E-cashtoken. Becauseaccountoperationsareratherlessoften thanpayments,we canconsiderthemas
partof theinitializationphase.

Almostall thepaymentschemescontainthefive following steps,markedin Figure1:� Negotiation(1): the customerselectsthe desiredserviceor merchandiseshewantsfrom the mer-
chant,andnegotiateswith themerchantthepriceof theservice.Theresultof this stepis theOrder
Information. TheOrderInformationis a protocolof thenegotiationphase,includingservice(mer-
chandise)andpricespecification.

� Paymentorder(2): thecustomersendsPaymentInformation(PI) andOrderInformation( ���
	 ) to the
merchant.The ���
	 is thecustomer’sview of theagreementwith themerchant.

� Paymentauthorization(3): themerchantforwardsPI, ��� 	 , ���
� andadditionaldatato thepayment
server. ���
� is themerchant’sview of theagreementwith thecustomer.

Thepaymentserverdirectlyor indirectlyverifiesthevalidity of thepaymentinformation,theconsis-
tency of thepaymentusing ���
	 and ��� � . It eventuallytriggerstherealworld money transferusing
its roleon thenon-Internetside.

At theendof thepaymentauthorization,themerchantreceivesa confirmationmessageC from the
paymentserver (4).

� Purchaseresponse(5): Themerchantsendshimselfa confirmationto thecustomer. In caseof elec-
tronic(non-tangible)goods,thepurchaseresponsecanbeimmediatelyfollowedby themerchandise
or theserviceitself.

2



Payment Server

Issuer Acquirer

MerchantCustomer

C (4)

Financial

Network

negotiation (1)

(5)

��
�����
��
(2)

��
�����
�������
��
(3)

Figure1: Genericpaymentsteps

In mostexistentpaymentprotocols,thepaymentserver is invokedby themerchant.This is no intrinsic
restriction,andcommunicationbetweencustomerandpaymentserver is alsopossible.

2.3 Characteristicsof PaymentProtocols

Severalcriteriaserveasclassificationmodelsof electronicpaymentschemes.Startingfrom themomentof
transformationof realmoney into electronicmoney, paymentprotocolscanbesplit in pre-paidsystemsand
pay-by-instructionones.Atomicityis anotheritem,whichwill bediscussedin detail later. Someprotocols
introducethe notion of provability, which is the ability of eachparty to prove their correctinteractions.
Anonymityis especiallyaddressedby cash-based-systems.Therearealsoimplementationissueslike scal-
ability, flexibility, efficiency, easeof useandoff-line operation, which arealsoimportantbecauseof the
largenumberof usersexpected.

3 Atomicity in Electronic Commerce

Onekey requirementin E-Commerceis to guaranteeatomicinteractionsbetweenthevariousparticipants
in E-Commercepayment.As E–Commerceandthusalsopaymenttakesplacein a highly distributedand
heterogeneousenvironment,variousaspectsof atomicity can be identified: asideof money and goods
atomicity[Tyg96, Tyg98], alsotheatomicinteractionof a customerwith multiplemerchantsis needed.In
whatfollows,weanalyzeandclassifythesedifferentatomicityrequirementsin detail.

MoneyAtomicity Thebasicform of atomicityin E-Commerceis associatedwith thetransferof money
from the customerto the merchant.This is denotedby the term money atomicity [Tyg96]. As no
viableE-Commercepaymentsolutioncanexist withoutsupportingthisatomicityproperty, multiple
solutionshave beenproposedor arealreadyestablished[MV96, Dig99]. However, the atomicity
propertyis tightly coupledwith theprotocolarchitectureanddesign.

Certified Atomic Delivery Aside of money, alsogoodshave to be transferred.Therefore,a further
requirementis that thedelivery takesplaceatomically. This canevenbereinforcedin thatbothas-
sociatedparties–customerandmerchant–requirethenecessaryinformationin orderto prove that
thegoodssent(or received,resp.)aretheonesbothpartiesagreedto in theinitial negotiationphase
(certifiedatomicdelivery, encompassingthegoodsatomicityandthecertifieddeliverydescribedin
[Tyg96]). This strengthenedrequirementresultsfrom the fact that –in contrastto traditionaldis-
tributeddatabasetransactionswhereonly technicalfailureshave to beaddressed–in E–Commerce
alsofraudulentbehavior of participantshasto becopedwith. Especiallywhendealingwith goods
thatcanbe transferredelectronically, thecombinationof money atomicityandcertifieddelivery is

3



an importantissue. In [CHTY96], this is realizedby a customizedTwo-Phase-Commitprotocol
[GR93].

Distributed PurchaseAtomicity In many E-Commerceapplications,interactionof customersis not
limited to a singlemerchant.Consider, for instance,a customerwho wantsto purchasespecialized
softwarefrom a merchant. In orderrun this software,shealsoneedsan operatingsystemwhich
is, however, only availablefrom a differentmerchant.As both goodsindividually areof no value
for thecustomer, sheneedstheguaranteeto performthepurchasetransactionwith thetwo different
merchantsatomicallyin orderto getbothproductsor none.Distributedpurchaseatomicityaddresses
theencompassmentof interactionswith differentindependentmerchantsinto onesingletransaction.

Most currentlydeployed paymentcoordinatorssupportonly money atomicity while someadvanced
systemsaddressalso distributed purchaseatomicity. However, all three dimensionsare –to our best
knowledge–notprovidedby existingsystemsandprotocolsalthoughthehighestlevel of guaranteeswould
besupportedandalthoughthis is requiredby a setof real-world applications.

This lack of supportfor full atomicity in E-Commercepaymentis addressedby our currentresearch
activitieswhereweapplytransactionalprocessmanagement(section4) to realizeanE-CommercePayment
Coordinator.

4 TransactionalProcessesfor E-CommercePayments

In this section,we introducethe theoryof transactionalprocessmanagementthatprovidesa criterionfor
thecorrectexecutionof processeswith respectto recovery (whenfailuresof singleprocesseshave to be
considered)andconcurrency control(whenmultipleparallelprocessesaccesssharedresourcessimultane-
ously)andwepointouthow this theorycanbeappliedfor paymentsin E–Commerce.

4.1 TransactionalProcessManagement

In conventionaldatabases,concurrency controlandrecoveryarewell understoodproblems.Unfortunately,
this is notthecasewhentransactionsaregroupedinto entitieswith higherlevel semantics,suchastransac-
tional processes. Althoughconcurrentprocessesmayaccesssharedresourcessimultaneously, consistency
hasto beguaranteedfor theseexecutions.

Transactionalprocessmanagement[SAS99] hasto enforceconsistency for concurrentexecutionsand,
at thesametime,to copewith theaddedstructurefoundin processes.In particular, andunlikein traditional
transactions,processesintroduceflow of controlasoneof thebasicsemanticelements.Thus,it hasto be
takenintoconsiderationthatprocessesalreadyimposeorderingconstraintsamongtheirdifferentoperations
and amongtheir alternative executions. Similarly, processesintegrateinvocationsto applicationswith
differentatomicityproperties(e.g.,activitiesmayor maynotbesemanticallycompensatable).

Themaincomponentsof transactionalprocessmanagementconsistof acoordinatoractingastop level
schedulerandseveral transactionalcoordinationagents[SSA99] —onefor eachsubsystemparticipating
in transactionalprocesses—actingaslower level schedulers.Processesencompassactivitieswhich are
invocationsin subsystemsscheduledby thecoordinator. Thecoordinator’s taskis to executetransactional
processescorrectlywith respecttoconcurrency controlandrecovery. Firstly, theexecutionguaranteesto be
providedincludeguaranteedtermination,amoregeneralnotionof atomicitythanthestandardall ornothing
semanticswhich is realizedby partial compensationand alternative executions. Secondly, the correct
parallelizationof concurrentprocessesis requiredand thirdly, by applying the ideasof the composite
systemstheory[ABFS97], a highdegreeof parallelismfor concurrentprocessesis to beprovided.

Thekey aspectsof transactionalprocessmanagementcanbebriefly summarizedasfollows: Theco-
ordinatoractsasa kind of transactionschedulerthat is moregeneralthana traditionaldatabasescheduler
in that it i.) knows aboutpropertiesof activities (compensatable,retriable,or pivot, taken from the flex
transactionmodel[MRSK93, ZNBB94]), ii.) knowsaboutalternativeexecutionspathsin caseof failures,
andiii.) knowsaboutsemanticcommutativity of activities.

4



Basedon this information,the coordinatorensuresglobal correctnessbut only underthe assumption
thattheactivitieswithin theprocessesto bescheduledthemselvesprovidetransactionalfunctionality(such
as,for instance,atomicity, compensatability, order-preservation,etc.).

4.2 TransactionalPaymentProcesses

Accordingto [MWW98], tradeinteractionsbetweencustomersandmerchantscanbe classifiedin three
phases:pre-sales,salesandpost-sales.While thesalesphasehasa well-definedstructure(especiallythe
paymentprocessing,seesection2), this is in generalnot thecasefor thepre-salesandthepost-salesphase.
Dueto this well-definedstructure,processesarea highly appropriatemeansto implementtheinteractions
thathave to beperformedfor paymentpurposes.Furthermore,all atomicityrequirementsfor paymentsin
E–Commercecanberealizedin anelegantwayby applyingtheideasof transactionalprocessmanagement
in anE-CommercePaymentCoordinator.

Theseprocessesareextensionsof anonymousatomictransactionsdescribedin [CHTY96], they rely on
electroniccashtokenasmeansof payment,andareprimarily designedfor thepurchaseof electronically
availablegoodsthat aretransferredin an encryptedway to the customerprior to the payment.Further-
more,theideaof transactionalpaymentprocessesis to encompassall interactionsbetweentheparticipants
(customer, merchantsandbank). To this end,andin contrastto the currentlyappliedpaymentschemes,
thepaymenthasto beinitiatedby thecustomerby invoking a paymentprocessat thePaymentCoordina-
tor1. Thestructureof a transactionalpaymentprocesscanbeseenin figure2. Theprecedenceordersare
depictedby solidarcswhile for thepreferenceorder, dottedarcsareused.For eachactivity, theassociated
terminationproperty(compensatable,pivot, retriable)is alsogiven.

r

p

c Receive Payment Order

c Check validity of token (Bank)

Notify Customer

Commit

p Send Keys to Customer

Money transfer (Bank) 

r

Check Timeout

cReceive Key (Merchant) c Receive Key (Merchant)… 

r… Send confirmation 
to Merchants

r

r rNotify Merchants
… 

Abort

rNotify Bank

Figure2: Structureof PaymentProcess

Whena paymentprocessis invoked,thecustomerfirst hasto specifythepaymentinformation ��� and
all � bilaterally agreedorder information(andthusalsoall differentmerchants)that have to be encom-
passedwithin onesinglepaymenttransaction.Therefore,a tuple �� !�#"%$'&)(�* with orderinformation  !�#"
andmerchantidentifier & for eachproduct+ with ,.-/+0-1� hasto besentto thePaymentCoordinator

1Like in thetraditionalcase,thecustomerhasin theinitial negotiationphaseto agreeuponthewaythepaymentis processedwith
all merchants.

5



(receivepaymentorder). Then,the valueandvalidity of thepaymentinformation ��� is checked(check
validity of token). Given the validity of the paymentinformation,the PaymentCoordinatorcontactsall
merchants,asksthemto validatethe order information �� !�#"2(�* and in the caseof successfulvalidation,
collectsfor eachproduct + the key neededfor decryption(receivekeys). Whenall keys arrive within a
given periodof time (check timeout)2, the PaymentCoordinatorsendsall keys to the customer, sendsa
money transferorderto thebankin orderto creditthemerchant’saccounts,andsendsaconfirmationabout
thesuccessfulterminationof thepaymentto all merchants(commitof payment).Otherwise—whenthe
customersview on theorderinformation �� !�#"#(�* andthemerchantsview �� !�43�(�* do not matchfor some+ , whensomekeysarenotavailable,whenthetimeoutis exceeded,or whenthevalidationof thepayment
information ��� fails— no exchangewill take place(abort of payment)but appropriatenotificationsare
sentto all participants.

Basedon theprecedenceandpreferenceordersaswell on the terminationpropertiesof eachactivity,
it canbeshown that this transactionalpaymentprocessis correctlydefinedandthusprovidesguaranteed
termination. Furthermore,it hasto be shown that by all correctterminations,the desiredsemanticsof
atomicpaymentinteractions(with respectto all threedimensionsof atomicity) is provided. To this end,
all possibleexecutionshave to be considered.Whenever somefailure occursprior to the termination
of the check timeoutactivity, all previously executedstepsaresemanticallycompensatedby sendinga
notificationaboutthefailureof thepaymentprocessto all participants(sincethis notificationis alsosent
to thecustomer, shedoesnot loseherpaymentinformationbut canspentit laterwithin otherpayments).
After thesuccessfultransferof thekeys to thecustomer, thepaymentprocessis alsoterminatedcorrectly
sincethereal-world money transferhaspreviouslybeenensuredby thebank(in thecheck validity of token
step). Finally, whenthe transferof keys to the customerfails (e.g.,sinceshecannotbe contacted),also
appropriatenotificationsaresentto all participantsandno real-world money transfertakesplace(again,
thepaymentinformationcanbeusedby thecustomerfor furtherpayments).

This transactionalpaymentprocessnow providesmoney atomicity, certifiedatomicdelivery anddis-
tributedpurchaseatomicity simultaneously. Sinceit is guaranteedthat the paymentinformationis only
transferredin real-world money flow whentheprocessterminatescorrectlyandsincenomerchantreceives
this paymentinformationdirectly, the customeris able to spentit againin the abortcaseof a payment
processwithout beingaccusedof double-spending.For certifiedatomicdelivery, thesameargumentsas
givenin [CHTY96] hold: thePaymentCoordinatorpersistentlystoresprocessinformationandis thusin
the caseof customercomplaintsable to verify whetherthe order informationmatchesthe goodsdeliv-
ered.Finally, sincetheprocessonly terminatescorrectlywhenall merchantsagreeto commit,distributed
purchaseatomicityis alsoprovided.

Aside of atomicity, alsoanonymity of the customerandprovability have beenidentifiedassecurity
aspectsof paymentprotocols. Transactionalpaymentprocessesdo not provide total anonymity (since
the PaymentCoordinatorneedsto contactthe customerin order to transferthe keys neededto decrypt
all goods),but at least they provide partial anonymity. The customermay hide her identity (e.g., the
IP addressof the hostsheis using) to the merchantsby applyinganonymizing techniques(suchas, for
instance,[Ano99]). In orderto hidetheidentity of thecustomerto thebankwhenissuingelectroniccash
token,cryptographicblinding techniques[CFN88] canbeapplied.SincethePaymentCoordinatorstores
all processinformation(including the orderinformation)persistently, the proof of the participationof a
customerin a transactionandtheserviceorderedin this transactionsis possible(totalprovability).

By executingpaymentprocessesby a centralizedPaymentCoordinator, the monitoringof the state
of a paymentinteractionis facilitatedcomparedto the distribution found in currentpaymentprotocols.
However, all participants(andespeciallythecustomer)have to trustthiscentralizedPaymentCoordinator.
But sincein thecaseof thesepaymentprocessesonly informationaboutthemerchantsinvolvedin a deal
andtheprizesof goodsis availableto thePaymentCoordinatorbut no informationaboutthesinglegoods,
this is equivalentto theamountandkind of datacreditcardorganizationscollectwhencustomersperform
paymentswith their creditcards.

2This activity only generatesa log entrymakingthedecisionpersistent;althoughit cantechnicallybecompensated,it is treated
aspivot sincecompensationof theprocessis no longerallowed.

6



5 Conclusion

Thispaperprovidesa detailedanalysisof requirementsparticipantsin E-Commercepaymentimposewith
respectto atomicityissues.Differentlevelsof atomicitycanbeidentifiedwhich,however, arenotsimulta-
neouslyprovidedby existingapproaches.Usingthenotionof processes,it hasbeenshown thatall payment
interactionscanbeembeddedinto a singlepaymentprocesswhereall possiblelevelsof executionguaran-
teescanbeprovidedwhile at thesametime theprerequisitesof theparticipantsarereduced.Finally, by
applyingthe ideasof transactionalprocessmanagement,it hasbeenshown how a PaymentCoordinator
supportingatomicandprovablepaymentprocessescanbedeveloped.

This process-basedPaymentCoordinatoris currently being implementedwithin the WISE system
[AFH 5 99]. Basedon this implementation,we will in our future work extend the analysisof payment
processesto furtherproperties(suchas,for instance,anonymity, scalability, or flexibility). Our goal is to
decoupletheseproperties,to identify thebuilding blocksneededto realizethemandto flexibly generate
paymentprocesseswith user-definedpropertiesby pluggingtogetherthebuilding blocksneeded.

References

[ABFS97] G.Alonso,S.Blott, A. Feßler, andH.-J.Schek.CorrectnessandParallelismin CompositeSys-
tems.In Proceedingsof theACM SymposiumonPrinciplesof DatabaseSystems(PODS’97),
Tucson,Arizona,May 12-151997.

[AFH 5 99] G. Alonso,U. Fiedler, C. Hagen,A. Lazcano,H. Schuldt,andN. Weiler. WISE: Businessto
BusinessE-Commerce.In Proceedingsof the9687 InternationalWorkshoponResearch Issues
in Data Engineering. InformationTechnology for Virtual Enterprises(RIDE-VE’99), pages
132–139,Sydney, Australia,March1999.

[Ano99] Anonymizer.com,1999.http://www.anonymizer.com.

[CFN88] D. Chaum,A. Fiat, andM. Naor. UntraceableElectronicCash. In Proceedingsof Advances
in Cryptography(CRYPTO’88), pages319–327.Springer, 1988.

[CHTY96] J.Camp,M. Harkavy, D. Tygar, andB. Yee.AnonymousAtomicTransactions.In Proceedings
of the29;: UsenixWorkshoponElectronicCommerce, pages123–133,November1996.

[CTS95] B. Cox,D. Tygar, andM. Sirbu. NetBill SecurityandTransactionProtocol.In Proceedingsof
the1<�6 USENIXWorkshoponElectronicCommerce, pages77–88,July1995.

[Dig99] DigiCash,1999.http://www.digicash.com/.

[GR93] J.GrayandA. Reuter. TransactionProcessing:ConceptsandTechniques. MorganKaufmann,
1993.

[HS98] A. HermannsandM. Sauter, editors.Management–HandbuchElectronicCommerce. Vahlen,
1998.In German.

[MRSK93] S. Mehrotra,R. Rastogi,A. Silberschatz,and H. Korth. A TransactionModel for Multi-
databaseSystems. Bulletin of the Technical Committeeon Data Engineering, 16(2), June
1993.

[MV96] MasterCardandVisa.SecureElectronicTransactionSpecification. MasterCardandVisa,draft
edition, June1996. Book 1: BusinessDescription,Book 2: Programmer’s Guide,Book 3:
FormalProtocolSpecification(Slightly revisedversionof Book3 appearedAugust1, 1997).

[MWW98] P. Muth, J. Weissenfels,andG. Weikum. WhatWorkflow Technologycando for Electronic
Commerce.In Proceedingsof theEURO-MEDNETConference, 1998.

7



[SAS99] H. Schuldt,G. Alonso,andH.-J.Schek.Concurrency ControlandRecovery in Transactional
ProcessManagement. In Proceedingsof the ACM Symposiumon Principles of Database
Systems(PODS’99), pages316–326,Philadelphia,Pennsylvania,USA, May 31-June2 1999.

[Sch98] B. Schmidt. Elektronische Märkte – Merkmale, Organisationund Potentiale. In: [HS98].
1998.In German.

[SSA99] H. Schuldt,H.-J. Schek,andG. Alonso. TransactionalCoordinationAgentsfor Composite
Systems. In Proceedingsof the 3=>: InternationalDatabaseEngineeringand Applications
Symposium(IDEAS’99), pages321–331,Montréal,Canada,August1999.

[Tyg96] D. Tygar. Atomicity in ElectronicCommerce.In Proceedingsof the15687 AnnualACM Sym-
posiumonPrinciplesof DistributedComputing, pages8–26,May 1996.

[Tyg98] D. Tygar. Atomicity versusAnonymity: DistributedTransactionsfor ElectronicCommerce.
In Proceedingsof the24687 ConferenceonVeryLargeDatabases(VLDB’98), New York,USA,
August1998.

[ZNBB94] A. Zhang,M. Nodine,B. Bhargava,andO. Bukhres.EnsuringRelaxedAtomicity for Flexible
Transactionsin MultidatabaseSystems. In Proceedingsof the ACM SIGMODConference,
pages67–78,1994.

8



 1

Performance Assessment and Configuration
of Enterprise-Wide Workflow Management Systems

(Extended abstract)

Michael Gillmann1, Jeanine Weissenfels1, Gerhard Weikum1, Achim Kraiss2

1University of the Saarland
Department of Computer Science

P.O.Box 15 11 50
D-66041 Saarbrücken

{gillmann,weissenfels,weikum}@cs.uni-sb.de
http://www-dbs.cs.uni-sb.de/

2Dresdner Bank AG
Organization and Information Technology

IT Research and Standards
Jürgen-Ponto-Platz 1

D-60301 Frankfurt a.M.
achim.kraiss@dresdner-bank.com
http://www.dresdner-bank.com/

1 Introduction
The main goal of workflow management systems (WFMS) is to support the efficient, largely automated
execution of business processes. Large enterprises demand the reliable execution of a wide variety of
workflow types. For some of these workflow types, the availability of the components of the underly-
ing, often distributed WFMS is crucial; for other workflow types, high throughput and short response
times are required. However, finding a configuration of the WFMS (e.g., with replicated components)
that meets all requirements is a non-trivial problem. Moreover, it may be necessary to adapt the configu-
ration over time due to changes of the workflow load, e.g., upon adding new workflow types. There-
fore, it is not sufficient to find an appropriate initial configuration; it should rather be possible to recon-
figure the WFMS dynamically. The first step towards a dynamic configuration tool is the analysis of the
WFMS to predict the performance and the availability that would be achievable under a new configura-
tion, and to determine the best configuration for the current workflow load.
In this paper, we present an analytic approach that considers the performance as well as the availability
of the WFMS in its assessment of the quality of a given configuration of a distributed WFMS. The ap-
proach is based on well known stochastic methods [Nel95, STP96, Tij94] and shows the suitability of
these models to a new application field. The presented combination of the methods allows an analytic
assessment of WFMS eliminating the usual time- and cost-intensive trial-and-error practice for system
configuration. Particularly, we are able to rank the performance and the availability of different config-
urations which use replicated workflow servers. Moreover, we can predict the performance degradation
caused by transient failures of servers. These considerations lead to the notion of performability
[STP96], a combination of performance and availability metrics. Likewise, we are able to calculate the
necessary number of workflow server replications to meet the specified requirements for performance
and availability. So, a crucial part of a configuration tool for distributed WFMS becomes analytically
tractable and no longer depends on trial-and-error practices or the subjective intuition of the system
administration staff.
Although the literature includes much work on scalable WFMS architectures, there are only few re-
search projects that have looked into the quantitative assessment of WFMS configurations with regard
to performance and availability [DKO+98]. [BD99] presents several types of distributed WFMS archi-
tectures and discusses the influence of different distribution methods on the network and workflow
server load, based on simulations. In [BD97], the sustainable throughput of a distributed WFMS is in-

This work was performed within the research project “Architecture, Configuration and Administration of Large Work-
flow Management Systems” funded by the German Science Foundation (DFG).



 2

creased by assigning subworkflows to appropriate workflow servers, based on online statistics about
network partitions, network load, and expected communication costs. [SNS99] presents simple heuris-
tics for the allocation of workflow type and workflow instance data onto servers. Work on WFMS avail-
ability has been presented in [HA98, KAG+96] that discuss how to efficiently increase the availability
of process support systems by using standby mechanisms that allow a backup server to take over in the
case of server failures.
The rest of the paper is organized as follows. In Section 2, we present our model of a distributed WFMS.
In Sections 3 and 4, we develop a performance model and an availability model. In Section 5, we com-
bine both models into the performability model that allows us to predict the influence of transient fail-
ures on the overall performance. Section 6 concludes the paper with a summary and an outlook on ongo-
ing work.

2 System model of distributed WFMS

In this section, we describe a generic model of enterprise-wide distributed WFMS. Although the chosen
system model is simple, it is powerful enough that we are able to capture the architecture models of most
WFMS products and research prototypes in a reasonable way. Based on this model, we will introduce
the central notions of the state and the configuration of a distributed WFMS. Finally, we present a model
that stochastically describes the behavior of a single workflow instance.
Typically, distributed WFMS execute workflow instances in a partitioned and distributed manner, i.e.,
the workflow instance is partitioned into several subworkflows, which are executed in a distributed way
on different workflow engines (e.g., with one workflow engine per partition/subworkflow type). These
workflow engines typically run on several server machines distributed across an Intranet or even the
Internet. Moreover, services that are “imported” from external companies can be integrated into the
WFMS as subworkflows, and the WFMS of such a provider merely becomes another kind of workflow
engine with a specific interface. The communication is handled by separate components, such as object
request brokers (ORBs), other modules are responsible for workflow-specific functions like worklist
management or monitoring, and the runtime state data of workflows is often stored in a DBMS. Finally,
applications that are invoked from workflow activities may be spawned on dedicated application serv-
ers. All these components will be viewed as abstract servers of specific types in our system model.

2.1 Workflow server model

In workflows like the above examples, several cooperating components of a distributed WFMS are in-
volved in the execution of a single workflow instance. We refer such to each component as a server type.
For scalability and availability reasons, nearly all WFMS, both products and research prototypes, pro-
vide the replication of (performance-critical) server types within the system. Note that we have so far
not said anything about the hardware (i.e., the server machines) that the workflow servers run on. It is
possible (and often favorably or even unavoidable) to start workflow servers of different server types on
the same server machine.
Figure 1 shows an example of the workflow server model. The dotted arcs indicate service requests
between the several server types. But also within a single server type, workflow servers can request
services from each other. For example, the execution of a subworkflow by a workflow engine that is not
the same as the engine of the parent workflow is a service request, too. In our model, the communication
services are only provided by some kind of communication servers such as object request brokers
(ORBs) or TP monitors. The other server types do not communicate directly with each other but only
via a communication server. In Figure 1, this is indicated by the solid lines.
In our system model, every server type s has a failure rate �s and a repair rate �s (i.e., restart speed after a



 3

failure). For simplicity, we assume that the time between two successive failures of a server type as well
as the time to repair one workflow server are exponentially distributed with the expected values 1/ �s

and 1/�s, respectively.

2.2 Configuration of a distributed WFMS

With the presented workflow server model at hand, we are now able to define the central notion of the
system configuration of a distributed WFMS.
Because of failures and repairs of workflow servers, the number of available workflow servers of one
server type varies over time. For a given point of time, we call the vector (X1, X2, ���, XN) of the numbers of
currently available workflow servers of each workflow server type the current system state of the
WFMS. The initial system state of the WFMS, i.e., the system state with all workflow servers available,
is called the system configuration of the WFMS. 
The goal of this work is to build a configuration tool, based on the above system model, that is able to
derive the best system configuration for a given workflow load. The configuration tool should aim to
optimize the ratio of performance and cost or  availability and cost, respectively, or even the combina-
tion of both, the performability. We will discuss our approaches to these three kinds of goals in the fol-
lowing sections. As all such optimizations depend on the (probable) behavior of workflow instances,
we first need to introduce an appropriate model for the control flow of a workflow instance.

2.3 Stochastic modeling of control flow

For predicting the expected load induced by the execution of a workflow instance, we have to be able to
predict the control flow of workflow instances. As workflows include conditional branches and loops,
the best we can do here is to describe the execution stochastically.
A suitable stochastic model for describing the control flow of a simple workflow instance without sub-
workflows is the model of continuous-time, first-order Markov chains (CTMC) [Nel95, STP96, Tij94].
A CTMC is a process that proceeds through a set of states in certain time periods. Its basic property is
that the probability of entering the next state within some time only depends on the currently entered
state, and not on the previous history of entered states. The mathematical implication is that the resi-
dence time in a state - that is, the time the process resides in the state before it makes its next transition -

Figure 1: Server model of an enterprise-wide distributed WFMS

server type 2

ORB

server type 1

server type N

Clients

generates requests to
communicate with each other

Clients

. . .

...



 4

follows a (state-specific) exponential distribution. Consequently, the behavior of a CTMC is uniquely
described by a matrix P �

�pij
� of transition probabilities between states and the mean residence times Hi

of the states.
Let {ai | i � 1..n} be the set of n activities being part of a workflow type X. Let X be a workflow type
without any subworkflows. The impact of subworkflows can be handled recursively and will be ex-
plained later. The control flow of an instance of X will be modeled by a CTMC where the states corre-
spond to the workflow activities ai. The state transition probability pij corresponds to the probability that
a workflow instance of workflow type X starts activity aj after it has completed activity ai. The transition
probabilities have to be explicitly specified by the workflow designer based on the semantics of the
conditions between the workflow activities or observed from real-life business processes. The mean
residence time Hi corresponds to the mean turnaround time of activity ai and also needs to be estimated
at workflow specification time. Finally, we add an artificial absorbing state A to the CTMC. This state
represents the point when the workflow instance represented by the CTMC is terminated; the residence
time of state A is infinity. Furthermore, we add a transition from every state of the CTMC that represents
a termination activity of the workflow instance into state A with the transition probability 1. 
For workflow types with subworkflows, the subworkflows are initially represented by single fictitious
states, i.e., each subworkflow is represented by a single state within the CTMC of the parent workflow.
When workflows include parallelism, the parallel paths of the control flow are defined as subwork-
flows. In this case, the fictitious state represents all parallel subworkflows at once. As the mean resi-
dence time of the fictitious state, we use the maximum of the mean time until termination of all sub-
workflows within the fictitious state.
We derive the mean time until termination of a workflow type by the transient analysis of the CTMC
representing the workflow type [Tij94]. In our model, a workflow instance of a workflow type termi-
nates when the corresponding CTMC makes a transition into the absorption state A. So, the time until
termination of a workflow type is equivalent to the mean time until the CTMC makes the first transition
into state A. With the CTMC at hand, we are able to predict the expected load of workflow instances
during their execution [Tij94] as shown in the following section.

3 Performance model

In this section, we present a performance model for a complete WFMS. We show how to describe the
load for each workflow server type induced by the execution of a single workflow activity. We use this
and the results from the transient analysis of CTMC presented in Section 2 for predicting the load in-
duced by the execution of a entire workflow instance. Finally, we show how to predict the expected
performance, i.e., sustainable throughput and expected response times of service requests, of the
WFMS with a given system configuration.

3.1 Modeling activity-specific load

The execution of a workflow instance leads to the execution of a set of workflow activities. The execu-
tion of a workflow activity leads to the generation of service requests to different server types. Typical-
ly, the invocation of an activity leads to some initialization and termination load induced exactly once
during the execution of the activity and to operational load induced continuously during the whole exe-
cution time of the activity. Therefore, we differentiate between the two following kinds of service re-
quests.

• Lump requests. Lump requests are generated exactly once during the execution of the workflow
activity. For example, if the activity corresponds to editing a text document, the activity generates



 5

a number of lump requests for loading the text document, updating a database to reflect the
changed workflow state, etc.

• Operational requests. During the execution of an activity, operational requests are generated with
a specific rate. For example, these are generated by the exchange of messages between workflow
engines for synchronisation and migration of workflow instances, saving of intermediate versions
of the currently processed documents, etc.

In the following, the matrix (Lt
sa) denotes the number of lump requests being generated for workflow

server type s when workflow activity a is invoked during the execution of an instance of workflow type
t. The matrix (Nt

sa) denotes the generation rate of operational requests for workflow server type s during
the execution of activity a.

3.2 Predicting the load induced by a single (sub-)workflow instance

To calculate the workflow load that one workflow instance generates on the several  server types, we use
the transient analysis of the CTMC presented in Section 2. To be exact, we combine the equivalent
normalized CTMC [Tij94] and the already presented load matrices (Lt

sa) and (Nt
sa) to a Markov reward

model (MRM). The feature of a MRM is that there are rewards for every state of the CTMC. To get the
expected number of  service requests by a single workflow instance, we calculate the expected reward
earned until absorption [Tij94]. Let the matrix (Lt

sa) of lump requests and the matrix (Nt
sa) of rates of op-

erational request be given for a workflow type without any subworkflows. Then, the expected number
of service requests an instance of the workflow type t generates at server type s is given by 

rs,t �
1
�t
��

a�A

Nt
sa�

�

z�0

pt
	a(z) 
�

a�A

�

�

z�0

pt
	a(z) �

b�A,b�a

qt
ab Lt

sb�,

where �t is the maximum of the departure rates of the states of the CTMC representing workflow type t,
qt

ab is the transition rate from state a to state b, and pt
	a(z) is the taboo probability that the process will be in

state a after z steps without having visited the absorbing state A (starting in the initial state 	).
The mean runtime Rt of an instance of a (sub-)workflow of type t is given by the mean time that the
CTMC needs to enter the absorbing state for the first time, the so called first-visit-time of state A, and
can be calculated by solving a system of linear equations [Tij94].

3.3 Incorporation of subworkflows

The expected number of service requests generated by an instance of a workflow type including sub-
workflows can be calculated recursively. For every state of the CTMC that represents a subworkflow or
a set of parallel subworkflows, the entries Lt

sx and Nt
sx within the matrices (Lt

sa) and (Nt
sa) represent the lump

requests and the rate of operational requests of the set x of nested subworkflows. We approximate the
number of lump requests Lt

sx for a server type s by the sum of the expected number of service requests
generated by the parallel subworkflows.

Lt
sx ��

y�x

rs,y

The rate of operational requests Nt
sx is set to 0 for every server type s.

3.4 Incorporation of multiple active workflows

By Little’s law, the steady-state number of active instances Nt
active of workflow type t is given by the prod-

uct of the arrival rate �t of new instances of type t and the mean runtime Rt of a single workflow of type t.
Nt

active � �tRt

The server-type-specific request arrival rate of a single instance of workflow type t is given by dividing



 6

the expected number of service requests to server type s, rs,t, by the mean runtime of an instance of t. We
obtain the server-type-specific request arrival rate ls,t of all instances of workflow type t by multiplying
rs,t with the mean number of active workflow instances. 

ls,t � Nt
active

rs,t

Rt
� �t rs,t

Finally, the request arrival rate ls to workflow server s induced by all active instances of all workflow
types is given by

ls ��

t

ls,t.

3.5 Predicting response times for service requests

For predicting the mean response time of service requests, we model every server type as a set of k
M/G/1 queueing systems where k is the number of server replications of the server type. We assume that
the arriving service requests are uniformly distributed over all server replications. We thus compute the
mean arrival rate of service requests for each M/G/1 queue by dividing the mean arrival rate of service
requests for the server type by the number of servers k of the server type. The mean service time of
service requests and the second moment of the service time distribution are parameters that can be esti-
mated by online monitoring.

4 Availability model

In this section, we describe our availability model. It is based on the workflow server model described in
Section 2. Based on this model, we analyze the influence of transient component failures on the avail-
ability of the WFMS.
Our availability model is again based on Continuous Time Markov Chains (CTMC). Here, every state
of the CTMC represents a possible system state of the WFMS. A system state of the WFMS is modelled
as an n-tuple with n being the number of different server types and each entry of the tuple representing
the number of available workflow servers of a server type at one point of time. For example, the state
(2,1,1) means that the WFMS consists of three different server types and there are 2 workflow servers of
type 1, 1 workflow server of type 2, and 1 workflow server of type 3 currently available (the others have
failed and are being restarted). When a workflow server of type i fails, the CTMC performs a transition
to the state where the corresponding value for server type i is decreased by one. For example, the state
�X1, ���, Xj, ��� � is left when a workflow server of type j fails, and the state �X1, ���, �Xj 
 1�, ��� � is entered.

Analogously, when a workflow server of type i completes its restart, the value for server type i is in-
creased in the target state of the firing transition. The failure rates and the repair rates of the server types
are the corresponding transition rates of the CTMC. Note that non-exponential failure or repair rates
(e.g., anticipated periodic downtimes for software maintenance) can be accommodated by refining the
corresponding state with non-exponential residence time into a chain of exponential states [Tij94].
With the CTMC at hand, we are able to calculate for every state of the WFMS its steady-state probabili-
ty by solving a system of linear equations [STP96]. From these probabilities, we can then derive the
probability distribution of the number of available workflow servers for each server type, and thus the
server type’s steady-state availability.

5 Performability model

In this section, we briefly sketch a performability model that allows us to predict the performance of the
WFMS with the effects of temporarily non-available servers (i.e., the resulting performance degrada-
tion) taken into account.



 7

Our performability model is a hierarchical model constituted by a Markov reward model (MRM) for the
availability CTMC and the performance model presented in Section 3. The probability of being in a
specific state of the WFMS is given by the availability model presented in Section 4. As state-specific
rewards, we use a function that assigns to every state of the availability CTMC the mean response time
of service requests of the WFMS in the current state. The steady-state analysis of the MRM delivers the
expected value for the response time of service requests for a given configuration of the WFMS
[STP96].

6 Summary and Outlook

In this paper, we have discussed three models to derive quantitative information about performance,
availability, and performability of distributed workflow management systems (WFMS) configura-
tions. These models form the core towards an assessment and configuration tool for enterprise-wide,
large scale WFMS. We are in the process of implementing such a tool. The tool consits of four compo-
nents: mapping of workflow specification onto the presented models, calibration by means of statistics
from monitoring the system, evaluation for given input parameters, and the computation of recommen-
dations with respect to specified administration goals. When the tool is to be used for configuring a
completely new workflow environment, most input parameters have to be inetellectually estimated by a
human expert. Later, after the system has been operational for a while, these parameters can be automat-
ically adjusted, and the tool can the make appropriate recommendations for reconfiguring the system.
For a first evaluation of our  overall approach, we have defined a WFMS benchmark [GMW+99] and
we are conducting measurements of various products and prototypes, including our own Mentor-lite
system. These measurements will serve as a first yardstick for the accuracy of our performance assess-
ment model.

References
[BD97] T. Bauer, P. Dadam, A Distributed Execution Environment for Large-Scale Workflow Management Systems with
Subnets and Server Migration, 2nd IFCIS Conf. on Cooperative Information Systems (CoopIS), Charleston, South Caroli-
na, 1997
[BD99] T Bauer, P. Dadam, Distribution Models for Workflow Management Systems - Classification and Simulation (in
German), Technical Report, University of Ulm, Germany, 1999
[DKO+98] A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A. Sheth (Eds.), Workflow Management Systems and Inter-
operability, NATO Advanced Study Institute, Springer-Verlag, 1998
[GMW+99] M. Gillmann, P. Muth, G. Weikum, J. Weissenfels, Benchmarking of Workflow Management Systems (in
German), 8th German Conf. on Database Systems in Office, Engineering, and Scientific Applications (BTW), Freiburg,
Germany, 1999
[HA98] C. Hagen, G. Alonso, Backup and Process Migration Mechanisms in Process Support Systems, Technical Report,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1998
[KAG+96] M. Kamath, G. Alonso, R. Günthör, C. Mohan, Providing High Availability in Very Large Workflow Manage-
ment Systems, 5th Int’l Conf. on Extending Database Technology (EDBT), Avignon, France, 1996
[Nel95] R. Nelson, Probability, Stochastic Processes, and Queueing Theory, Springer-Verlag, 1995
[STP96] R. A. Sahner, K. S. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Systems, Kluwer
Academic Publishers, 1996
[SNS99] H. Schuster, J. Neeb, R. Schamburger, A Configuration Management Approach for Large Workflow Manage-
ment Systems, Int’l Joint Conf. on Work Activities Coordination and Collaboration (WACC), San Francisco, California,
1999
[Tij94] H.C. Tijms, Stochastic Models, John Wiley and Sons, 1994



EfficientDistributedControlof
Enterprise-WideandCross-EnterpriseWorkflows

ThomasBauer, PeterDadam
Universityof Ulm, Dept.of DatabasesandInformationSystems�

bauer, dadam� @informatik.uni-ulm.de,http://www.informatik.uni-ulm.de/dbis

Abstract

In large workflow managementsystems(WfMS), it is particularly importantto control workflows
(WF) in anefficient manner. A very critical factorwithin this context is theresultingcommunication
overhead.For this reasonwe have developedanapproachfor distributedWF control,which tries to
keepthe communicationoverheadlow. In this paper, this approachis describedand examinedby
meansof a simulation.

1 Intr oduction

Enterprise-wideandcross-enterpriseWF scenariosarecharacterizedby a largenumberof usersand
many concurrentlyactive WF instances.Therefore,the WF servers have to copewith a high load
in total. Furthermore,in suchan environment,the differentorganizationalunits (OU) areoften far
away from eachotherandconnectedby slow wide areanetworks(WAN). For this reason,the load
of thecommunicationsystemis anextremelycritical aspect.Becauseof theresultingcommunication
overheada centralizedWF control is oftennot applicable(at leastnot at reasonablecosts).Another
reasonis thattheWF systemsusedareoftenvery heterogeneouswhichmakesa centralizedWF con-
trol rathercomplicatedif not evenimpossible.In theADEPT project� we, therefore,have developed
anapproachfor distributedWF controlwhichaddressestheseissues.

In thenext section,someapproachesfor distributedWF managementarepresentedandthedistribu-
tion modelof ADEPT is described.In Section3 the differentdistribution modelsarecomparedby
meansof asimulation.Section4 discussesrelatedwork andSection5 concludeswith asummaryand
anoutlookon futurework.

2 Distrib ution Models

In thissection,differentapproachesfor distributedWF managementarepresentedandanappropriate
modelfor enterprise-wideandcross-enterpriseusageis developed.
�
ADEPTstandsfor ApplicationDevelopmentBasedonEncapsulatedPre-ModeledProcessTemplates.



2.1 Distrib ution of Entir eWorkflows

Thesimplestapproachfor distributedWF managementis to controlaWF instancealwayscompletely
by oneWF server. This canbedone,e.g.,by distributingtheWF control to WF serversby WF type.
Thatis, wheneveraWF instanceof type � is started,it will becompletelycontrolledby theWF server
responsiblefor workflowsof thistype.By doingso,thetotal loadis dividedupamongtheWF servers.
This approachworkswell if almostall actorsperformingtheactivitiesof oneWF belongto thesame
OU.

2.2 Partitioning of Workflows

If theactorsof thedifferentactivities of a WF aregeographicallylocatedfar away from eachother,
the distribution modeldescribedabove generateshigh communicationcosts.The reasonis that all
activities of a WF instancearecontrolledby the sameserver and,therefore,have to communicate
with this server (even if this server is far away). In suchcasesit would be favorable,if for each
activity a WF server which is closelylocated(at bestin thesamesubnet)to theactorof theactivity
couldbeused.

To achieve this goal,theWF is partitionedandeachpartition is assignedto thatWF server which is
locatednext to thepotentialactorsof theactivitiesbelongingto it (c.f. Fig. 1). At run-time,whenthe
controlmovesfrom onepartitionto thenext, amigrationbecomesnecessary:Thecurrentstateof the
WF instance(WF controldataandthevaluesof the dataelements� ) is transferredto the WF server
of thesubsequentpartition.Subsequently, this WF server takesover thecontrolof theWF instance.
Migrationsarenot for free,however. They alsocausecommunicationcostsandcontributeto thetotal
load of the WF servers.In ADEPT, therefore,migrationsareusedonly if they areprofitablein the
sensethat they improve the total communicationbehavior. For example,in mostcasesit doesnot
makemuchsenseto migratea WF instanceto anotherserver andbackagainjust for the execution
a singleactivity which is performedby anactorof anotherOU. Thesetwo migrationscausehigher
coststhanto control theactivity by anunfavorableserver. For a WF designer, it is difficult to decide
whicharethemostappropriateserverassignmentsfor theactivities.For thisreason,ADEPTsupports
the WF designerby sophisticatedbuild-time components,which calculatethoseserver assignments
which will leadto aminimizationof thetotal communicationcostsat run-time(see[BD97]).

���	�

����� ���������

��� 	�
������ ���������

��� 	�
������ ������� � !#"%$'&)(�*,+
-/. (�0�*�132

465 27098;:<098=+
2;>�?@*<091A+&

? -

! 0
B

465 27098C:D098FE

465 27098C:D098�G

*<"%8C$H& .<- "%*�1�8�" .B . "%I

- "%*#1�8
" . B . "%I&9*<!J$'(�K�8
&�1L(L"%*
Figure 1 Partitioningof a WF schemaanddistributedWF execution.

M
TheWF schemainformationitself is completelyreplicatedat all WF servers.Therefore,only therelevantinstancein-

formationhasto betransferredto thetargetserver. Opposedto theWF schema,WF instanceinformationis notreplicatedor
storedcentrallyin orderto avoid synchronizationoverheador (longdistance)communicationduringthe“normal” execution
of WF activities (i.e.,executionwithoutmigration).

2



2.3 Variable ServerAssignments

Theapproachdescribedin Section2.2is reachingits limiting factorsif aWF containsdependentactor
assignments(c.f. activities2, 3, and4 in Fig. 2). Considerthecasewherea hospitalhasseveralwards
of thesametypeandwhereapatientis (moreor lessarbitrarily)transferredto oneof thesewardsafter
his admissionin theemergency room.Thesubsequentactivities2, 3, and4 (c.f. Fig. 2) will thenonly
beperformedby themedicalstaff of this ward.At build-time,however, it is not known which actor
andthuswhich wardwill beselectedin activity 1 (at best,probabilityconsiderationsarepossible).
This means,in turn, thatnosuitable(static)server assignmentsfor thisWF canbedetermined.

N�O@PLQSRT@U@NWV7Q V7X�YZQ\[\]^X%V_Xa`/bdcfe
Ù g7h@i�j�kmlon@pfq7r�str�u/v

q7u�wmjJx\yzu�q{uas)|;}A~
Ù  �7�@�����Z�@�@���7�

�7�/�m�J�a�/������%�_�a�)�;�%�
�/�<�/�Z���D�� �/�����/�o�

� ���������m�t�@�L��a�t�@��� � ���
�
� ��� � �/�
�� �)�����/�o�f�;���� � �/���)�������� ����� �������� � ������  ¡¢�£Z¢�¤�¥o¢�¦D§�¨�¤�©o©�£

ª�«
¬9­D®7¯C°9«
± ¬9ª�²L°9­#ª<ª�³´ ¬�«
µS¶

· ¸ ¹ º

Figure 2 Exampleof a WF with dependentactorassignments.

In principle,problemsof this kind could besolvedby determiningthe server assignmentsfully dy-
namicallyat run-time.I.e.,afterthecompletionof eachactivity a computationto determinethemost
appropriateWF server for the subsequentactivity or activities takesplace.In doing so, onewould
(basically)achieve theoptimaldistribution,sinceat this point in time mostinformationis available
for thisdecision.Unfortunately, thisapproachis not feasiblebecauseof performancereasons,in gen-
eral.At run-timethe WF servershave alreadyto managea high workloadandshouldthereforenot
be burdenedwith additional(and partially rathercomplex) computationsto determinethe optimal
distribution.

Variable serverassignments[BD98b, BD99a] are a compromisebetweenstaticserver assignment
at build-time anddynamicserver selectionat run-time:At build-time, a logical server assignment
expressionis determinedwhich only hasto beevaluatedat run-time.In theexampleshown in Fig. 2,
the server assignmentsfor the activities 2, 3, and4 result as:"server in the domain» of the actor
performingactivity 1". After the completionof activity 1, its actorandbecauseof thatalsotheOU
(i.e.ward)for theactorswhoshallperformtheactivities2,3,and4 areknown.Therefore,at thispoint
in time, theWF server of theright OU canalwaysbechosento control theseactivities.This means
thatinformationis usedwhichwasnotexistingatbuild-timeandalsonotat thepoint in time thisWF
instancewasstarted.Therefore,thisapproachis morepowerful thanmerestaticserver assignments.

In ADEPTthefollowing server assignmentexpressionsareusedat present:
1. ¼¾½@¿oÀÂÁmÃ#Ã�ÄmÅ " ¼ÇÆ "

Server ¼ÈÆ is staticallyassignedto activity É (c.f. Section2.2).
2. ¼¾½@¿oÀÂÁmÃ#Ã�ÄmÅ " ¼¾½@¿<ÀA½@¿ËÊ��=Ì "

Theactivity É shallbecontrolledby thesameserver asactivity � .
3. ¼¾½@¿oÀÂÁmÃ#Ã�ÄmÅ " Í6ÎoÏÑÐÂÒ7ÓJÊ
ÁmÔtÕWÎ<¿FÊ
�{Ì/Ì "

Activity É is assignedto theserver which is locatedin thedomainof the userwho hasexecuted
activity � .Ö
A domainis asubnettogetherwith thecorrespondingWF serverandclients.

3



4. ¼¾½@¿oÀÂÁmÃ#Ã Ä Å " ×JÊ
¼¾½@¿<ÀA½@¿ËÊ��=Ì/Ì " or ¼¾½@¿oÀÂÁmÃ#Ã Ä Å " ×JÊ
Í6ÎoÏÑÐÂÒ7ÓJÊ
ÁmÔtÕWÎ<¿FÊ
�{Ì/Ì/Ì "
A function × canbeappliedto serverassignmentsof type2 and3.

5. ¼¾½@¿oÀÂÁmÃ#Ã Ä Å any givenexpression,which doesnot correspondto type1-4
TheWF designermayspecifyown server assignmentexpressions.

The ADEPT WfMS is supportingthe WF designerin determiningthe mostappropriateserver as-
signmentexpression.At build-time,on request,theoptimal (variable)server expressionsof type1 -
4 for this typeof WF arecomputed.At run-timeof a WF instanceonly theseexpressionshave to be
evaluatedwhich canbedonevery efficiently. Thereforetheloadof theWF serversis only negligible
higheraswith staticserver assignments,but thecommunicationcostsaresignificantlyreduced.Be-
causeof lackof space,it is not possibleto describethecomputationof theoptimalserverassignment
expressionsin thispaper. Theinterestedreaderis referredto [BD98b, BD99a].

3 Evaluation

Dependentactorassignmentsoccurin many applicationdomains.Takethe processingof a loan re-
questat a bank,for example.Many stepsof theexaminationof this requesttakeplaceat thebranch
office of the customer. To comparethe distribution modelsdescribedin Section2, we usea (sim-
plified) clinical WF. The comparisonis basedon a simulation(for detailsandothersimulationssee
[BD99b]). The actorsbelongto 7 OU. To eachOU belongsonesubnet(andoneWF server in the
distributedcases).TheWF consistsof a sequenceof thefollowing activities:
3 activities in theemergency room
1 activity to beperformedby awardphysician(hetransfersthepatientto his ward1-5)
5 activities to beperformedby a physicianof thisward �
1 activity to beperformedin thelaboratory
5 activities to beperformedby a physicianof ward �
The simulationpresentedsubsequentlyis only usedto comparethe different distribution models.
It wasnot the intention to detectoverloadsituations.For this reason,even for the centralcase,it
is assumedthat the WF server is not overloaded.The dataproducedby the simulationareusedto
calculatethe total loadof theWF servers,the loadperWF server, the loadpersubnet,andthe load
of thegateways.Fig. 3 showsa graphicalrepresentationof theresult.Thevaluesarenormalizedin a
way thattheloadof thecentralcaseresultsas100.

3.1 Central WF Server

Theloadof thesingleWF server is definedas100.Thesameappliesto theaverageloadpersubnet
andto the loadof thegateways.ThecentralWF server is locatedin exactly onesubnet.This means
that this subnetis burdenedwith the whole communicationof this centralWF server. Therefore,it
representsapotentialbottleneck.This irregulardistributionof theloadleadsto thehigh load387.1of
this subnet,whereastheothersubnetsareonly burdenedwith 52.1on theaverage.(That is, we have
(asdefined)an averageload of 100 over all subnets,but have a peakof 387.1in the subnetof the
server.)

4



Ø�ÙÚØ/Û ÜØWÙÚØ�Û ÜØ�Ù�Ù#Û ÙØ�Ù%Ù#Û Ù

Ø�ÝoÛ ÞØ�ÝoÛ ÞØ�ÝoÛ ß

Ø�Ù%Ù#Û Ù

àtá Û â

Ü%Ü#Û ÞØWÙ%Ù#Û ÙØ�Ù%Ù#Û Ù

ÝoÛ Ý

Ü�â�Û ÙØ�Ù%Ù#Û ÙØ�Ù%Ù#Û Ù

Ù

Ø�Ù%Ù

ã9ä�å%æ�ç;è9é�êìë,ídä�ç�î#ä�ç ïtðLí3æ�ç;ð ñ�ò%æ�ð�óaåôó%õoöS÷@óté�ä=êìë íCæLè�æ�ð�ãøídä�ç�î@ä7çÂè/í�í;ð�ùtå%úûä�å%æ�í î#è�çCð�è�ñ@é�äÈí
ä7ç3î#ä�çÂè/í
ídð�ùaå�úûä7å�æ�í

æLó)æLè9é#é�ó%è�ï\ó%õÚè9é�é�êìë,ídä�ç�î@ä7ç
íè�î#ä�ç;è9ù�ä_é�ó%è�ïÈüoä7çÚêìë,í
ä�ç�î#ä�çè�î#ä�ç;è9ù�ä_é�ó%è�ïÈüoä7çËíCòtñ�å#ä�ææLó)æLè9é#é�ó%è�ï\ó%õoæ�÷#äÇù�è�æLä�ö\è7ýoíþ ß�â á ÛLØ7ÿ

Figure 3 Resultsof thesimulationof a clinical WF for differentdistributionmodels.

3.2 Distrib ution of Entir eWorkflows

If alwaysentireWF areassignedto theWF servers,thetotal loadof theWF serversis thesameasin
thecentralcasebecausethereareno migrationsaswell. By doingso,this loadis dividedup among
the7 WF serversof theWfMS, in principle� . Therefore,theloadperWF server is 14.3,which is the
bestvalueof all distributionmodels.Theloadof thesubnetsandtheloadof thegatewaysareidentical
to the centralcasebecausein bothcasesthe server of ward1 is used.The bottleneckin the subnet
of theWF server, however, doesnot exist any more,sincedifferentWF typesmaybecontrolledby
differentWF servers.

3.3 Static ServerAssignments

If theWF is partitioned,migrationsbecomenecessary(e.g.,thereis a migrationfrom theWF server
of theemergency roomto theWF serverof theselectedward).Thisresultsin ahighertotal loadof the
WF servers.This load,however, is sharedamongseveralWF servers.Theloadof thesubnetsandthe
loadof thegatewaysarereducedbecauseappropriateWF serversarechosenfor thepartitions.Since
staticserverassignmentsarehardlysuitablefor theWF considered,theimprovementsareverysmall.

3.4 Variable ServerAssignments

Variableserverassignmentsallow to controlactivitiesperformedby aphysicianof ward � by theWF
serverof thisward.Becauseof this,theloadof thesubnetsandtheloadof thegatewayscanbereduced
significantly. Theloadof thesubnetsis almosthalved(57.8).Nearlyall thecommunicationbetween
WF server andclientcannow behandledwithin onesubnetinsteadof two subnets(thesubnetsof the

�
In thissimulation,however, oneWF serverwasburdenedwith thewholeload,becausewehavesimulatedtheexecution

of instancesof only oneWF type.

5



WF server andtheclient).Gatewaycommunicationsoccurvery seldom(4.4)becausevariableserver
assignmentsalwaysallow to selecttheWF server in theappropriateward.

A goal of ADEPT is to reducethe communicationload.The simulationhasshown that this canbe
achieved by the useof variableserver assignments.A disadvantageis that the total load of the WF
serversincreasesdueto themigrations.Theuseof additionalWF servers,however, cancompensate
this effect.

4 RelatedWork

This sectiongivesanoverview of differentapproachesfor distributedWF management.Dueto lack
of space,theconceptsbeyondtheseapproachesareonly briefly mentioned.A moredetaileddiscus-
sioncanbefoundin [BD98a,BD98b, BD99b]. Someresearchprototypes(e.g.,PantaRhei [EG96],
WASA [WHKS98]), which do not primarily considerscalabilityissues,andmostof thecommercial
WfMS useacentralWF server. Anotherextremeis acompletelydistributedsystem(Exotica/FMQM
[AMG

�
95], INCAS [BMR96]). The machineof theusercurrentlyperforminganactivity alsocon-

trols theWF instance.Therefore,thereis noneedfor any WF server.

Thereareseveralmulti-server approaches:In METUFlow [Dog97] the WF instancesarecontrolled
in a distributedmanner. It is not discussed,however, how the location for a WF server is chosen.
The Exotica/Clusterapproach[AKA

�
94] and MOBILE [HS96] assignWF servers to whole WF

instances.In addition,MOBILE enablesremoteWF serversto controlsubprocesses[SNS99].MEN-
TOR [MWW

�
98], WIDE [CGS97],CodAlf, BPAFrame(both[SM96]) andMETEOR� [DKM

�
97]

useWF partitioning.The partitionsarestaticallyassignedto WF servers.In addition,CodAlf and
BPAFrameusea traderto selectone of the assignedWF servers at run-time.The TEAM Model
[Pic98] discussesthetreatmentof cooperationsbetweenautonomousenterprises.Activitiesare(stat-
ically) assignedto theWF server of thecorrespondingenterprise.To ourbestknowledge,ADEPT is
theonly approachthatusesvariableserver assignmentexpressions.

5 Summary and Outlook

In orderto avoid overloadingof theWF serversandof thecommunicationnetwork,distributedWF
control in enterprise-wideapplicationscenariosis indispensable.This requirespartitioningof WF
schemasandmigrations.Thecommunicationbehavior canbefurtherimprovedif variableserver as-
signmentexpressionsareused.Theseexpressionscanbedeterminedatbuild-time,allow theselection
of a suitableWF server to keepmostof thecommunicationlocalwithin thesamesubnet,andrequire
almostnoadditionaleffort at run-time.

In cross-enterpriseWF applications[Pic98], the activities shall be controlledby the WF server of
the enterprisethe activities “belong” to, in mostcases.For this reason,if differentactivities of the
sameWF areperformedby actorsof differententerprises,thenpartitioningof WF andmigrations
arerequired.If anactivity maybeperformedby actorsof morethanoneenterprise,thenstaticserver
assignmentsarenotadequate.With variableserverassignments,it ispossibleto assignsuchanactivity
to aWF serverdependingonWF instancedata;i.e.,theWFservermaybelongto differententerprises.
Thedecision– which enterpriseperformsandcontrolsa specificactivity – maydependon previous
activities (e.g., the actor of the activity “select job”) or it may dependon WF data(e.g., the data
element“contractor”).

6



In addition to scalabilityandperformanceaspects,the treatmentof heterogeneityis importantfor
thesupportof enterprise-wideandcross-enterpriseWfMS. This problemmustbesolvedby defining
appropriatestandardsfor the interoperabilityof (heterogeneous)WfMS. What kind of functionality
shouldbeofferedin orderto adequatelysupportsuchscenariosundercommunicationaspectshasbeen
discussedin thispaper. Certainly, a lot of otheraspects,like transactionsupport[Ley97] to guarantee
therobustnessof theWfMS or thepossibility to adaptrunningWF instances[RD98,RBD99] to deal
with exceptionalcasesarealsovery important.

Acknowledgements:Wewouldlike to thankourcolleaguesManfredReichertandClemensHensingerfor their
valuablesuggestions.

References

[AKA
�

94] G. Alonso, M. Kamath,D. Agrawal, A. El Abbadi,R. Günthör, andC. Mohan. Failure Han-
dling in LargeScaleWorkflow ManagementSystems.TechnicalReportRJ9913,IBM Almaden
ResearchCenter, 1994.

[AMG
�

95] G. Alonso,C. Mohan,R. Günthör, D. Agrawal, A. El Abbadi,andM. Kamath.Exotica/FMQM:
A PersistentMessage-BasedArchitecturefor DistributedWorkflow Management.In Proc of the
IFIP WorkingConf. on InformationSystemsfor DecentralizedOrganisations, Trondheim,1995.

[BD97] T. BauerandP. Dadam.A DistributedExecutionEnvironmentfor Large-ScaleWorkflow Man-
agementSystemswith SubnetsandServer Migration. In 2ndIFCISConf. onCooperativeInfor-
mationSystems, pages99–108,KiawahIsland,SC,1997.

[BD98a] T. BauerandP. Dadam.Architekturenfür skalierbareWorkflow-Management-Systeme– Klassi-
fikationundAnalyse.Ulmer Informatik-Berichte98-02,UniversiẗatUlm, 1998.

[BD98b] T. Bauerand P. Dadam. VariableMigration von Workflows in ADEPT. Ulmer Informatik-
Berichte98-09,UniversiẗatUlm, 1998.

[BD99a] T. BauerandP. Dadam.VariableMigrationvonWorkflowsundkomplexeBearbeiterzuordnungen
in ADEPT. Ulmer Informatik-Berichte,UniversiẗatUlm, 1999.(to appear).

[BD99b] T. BauerandP. Dadam.Verteilungsmodellefür Workflow-Management-Systeme– Klassifikation
undSimulation.Ulmer Informatik-Berichte99-02,UniversiẗatUlm, 1999.

[BMR96] D. Barbaŕa, S.Mehrotra,andM. Rusinkiewicz. INCAs: ManagingDynamicWorkflows in Dis-
tributedEnvironments.Journal of DatabaseManagement, 7(1):5–15,1996.

[CGS97] S.Ceri, P. Grefen,andG. Sánchez.WIDE – A DistributedArchitecturefor Workflow Manage-
ment. In 7th Int. WorkshoponResearch Issuesin DataEngineering, Birmingham,1997.

[DKM
�

97] S.Das,K. Kochut,J.Miller, A. Sheth,andD. Worah.ORBWork:A ReliableDistributedCORBA-
basedWorkflow EnactmentSystemfor METEOR� . TechnicalReport#UGA-CS-TR-97-001,
Departmentof ComputerScience,Universityof Georgia,1997.

[Dog97] A. Dogacet al. Designand Implementationof a DistributedWorkflow ManagementSystem:
METUFlow. In Proc. of theNATO AdvancedStudyInstituteon WorkflowManagementSystems
andInteroperability, pages61–91,Istanbul, 1997.

[EG96] J.EderandH. Groiss.Ein Workflow-Managementsystemauf derBasisaktiver Datenbanken.In
J.Becker, G. Vossen,editor, GeschäftsprozeßmodellierungundWorkflow-Management. Interna-
tionalThomsonPublishing,1996.

[HS96] P. Heinl andH. Schuster. Towardsa Highly ScaleableArchitecturefor Workflow Management
Systems.In Proc.of the7th Int. WorkshoponDatabaseandExpertSystemsApplications, pages
439–444,Zurich,1996.

[Ley97] F. Leymann.Transaktionsunterstützungfür Workflows. InformatikForschungundEntwicklung,
ThemenheftWorkflow-Management, 12(2):82–90,1997.

7



[MWW
�

98] P. Muth, D. Wodtke,J.Weißenfels,A. Kotz-Dittrich,andG. Weikum. FromCentralizedWork-
flow SpecificationtoDistributedWorkflow Execution.Journalof IntelligentInformationSystems,
10(2):159–184,1998.

[Pic98] G. Piccinelli. DistributedWorkflow Management:TheTEAM Model. In Proc.of the3rd IFCIS
Int. Conf. onCooperativeInformationSystems, pages292–299,New York, 1998.

[RBD99] M. Reichert, T. Bauer, and P. Dadam. Enterprise-Wide and Cross-EnterpriseWorkflow-
Management:Challengesand ResearchIssuesfor Adaptive Workflows. In Proc. Workshop
Enterprise-wideandCross-enterpriseWorkflowManagement:Concepts,Systems,Applications,
29.JahrestagungderGI (Informatik’99), Paderborn,October1999.

[RD98] M. ReichertandP. Dadam.ADEPT���	��
 – SupportingDynamicChangesof Workflows Without
LosingControl. Journal of IntelligentInformationSystems, 10(2):93–129,1998.

[SM96] A. Schill and C. Mittasch. Workflow ManagementSystemson Top of OSF DCE and OMG
CORBA. DistributedSystemsEngineering, 3(4):250–262,1996.

[SNS99] H. Schuster, J. Neeb,andR. Schamburger. A ConfigurationManagementApproachfor Large
Workflow ManagementSystems.In Proc.of theInt. Joint Conf. onWork ActivitiesCoordination
andCollaboration,SanFrancisco,1999.

[WHKS98] M. Weske,J.Hündling,D. Kuropka,andH. Schuschel.ObjektorientierterEntwurfeinesflexiblen
Workflow-Management-Systems.InformatikForschungundEntwicklung, 13(4):179–195,1998.

Most of ourpublicationsareavailableat thefollowing URL: http://www.informatik.uni-ulm.de/dbis/papers

8



n order
odel, the
ous peo-
eded to

proaches
that run

t a cen-
:

oordi-
depend-

spread
uce a
rocess
micy is
Modelling inter-organizational processes with process
model fragments

Frank Lindert

Wolfgang Deiters

Fraunhofer Institute Software and Systems Engineering

Joseph-von-Fraunhofer-Str. 20

44227 Dortmund

{deiters,lindert}@do.isst.fhg.de

Abstract

Today most of the workflow management approaches focus on centralized business processes
that are being carried out within one orgaization.However, business practice demand that more
and more inter-organizational processes have to be considered. Therefore we developed an ap-
proach for a decentralized process management basing on the concept of process model frag-
ments. The goal of the approach is especially to consider the autonomicy of the organizations
that participate in inter-organizational processes. A process model fragment is related to an or-
ganization and describes the part of the process the organization (resp. its human agents) is re-
sponsible for. By interconnecting process model fragments the information exchange between
the organizations is described. The concept that is proposed in this paper is generic an can be
adopted to many workflow management approaches.

1. Introduction

Within the last years workflow management has become a technology that is being more and more used i
to support business processes. Based on an enactable description of the processes, so called workflow m
processes are being supported by workflow systems that usually interpret the processes, assign to the vari
ple involved in the process the tasks they have to perform, and, provide the tools and objects that are ne
perform the tasks. Thus workflow systems drive and monitor the business processes.

Various approaches have been developed for managing business processes. What is common to these ap
is that they nearly all focus on the management of what we call centralized business processes, processes
in one organization mainly at one geographical location. However, there are several arguments showing tha
tralized approach turns out to be inappropriate for managing many of the larger scale industrial processes

• Processes run across different geographical locations
Various processes are performed in companies that are spread over different geographical locations. C
nating these processes from one central point makes the complete workflow management application 
ent on the connections between the organizations. A breakdown of the central system or the
telecommunication lines between the locations would turn down the complete process in all locations.

• Processes run across different organizational units or even different cooperating partners
In different application areas, such as for example in the automotive industry, business processes are 
over different organizations or even completely independent companies that cooperate in order to prod
common product or service. These partners operate independent from each other on their own „local“ p
parts, furthermore they have agreed on process interfaces on a contractual basis. Since (partial) autono



 them.
cially

m
plica-

pproach
in one

these
ions of
overall

ection
f fractal
nsiders
ponents

pproach
l with or-
on-
ers each
spects
y that

e own

ch other.
ess frag-
it that is

ng en-
ment.

, in the
proc-
place is
e server.
ivision
er proc-
n the dis-
rative
onomy”
l work-
my we
omplex

require-

s auton-
nts the

a-
an important goal for the different partners a central process description would not be accepted among
Furthermore, autonomicy is very important in virtual organizations and in the area of e-commerce espe
in business-to business scenarios.

• Heterogeneous workflow systems are being used
Different partners that work together in a common process partially have their individual workflow syste
installed and running. Thus an approach that enables an interoperation of heterogeneous workflow ap
tions (i.e. applications coming from different vendors) is needed.

Deriving from these requirements we developed a decentralized process management approach. This a
starts from the assumption not to concentrate the process information of the various cooperating partners
model but rather to develop individual process models for the different cooperating partners. We will call
individual process models process model fragments in the following. The fragments are the process definit
the (partially) autonomously operating partners that have to be fitted with interfaces in order to arrange the
coordination.

Within this paper we are going to briefly sketch the concept of process model fragments and the interconn
of these fragments towards decentralized process models. This generic concept is part of the concept o
process management which is described in [Lind99]. Beside the process modelling the whole concept co
also organizational aspects, a fractal process life cycle and a system architecture which considers the com
of a fractal process management including security issues.

2. Process model fragments

The previous section gave a brief motivation for the development of a decentralized process management a
dealing with inter-organizational processes. To support these processes we need a concept capable to dea
ganizational frontiers, autonomous organizations1 that participate in the process, and, heterogeneous envir
ments. The main idea behind that is to extend process management towards managing cooperating partn
of which staying independent from the others as much as possible (e.g. in virtual communities). Thus the a
of autonomy of partners and coordination among partners have to be balanced well. The notion of autonom
we use here is derived from [Warn95] addressing vitual, self-contained, self-organizing units that pursu
goals.

The basic idea of our approach is to build up process fragments that are as independent as possible from ea
A process fragment has interfaces that are used to connect the fragments together. These connected proc
ments represent the inter-organizational process. Each process fragment is related to an organizational un
responsible for the fragment. The fragment contains all activities the organizational unit has to perform duri
action of the process. The organizational unit can autonomously describe the fragment and enact the frag

There exist several approaches that focus on the subdivision of a given process into pieces. For example
Exotica/FMQM project [AMGA95] the subdivision of a process is based on a formerly completely described
ess model. The basic idea there is to build sets of activities that have to be performed at the same “place” (
the server, the responsible users are connected with). Each set of activities is transferred to the appropriat
In [GrGr95] a process model is subdivided into pieces that afterwards can be extended. In [NSH98] the subd
is based on the hierarchical decomposition of a process. An activity of a process can be refined by a anoth
ess. During enaction each process is enacted on one of the available enaction servers. [BaDa97] focuses o
tribution of the enaction of a process to optimize the available resources. [GAHM98] introduces a collabo
editing approach to describe distributed software processes. All these approaches do not consider the “aut
of the organization that participate in the process. [LuWh99] use gateways to support cross-organizationa
flow management. This approach considers the privacy of the organizations which is similar to the autono
want to support but they focus on the system architecture but does not consider synchronization aspects, c
documents types and the description of interfaces in the process model.

To support inter-organizational processes the process fragment approach has to consider the following
ments:

1. Each participating organizational unit has to be able to model, analyse and enact its part of the proces
omously. Then the organizations can hide their processes from other organizations. In virtual environme

1. In the following we use the term organization to describe both, organizational units in large organiz
tions and organizations as a whole.



the other

 of input
 other
ing of
e to dis-
arting a
s, docu-

agment
ple-

ed proc-
ith other

ss frag-
The se-
nts.

derived
site to
a97]
zational

h and
del into

l
, the

el
internal business processes are one key competence of the organizations they want to preserve from 

organizations.1

2. Each process fragment interacts with other fragments. Like a process a process fragment needs a set
documents it works on and produces a set of output documents. The input documents are provided by
process fragments and the output documents are used by other process fragments. However the pass
inputs and outputs between fragments is not restricted towards a „procedure interface“. We rather hav
tinguish between start-up inputs and termination outputs, i.e. documents that are necessary inputs for st
fragments and documents that are produced as result of the fragment and intermediate inputs / output
ments that are being exchanged during the fragments operation.

3. Each participating organization uses its own process management approach. Therefore the process fr
approach must not focus on one specific process management approach. It should be generic to be im
mented in various existing process management approaches.

.

To fulfil theses requirements we introduce the concept of process fragments. They are described by extend
ess models. The extension describes on the one hand the interface, the process fragment uses to interact w
fragments and on the other hand provides additional information for the analysis and enaction of the proce
ments. The interface description is public. It is used by other organizations to connect process fragments.
quence of activities of a process fragment is private to the organization. It is not published to other fragme

The development of the approach is based on the general metamodel in figure 1. This metamodel has been
from the models presented in [Deit93] and [Jabl95]. Additionally we consider services and agents. So oppo
the general process description languages like WPDL [WfMC97], PSL [MSID98], PIF [LGJM96], CPR [PeC
this metamodel does not describe all aspects of a process model, e.g. transition rules or complex organi
structures of the agents.

The following process model fragment definition is based on the view based FUNSOFT [DeGr98] approac
the aspect based approach MOBILE [JB96]. These approaches subdivide the description of a process mo

1. The assumption for the model development is as follows: The cooperating partners meet in an initia
design phase and thereby agree upon the overall process model goal, the main interfaces, etc. Then
model definition of the individual fragments takes place autonomously. Interfaces are checked and
made fitting. Thus, the meaningfulness of the whole process model is achieved by the process mod
development lifecycle (see [Lind99]).

document (D)

service (S)
(tool)

is performed by (Per)is responsible for (Res)

needs (Ne)

supports (Su)

is used by (Us)is produced by (Pr)

figure 1: General metamodel for process models

is 
manipulated by (

Ma)

manipulates (
M)

is predecessor of (Pred)

is followd by (Fo)

activity (A)

entitiy

relation

is refined by (Ref)

agent/ consists of (Cons)

document type (DT)

is a (I)

group of agents (Ag)



uctural
project

control
rocess
the ac-
inter-

s nec-
to hide
uced or

event”

proper

ts gets
ve no in-

f a doc-
describe
nts, e.g.

applica-

escrip-
erted
xample

ne
ion
different views (aspects). Each view focuses on one aspect of the description. Examples of views are str
view (functional aspect, behavioural aspect, information aspect), service view (operational aspect) or the
management view (organizational aspect).

We define a process model as follows:

Definition 1: Process model1:  with

is the structural view,

is the service view,

is the information view and

is the organizational view.

The subdivision of the process into process fragments that we focus on within this paper is related to the
flow and the data flow. For this we have extended the structural view in order to describe the interfaces of a p
fragment. The control flow describes the sequence of activities and the data flow describes the documents
tivities consume and produce. In an inter-organizational process we have inter-fragment control flow and
fragment data flow. Both have to be described in the process model fragment.

To describe the inter-fragment control flow we introduce a new entity in the metamodel called events. This i
essary because the control flow ((Fo) and (Pred) in figure 1 are relations between activities. Since we want
the activities of a process fragment a description serving as a substitution is needed. An event can be prod
consumed by activities. In figure 2 the description of inter-fragment control flow is shown in an example.

To integrate the events in the metamodel we define a new entity and two new relations between the entity “
and the entity “activity”.

To describe the inter-fragment data flow no new entities are needed. There is rather the task to handle the
transfer of documents (incl. document type mapping) between the different fragments2. Therefore, the documents
have to be described in detail in the interface description in order to ensure that the receiver of a documen
the document he expected. The documents that are passed between activities in the process fragment ha
fluence on the inter fragment data flow. The main problem is to describe the structure and the semantics o
ument on both sides. The sender has to describe what documents he will provide and the receiver has to
what documents he needs. In several application domains there exists standards that describe docume
CDIF, STEP, EDIFACT. These standards describe the structure and the semantics of documents. In other
tion domains no standards exist.

In order to describe the documents in the inter-fragment data flow we introduce an external document type d
tion language (DTDL) which is based on the OMG IDL. We removed the method descriptions of IDL and ins
a mechanism to consider the existing standards. Due to the limited space in this paper we only give a short e

1. The abbreviations in the definition can be taken from figure 1.
2. Of course, document types also have to be described within the fragments. However, this is being do

in the languages of the approaches that model the resp. fragments and, thus, no subject of discuss
for the scope of this paper.

PM StV SV IV OV, ,( , )=

StV A Pred Fo Ref Pr Us, , , , ,( )=

SV S Ne Su M Ma, , , ,( )=

IV D DT I, ,( )=

OV Ag Cons Per Res, , ,( )=

“internal” control flow

activity 1

activity 2

activity 1

activity 3

activity 2

activity 2event 2event 1

fragment 1 fragment 2

inter-fragment control flow

connection

figure 2: description of inter-fragment control flow with events

produced consumed



agment

aximum
the data
nt with

al docu-

 a large

tifying
nt with

, multi-

to cope
of a DTDL document description:

Similar to the document type problem there are other aspects to be described in order to define what a fr
expects and what a fragment offers:

• Number of documents.
Whenever more than one document, e.g. a set of documents, has to be transferred, a minimum and a m
number of documents has to be described. Some approaches use containers of documents to describe
flow, e.g. the Petri-net based FUNSOFT [DeGr98] approach. Other approaches describe each docume
one entity in the process model like LinkWorks.

• Copy or move.
In some cases it is necessary to specify that a copy of a document has to be transferred and the origin
ment remains in the sending fragment.

• Optional or required.
Sometimes not all documents are expected. Some may be optional, e.g. for a credit request in case of
credit amount some optional reports have to be transferred.

• Fragment identifying document.
Sometimes it is necessary to determine the receiving fragment (see below). In this case a fragment iden
document can help to do this. For example, an application can identify the appropriate process fragme
the application number.

• Informal annotation.
Due to the fact that the semantics of a document cannot be described any time we consider an informal
media annotation to describe further information of a document.

Summing up the general metamodel has to be extended by new entities, relations and by attributes in order
with process fragments. The extended metamodel is shown in figure 4:

documenttype order: business_transaction{ // Inheritence

typedef struct {
EDIFACT::Bill bill_to_the_customer<annotation1>;
IMC:vcard customer;
Date delivery_data<annotation2>;

} ordering_documents;

...
typedef sequence <EDIFACT::Delivery> single_deliveries
...
attribut ordering_documents MyBill;
...

}

figure 3: Example of a document type definition with DTDL

Reference to a
standard DT



d by

e
xternal
d. Fur-

omplete-
model
oint con-

ess con-
nd data
ime be-
. Con-
metimes
ginning

u-
.

The process model fragment is defined as follows:

Definition 2: Process model fragment: with

is a process model that consists of an extended process view (extende
the relations (St) and (Oc)), a service view , a data view  and a organizational view ,

is the
new interface view that describes the interface of the process fragment1, is the external representation of th
process model fragment that describes the process model in a simplified representation. With this e
representation the organization can decide how much details about the internal activities are to be publishe
thermore during enaction the state of the process fragment can be queried. The external representation is c
ly independent from the process model . is a structured set of connection points of the process
fragment. These connection points are used to connect the process model fragments. Each connection p
sists of a set of events and external documents.

An inter-organizational process consists of several process fragments. So the description of the whole proc
sists of a set of process model fragments that have to be connected in order to describe the control flow a
flow between the fragments. Such a complete description does not need to exist at process model build t
cause sometimes not all fragment information (or even the fragments at all) are known at that point in time
sider e.g. the complex process of developing and producing a new car. Such a process lasts a long time, so
several years. Even the organizations that participate in the production of the car are not known all at the be

1. The attributes FID (fragment identifying document) an Result (specifies a special kind of output doc
ment) is part of , the description of horizontal connection points.

document (D)

service (S)
(tool)

is performed by (Per)is responsible for(Res)

needs (Ne)
supports (Su)

is used by (Us)

is produced by (Pr)

figure 4: Extended general metamodel

is 
manipulated by (

Ma)

manipulates (
M)

is predecessor of (Pred)

is followd by (Fo)

activity (A)

entity

relation

is refined by (Ref)

agents consists of (Cons)

document type (DT)

is a(I)

group of - (Ag)

event (E)

occurs if(Oc)

starts if (St)

Ext Acc

is related to (Rel)

attribut

Kind

MinIn MaxIn

Ann

Opt Ann

MinOut MaxOut

eDT FID
Result

PMFOE PM′ ER IV Con, , ,( )=

PM′ PV′ SV DV OV, ,( , )= PV′
SV DV OV

IV E Kind Rel Ext Acc MinIn MaxIn MinOut MaxOut Opt Ann eDT Hor,,, , , , , , , , , ,( )=
ER

Hor

PM′

PM′ Con



fore it is
s to con-
t that a
t, e.g.
-
rtially

ent life-

onsider
father
d frag-
ario of
s frag-
ents to

that the
connec-

ole
of the process. So is has to be possible to complete the process description even during its enaction. There
possible to leave interfaces unconnected at the start of the enaction. During run-time the process engine ha
sider the interfaces and to notify the process modeller in case of an unconnected interface. Due to the fac
description of the whole process often does not exist in advance only limited possibilities for analysis exis
deadlocks that are spread over several process fragments can’t be computed1. This can’t be avoided because oth
erwise the autonomy of the participants will be violated. Taking into account this autonomy requirement pa
consistency and correctness has to be assured by introducing organizational rules in the process managem
cycle [Lind99].

There exist two major types of connections between interfaces of process fragments. On the one hand we c
vertical connections. This type of connection allows the hierarchical refinement of activities of a so called
process fragment by child fragments. It is a connection between an activity in the father fragment and a chil
ment. This type of connection is similar to the approach in [NSH98] and to the hierarchical connection scen
the WfMC [WfMC96]. We extend these approaches by the multi-vertical connections that allows one proces
ment to be connected by more than one vertical connection (cf. figure 5, in this example we do not use ev
describe the inter-fragment control flow)

The other type of connection is the horizontal connection. This type connects documents and events. By
passing over of documents and events can be described. This kind of connection is similar to the discrete
tion of the WfMC. In figure 6 an example of a horizontal description is shown.

1. In [Aals98] the verification of interorganizational workflow is discussed. This approach is based on
petri nets. All process fragments have to be described by petri nets and the verification uses the wh
petri nets so the autonomy requirement is not assured.

A1

A2

A5

A3

...

...

D1

(Father)Fragment A

(child)fragment B

A6

A7

D4

D3

D5

figure 5: Multiple vertical connection

D1

A1

= document

= activity

= data flow

= control flow
connection of input
and output documents

D2

A10

A11

A12

D4D3

A8
A9

A4

D6



e rela-
Due to
wever,
ect their
upported
sistency
tions lo-

ational
ed. So
t from
tems.

t consid-
aniza-
ystems in
ve been

Sys-
tion of
uced
rs that

face of

o,

, in
za-

ow
In the process model fragment we define the description of offered and expected connections using th
tion . This relation is a set of alternative connections a process model fragment offers resp. expects.
the limited space in this paper we cannot describe all features of the connection process in more detail. Ho
the connection of the process model fragments is a negotiation process. The organizations that want to conn
process models have to ensure that the corresponding interfaces fit together. This negotiation process is s
by the attributes we introduced in the interface description. Based on these attributes we defined a set of con
rules that have to be considered in order to specify valid connections. Each organization stores the connec
cally. This is necessary to fulfil the autonomy requirements.

With the process model fragments each organization can autonomously describe its part of a inter-organiz
process independent from the other participating organizations. Only the interface descriptions are publish
we fulfil the requirements we listed at the beginning of this section. The general metamodel is independen
any existing process model approaches, thus it becomes possible to implement it in different workflow sys

3. Summary

With the concept of process model fragments inter-organizational processes can be described. The concep
ers the autonomicy of the participating organizations. In this paper we described the modelling of inter-org
tional processes. Furthermore we developed an architecture that extends existing process management s
order to model, analyse and enact inter-organizational processes. First components of the architecture ha
developed and implemented in the project VORTEL [BDFL96]. In this project we integrated the CORMAN
tem based on the FUNSOFT approach and the Systems LinkWorks and FlowMark focusing on the enac
workflows.[Henn98] focused on an architecture for supporting a decentralized process modelling. He introd
various traders (based on the CORBA technology) that allow to find process models of cooperating partne
can be matched, that allow a negotiation on the interface, and, that allow to match object types of the inter
different fragments.

References

[Aals98] Aalst, W.M.P., „Interorganizational Workflows“, in Proc. of PROLAMAT’98, p. 21-43, Trent
1998

[AMGA95] Alonso, G., Mohan, C., Günthör, R., Agrawal, D., El Abbadi, A., Kamath, M., “Exotica/
FMQM: A Persistent Message Based Architecture for Distributed Workflow Management”
Proc. IFIP WG 8.1 Working Conference on Information Systems for Decentralized Organi
tions, Trondheim, 1995

[BaDa97] Bauer, T., Dadam, P., “A Distributed Execution Environment for Large-Scale Workfl
Management Systems with Subnets and Server Migration”, in Proc. Second IFCIS
Conf. on Cooperative Information Systems, Charleston, South California, 1997

A2

D5

D4

D3

D2

D1

A1

A7

A6

A4

A5

A3

D6

Ep1

Ep2 EK2

Ek1 D7

fragment 1 fragment 2

fragment 3

figure 6: Horizontal connection of three fragments

a

a

a e

e

e

Output document

Input document

activity

local document

connection

relation

control flow/data flowevent

Con



v-
6

y of

T
. 7 -

i-
ng,

ss
ing
-27,

re

ter-

t
an-

ni-

o
soy,
tech-

cu-
[BDFLS96] M. Böhm, W. Deiters, M. Friedrich, F. Lindert; “Workflow Management as Teleser
ice”, in Computer Networks and ISDN Systems, Vol. 28, No. 4, S. 1961-1969, 199

[Deit93] Deiters W., „A View Based Approach to Software Process Management“, Universit
Berlin, 1993

[DeGr98] Deiters, W., Gruhn, V., “Process Management in Practice - Applying the FUNSOF
Net Approach to Large-Scale Processes”, in Automated Software Engineering 5, S
26, Kluwer Automated Press, 1998

[GAHM98] Grundy, J.C., Apperley M.D., Hosking, J.G., Mugridge, W.B., “A Decentralized Arch
tecture for Software Process Modeling and Enactment”, in IEEE Internet Computi
September October, S. 53-62, 1998

[GrGr95] Graw, G. und Gruhn, V.; “Distributed Modeling and Distributed Enaction of Busine
Processes”, In Software Engineering ESEC ‘95, 5th European Software Engineer
Conference, Sitges, Lecture Notes in Computer Sience 989, Springer Verlag, S. 8
1995

[Henn98] Henning, D., “Eine Systemarchitektur für dezentrales Prozeßmanagement in
autonomen Organisationseinheiten”, Diplomarbeit Universität Dortmund, 1998

[JB96] Jablonski S., Bussler C., Workflow Management. Modelling Concepts, Architectu
and Implementation, International Thomson, 1996

[LGJM96] Lee, J., Gruninger, M., Jin, Y., Malone, T., Tate, A., Yost, G. et al, “The Process In
change Format and Framework”, Working Group, Version 1.1, 1996

[LuWh99] Ludwig, H., Whittingham, K., „Virtual Enterprise Co-ordinator - Agreement-driven
Gateways for Cross-Organisational Workflow Management“, Proc. of the Int. Join
Conference on Work Activities Coordination and Collaboration (WACC’99), San Fr
cisco, 1999

[Lind99] Lindert, F., „Fraktales Prozeßmanagement“ (in german), Phd. Thesis, Technical U
versity of Berlin, 1999

[MSID98] Manufacturing Systems Integration Division, “The PSL Home Page”, http://
www.mel.nist.gov/psl/, 1998

[NSH98] Neeb, J., Schaumberger, R., Schuster, H., „Using distributed Object Middleware t
implement scalable Workflow Management Systems“, in Ozsu, T., Dogac, A., Ulu
O. (Eds.), Proc of the 3rd Biennial World Conf. on Integrated Design and Process
nology, Berlin, 1998

[PeCa97] Peace, R. A., Carrico, T., „The JTF ATD Core Plan Representation: A Progress
Report“, Proc. of the AAAI Spring Symposium on Ontological Engineering, 1997

[Warn95] Warnecke, H.-J., „Die fraktale Fabrik - Revolution in der Unternehmenskultur“ (in
German), Springer, Heidelberg, 1995

[WfMC96c] Workflow Management Coalition, “Workflow Standard - Interoperability, Abstract
Specification”, Document Number WfMC TC-1012, Version 1.0, 1996

[WfMC97] Workflow Management Coalition, “Interface I: Process Definition Interchange”, Do
ment Number WfMC TC-1016, Draft 6.94, 1997



Adaptive Workflows based on Flexible Assignment of
Workflow Schemas and Workflow Instances

– Extended Abstract –

Mathias Weske
Westfälische Wilhelms-Universit¨at Münster

Steinfurter Straße 107, D-48149 M¨unster, Germany
weske@helios.uni-muenster.de

1 Introduction

Traditionally, workflow management deals with controlling the execution of application processes
according to pre-defined specifications, known as workflow schemas [3, 8, 13]. This approach is well
suited to support application processes with fairly static control structures. Real-world application
processes, however, are not static in general. In contrast, they may require dynamic modifications to
react quickly to new challenges imposed by the environment of the application process. While the
exact definition of flexibility in workflow management systems is still under discussion [12, 7], it is
widely accepted that dynamic modifications – or adaptations – of running workflows is an important
feature of a flexible workflow management system [10, 2, 11]. This extended abstract sketches the
conceptual design and implementation of dynamic modifications in the context of the WASA project
at the University of Muenster.

2 The WASA2 Approach

We use a workflow language based on process graphs, similar to those used by IBM’s MQSeries
Workflow (formerly IBM FlowMark). Workflows can be atomic or complex, there are data flow and
control flow constraints between workflows, and technical and organizational information is ttached to
workflow schemas. WASA2 is based on an object-oriented approach: Workflow schemas and workflow
instances are objects, which are characterized by a state and a behavior and which communicate with
each other by sending and receiving messages. This general approach allows the flexible re-use of
workflow schemas as sub-workflows in different complex workflow schemas, such that the embedding
of the different occurrences of a workflow schema can be different with respect to its start condition
and control flow and data flow constraints.

The object-oriented design and a distributed object middleware allow distributed workflow exe-
cutions, such that workflow objects of a given workflow application can reside in different sites of a
distributed computing system. In this case, workflows are controlled in a distributed manner without
the need for a centralized workflow engine, which can become a performance bottleneck in large-scale
workflow applications. In terms of flexibility, modeling workflow schemas and workflow instances as
objects allows to change the association of a workflow instance with its controlling workflow schema.
Hence, during its life time, a workflow instance can be controlled using different workflow schemas.

1



Workflow

Complex Atomic 

WF-SubWF
Relationship

Parameter

Output
Parameter

Input
Parameter

 d
es

tin
at

io
n

 s
ou

rc
e 

source WF

super-workflow

instance-of

Instance

Model

Horizontal Data
Connector

version

super-version

sub-version

sub-workflow

Control
Connector

source destination

dest. WF

Figure 1: WASA2 Workflow Meta Schema (Simplified Version).

The remainder of this section sketches the conceptual design of the system, which is specified in
a workflow meta schema; a simplified version of the WASA2 workflow meta schema is shown in
Figure 1. Due to space limitations, we do not elaborate on different modeling alternatives for object-
oriented workflow management systems [14], and we only discuss the parts of the workflow meta
schema which are relevant for dynamic modifications.

The workflow class is in the center of the WASA2 workflow meta schema; it contains workflow
schema objects and workflow instance objects. Workflows can be either atomic or complex. The work-
flow hierarchy (i.e., the relationship between a complex workflow and its sub-workflows) is modeled
by the WF-SubWF Relationship class, which defines a relationship between a complex workflow and
a workflow, which can be complex or atomic. Workflow schemas and workflow instances are iden-
tified by states. The relationship between a workflow instance and the respective workflow schema
is represented by an instance-of relationship. Each workflow schema can be associated with multiple
workflow instances, while each workflow instance is associated with exactly one workflow schema
at any given point in time. This relationship allows the flexible assignment of workflow instances to
workflow schemas, as will be discussed in more detail in the remainder of this extended abstract.

Other parts of the meta schema deal with control connectors and data connectors; a control connec-
tor relates two WF-SubWF Relationship objects, defining execution order of the respective workflows.
Each workflow has a set of input parameters and a set of output parameters, whose commonalities are
represented in a Parameter class. Horizontal data flow represents data flow between workflows of a
common super-workflow, while vertical data flow represents data flow between a super-workflow and

2



its sub-workflows. The complete WASA2 workflow meta schema as well as the design of the system
and its implementation based on CorbaServices is presented in [15].

3 Dynamic Modifications in WASA2

The ability to dynamically modify the structure of running workflow instances is an important feature
of a flexible workflow management system, since it allows running workflow instances to adapt to
changes in the environment. In this context, “environment” refers to the market environment of pro-
cesses, including new services provided by competitors, new and faster or more cost efficient ways to
produce or deliver goods, and providing new services or parts thereof. Besides changes in the mar-
ket, there may be new legal regulations that have to be implemented by application processes. For
instance, consider a new legal regulation that a single checking mechanism has to be changed to a
double-checking mechanism. As a consequence, workflow instances have to use the new checking
policy in order comply with the new regulations. Changes in the technical environment of the process
are another motivation for dynamic modifications. Assume there are new tools available to perform
tasks more efficiently then the active and all future workflow instances should make use of the new
infrastructure.

In dynamic modifications, it is important to define correctness criteria which determine if and when
a workflow instance can be adapted to a new workflow schema. To motivate our correctness criterion,
we start by discussing correctness in workflow applications in general, i.e., without dynamic modi-
fications. Since in the workflow context, generic correctness properties like in database transaction
processing (e.g., conflict serializability, recoverability) do not suffice to describe correct workflows,
application specific correctness criteria have to be defined. From an application-oriented point of
view, these criteria are specified in business process models, which describe which activities have to
be performed, and what are the constraints between them. When supporting business processes by
workflow technology, the correctness of workflow instances is specified in workflow schemas. Hence,
a workflow execution is correct if and only if it satisfies the criteria specified in the respective workflow
schema. Control flow and data flow constraints as well as role information and technical information
are examples of properties which are specified in workflow schemas and which have to be met by work-
flow instances. The task of a workflow management system is to make sure each workflow instance is
executed according to its workflow schema.

Based on this perception of correctness in the workflow context, the approach to controlling dy-
namic changes in WASA2 is fairly simple, yet effective:

A workflow instance can be dynamically modified, i.e., it can be adapted to a new workflow
schema, if the workflow instance could have been controlled from the beginning using the
new workflow schema.

For an example consider Figure 2, which shows a workflow schemaS (a), a modified workflow schema
S0 (b) and two currently active workflow instancesi andj, based on the original workflow schemaS
((c) and (d), resp.). Notice that workflow instancesi andj are correct with respect to workflow schema
S, since they can be continued according toS. We now assume that there is a dynamic modification,
changing workflow schemaS to S0, shown in Figure 2(b).

When a workflow administrator decides to change a workflow dynamically, he or she first suspends
the execution of the workflow. This is necessary, since otherwise race conditions between the normal

3



1c 2c

3e

3f

(d) Workflow Instance j, based on S
(cannot be adapted to S’)

4c1b 2b

3c

3d

(c) Workflow Instance i, based on S
(can be adapted to S’)

1 2

3

4 5

3

7 6

6

(b) Modified Workflow Schema S’

1 2

3

4 5

3

(a) Workflow Schema S

Figure 2: Workflow SchemasS andS0 and Workflow Instancesi; j, based onS.

workflow execution and the correctness checks would occur. In our example, given workflow instances
i andj (so far based onS), the system now has to decide whether these can be continued with the
modified workflow schemaS0. This check is performed by analyzing the current state of the workflow
instances and matching the structure of the new workflow schemaS0 against the states.

We first consider workflow instancei. It is obvious that the workflow instance can be adapted
to S0, since there is a mapping between the sub-workflow instance already executed on behalf ofi

and sub-workflow schemas ofS0. More technically, the decision whether or not a workflow instance
can be adapted to a new workflow schema is taken based on a mapping. The sub-workflow instances
which have already been executed are mapped to the sub-workflow schemas of the new workflow
schema. In our example, sub-workflow instance1b of workflow instancei is mapped to sub-workflow
schema 1 of workflow schemaS0, and sub-workflow instance2b is mapped to sub-workflow schema
2 of S0. The two workflow schemas based on 3 can be mapped to3a and3b. Since furthermore the
control flow constraints of the workflow instance and the workflow schema comply, and assuming that
data flow constraints also comply, a mapping can be found. As a consequence,i can be continued to
become a complete workflow instance based onS0: after the termination of3c, an instance7a (based
on workflow schema 7) and an instance6a (based on workflow schema 6) can be started, and after the
completion of3d an instance6b (based on workflow schema 6) can be executed. Finally, workflow
instances based on workflow schemas 4 and 5 can be performed sequentially. Hence, the resulting
workflow instance is correct and complete with respect to the new workflow schemaS0.

Along the lines of this argumentation it is clear thatj cannot be adapted to the new workflow
schema. It proceeded further thani; in particular, it already started a sub-workflow instance based on
workflow schema 4, i.e.,4c. Since in the modified workflow schemaS0, 4 can only be stated after
additional sub-workflow instances have completed, workflow instancej (d) violates this requirement.
Even starting sub-workflow instances for 7 and 6 (as specified inS0) right away would not help, since
by the control flow constraints specified inS0, an instance of 4 cannot start until workflow instances
based on workflow schemas 7 and 6 have been executed. This constraint imposed by workflow schema
S0 cannot be satisfied by any continuation ofj. Hence,j cannot be modified dynamically with respect
to workflow schemaS0.

4



In WASA2, the instance-of relationship associates a workflow instance object with a workflow schema
object. At each point in time, each workflow instance object is associated with exactly one work-
flow schema object, while each workflow schema object can be associated with an arbitrary number
of workflow instance objects. Given this organization, dynamic modifications can be implemented by
changing the respective instance-of relationship objects at runtime. To implement a dynamic modifica-
tion based on a workflow schemaS with numerous currently active workflow instances, the following
steps are carried out:

� create a new workflow schema (or use an existing one)S0

� based on the instance-of relationship, letC be the set of all workflow instances which are asso-
ciated withS

� compute a setC0
� C of workflow instances which can be adapted to the new workflow schema

S0, based on finding a mapping as sketched above

� allow a workflow administrator to select a subset ofC0 of workflow instances, which will ac-
tually be dynamically modified; update instance-of relationship of these workflow instances
accordingly

� all workflow instances are continued using their respective instance-of relationships, i.e., mod-
ified workflow instances are continued withS0, and non-modified workflow instances are con-
tinued with the original workflow schemaS

To perform an adaptation of workflow instancei to S0, sub-workflow instances which are no longer
needed are deleted, and new sub-workflow instance objects are created, as specified in the new work-
flow schemaS0. These workflow instance objects are embedded in the context of the complex work-
flow instance by creating the respective WF-SubWF Relationship objects. In our example, new work-
flow instance objects7a, 6a, 6b, 4d and5b are created and attached to the complex workflow using
WF-SubWF Relationship objects. The workflow is continued with the execution of the sub-workflow
instances7a and6a.

4 Related Work

Two recent workshops were devoted to adaptive and flexible workflow management [7, 12]. In [5]
a taxonomy of adaptive workflow management is proposed. In particular, the constantly changing
market environment of business processes is regarded as a major motivation for flexible workflow
management. Process level adaptations and resource level adaptations are among the requirements for
a flexible workflow management system. Techniques for exception handling in workflow management
systems are identified and classified in [9, 1]. An approach to enhance the flexibility of workflow
management systems based on an integration of workflow and workspace management techniques is
discussed in [6]. To classify flexibility requirements,a priori anda posteriori flexibility is character-
ized by properties of the application that are known before it starts and after it has started, resp.

In [10] a workflow language ADEPT is proposed, which allows to specify workflow schema using
symmetric graphs. There are different node types, reflecting for instance split and join nodes, and
start and end nodes of loops. Based on this workflow language, a model ADEPTflex supporting a
set of operations to change the structure of workflows is defined, allowing to dynamically change

5



workflows, while keeping their symmetric structure. ADEPT does not consider workflow schemas;
only workflow instances are discussed. Hence, the approach does not consider dynamic changes in
presence of multiple workflow instances based on a modified workflow schema. There is an operational
running prototype implementing dynamic modifications according to ADEPTflex. In [4], a Petri-
Net based approach to model workflows which includes flexibility mechanisms is proposed. Simple
dynamic modifications are allows, for instance to leave unspecified defined portions of the net to be
filled when the workflow executes; this is denoted by late modeling; this functionality is implemented
in the CORMAN prototype [4].

5 Conclusions

This extended abstract sketches the design of controlled dynamic modifications of workflow instances
by a flexible assignment of workflow schemas to workflow instances. By allowing to change the as-
signment of workflow instances and workflow schemas at different points in time, different schemas
can be used to control a workflow. An adaption of a workflow instancei to a workflow schemaS0

can be done wheneveri can be continued such that it fitsS0. This elegant yet simple characterization
of the correctness of a dynamic modification allows to maintain the correctness property of workflow
instances with respect to workflow schemas, while providing workflow flexibility by dynamic modifi-
cations. Future work in the WASA project will be centered around user interface design, and we plan
to use the WASA2 system in real-world workflow applications which make use of the capabilities of
the system.

References

[1] Deiters, W., Goesmann, T., Just-Hahn. K., Lffeler, T. Rolles, R.:Support for exception handling through
workflow management systems. In Proceedings CSCW-98 Workshop: Towards Adaptive Workflow Sys-
tems. (downloaded from http://ccs.mit.edu/klein/cscw98/paper19 on 09-24-1998)

[2] Ellis, C., K. Keddara, G. Rozenberg:Dynamic Change Within Workflow Systems. In Proc. Conference on
Organizational Computing Systems (COOCS) 1995, 10–22

[3] Georgakopoulos, D., M. Hornick, A. Sheth:An Overview of Workflow Management: From Process Mod-
eling to Workflow Automation Infrastructure. Distributed and Parallel Databases, 3:119–153, 1995

[4] Hagemeyer, J., T. Herrmann, K. Just-Hahn, R. Striemer:Flexibility in Workflow Management Systems (in
German). Software-Ergonomie ’97, 179–190, Dresden, March 1997.

[5] Han, Y., Sheth, A., Bussler, C.: A Taxonomy of Adaptive Workflow Management. In
Proceedings CSCW-98 Workshop: Towards Adaptive Workflow Systems. (downloaded from
http://ccs.mit.edu/klein/cscw98/paper03 on 09-24-1998)

[6] Joeris, G.: Aspects and Concepts of Flexibility in Workflow Management Systems. (in German) In Proc.
D-CSCW98 Workshop on Flexibility and Cooperation in Workflow Management Systems, Dortmund,
Sept 1998. Technical Report Angewandte Mathematik und Informatik 18/98-I, University of Muenster,
Germany 1998

[7] Klein, M. (Ed.): Towards Adaptive Workflow Systems. Workshop in The 1998 ACM Conference on Com-
puter Supported Cooperative Work, Seattle, Washington, November 14-18, 1998 (Online Proceedings at
http://ccs.mit.edu/klein/cscw98/ on 09-24-1998)

[8] Leymann, F., W. Altenhuber:Managing Business Processes as an Information Resource. IBM Systems
Journal 33, 1994, 326–347

6



[9] Luo, Z., Sheth, A.: Defeasible Workflow, its Computation and Exception Handling. In
Proceedings CSCW-98 Workshop: Towards Adaptive Workflow Systems. (downloaded from
http://ccs.mit.edu/klein/cscw98/paper10 on 09-24-1998)

[10] Reichert, M., P. Dadam:Supporting Dynamic Changes of Workflows Without Loosing Control. Journal
of Intelligent Information Systems, Special Issue on Workflow and Process Management, Vol. 10, No. 2,
1998

[11] Sheth, A., D. Georgakopoulos, S.M.M. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, A. Wolf:Report
from the NSF Workshop on Workflow and Process Automation in Information Systems. Technical Report
UGA-CS-TR-96-003 University of Georgia, Athens, GA, 1996

[12] Siebert, R., Weske, M. (Eds.):Flexibility and Cooperation in Workflow Management Systems. (in German)
Workshop at D-CSCW98, German Conference on CSCW 1998, Dortmund, Sept 1998. Technical Report
Angewandte Mathematik und Informatik 18/98-I, University of Muenster, Germany 1998

[13] Weske, M., Vossen, G.:Workflow Languages. In: P. Bernus, K. Mertins, G. Schmidt (Editors): Handbook
on Architectures of Information Systems. (International Handbooks on Information Systems), pp 359–379.
Berlin: Springer 1998

[14] Weske, M., Hündling, J., Kuropka, D., Schuschel, H.:Object-Oriented Design of a Flexible Work-
flow Management System. (in German) Informatik Forschung und Entwicklung. 13(4) 1998, pp 179–195.
Berlin: Springer 1998

[15] Weske, M.: Design and Implementation of an Object-Oriented Workflow Management System. Fach-
berichte Angewandte Mathematik und Informatik 33/98-I, Universit¨at Münster 1998

7



*This work has been supported by the German Ministry for Research and Technology (BMBF) , project MOKASSIN under grant number 01 IS 606 B

Defining Flexible Workflow Execution Behaviors

Gregor Joeris
Intelligent Systems Department, TZI - Center for Computing Technologies

University of Bremen, PO Box 330 440, D-28334 Bremen
joeris@informatik.uni-bremen.de

Abstract. In this paper, we focus on the definition and adaptation of the execution behavior of a task in
order to support flexible workflows in the presence of distributed workflow enactment. We argue that an
adequate behavior definition is the basis for both, modeling less-restrictive workflows in advance as well
as supporting dynamic workflow changes. We show how different control flow dependency types can be
specified in our approach and can be used to define less-restrictive workflows. Furthermore, we discuss
the definition of an adequate behavior for dynamic modifications in different situations. In particular, we
describe how the application of and reaction to dynamic changes can be adapted in our approach de-
pending on the process context and the behavior of a task itself.

1. Introduction

The development of process-model based workflow management systems (WFMS) has been driven mostly by
focussing well-structured business processes from the viewpoint of transactional processing. WFMSs are ap-
plied following a rigorous methodology of business process (re-)engineering and formal workflow specification
which leads to well-defined processes and is well-suited for production workflows. This restricted view –
which is not inherently caused by the workflow paradigm – is the main reason for the inflexibility of today’s
WFMS and their underlying process representation formalisms. Support for flexible workflows in process-
model based WFMS has to cope with two fundamental challenges:

(a) A-priori flexibility focus on the specification of a flexible workflow execution behavior to express an
accurate and less restrictive behavior in advance; flexible and adaptable control and data flow mechanisms have
to be taken into account in order to support ad hoc and cooperative work at the workflow level (cf. [ElNu96]).

(b) A-posteriori flexibility (flexibility by dynamic adaptation) is provided by the change and evolution of
workflow models in order to modify workflow specifications on the schema and instance level due to dynami-
cally changing situations of a real process (cf. [EKR95, CCPP96, ReDa98, JoHe98]). Note, that in the case of
dynamic modifications we also have to define a-priori when, i.e. in which context and in which state of execu-
tion, certain modifications are allowed in order to ensure the dynamic and semantical consistency of a process.

Thus, the definition of the behavior of workflow execution as well as workflow evolution are the basis for
supporting flexible workflows. In this paper, we focus on the workflow behavior definition and adaptation in
both cases in the presence of a distributed workflow enactment approach which forms the basis for a scalable
workflow management system. First, we sketch our workflow modeling language and show how the behavior
of a task can be defined and adapted in different contexts. In particular, user-defined control flow dependencies,
which allow to define and reuse complex behavior patterns, can be specified and applied in different contexts.
Next, we outline how these concepts can be used to define a-priori less-restrictive workflows, i.e. workflows
where a certain degree of freedom is left open to the actor. Furthermore, we discuss the definition of an ade-
quate behavior for dynamic modifications in different situations without restricting our self on a transactional
view on processes. In particular, we show how the application of and reaction to dynamic changes can be
adapted in our approach depending on the process context and the behavior of a task itself.

2. The Workflow Modeling Approach
2.1 Task and Process definition

The building block of our workflow modeling approach is a task definition (or task type) which consists of a
task interface, that specifies ‘what is to do’, and potentially several process definitions, which specify how the
task may be accomplished. The task interface is defined by attribute, parameter, and process constraint defini-



- 2 -

tions (all neglected throughout this paper) and by a task behavior definition which specifies the external con-
text-free behavior of a task (e.g., transactional or non-transactional). The context-dependent behavior of task is
defined by its application within a process definition. A process definition1 may be atomic consisting only of a
task description or system invocation, or complex. A complex process is defined in an activity-oriented manner
by a task graph. The decision is taken at run-time, which process definition of a task definition is used to per-
form a task (late binding). This late binding mechanism also allows to create a new process definition at run-
time (late modeling).

A task graph consists of task components, connectors, start and end nodes, and data inlets and outlets,
which are linked by control and data flow dependencies: A task component is an applied occurrence of a task
definition within a process definition. For every task component a split and join type (AND / OR) can be speci-
fied. Furthermore, connector components are predefined which just realize splits and joins.

Task components (and start and end node) are linked by control flow dependencies. Iterations within this
task graph are modeled by a special predefined feedback relationship. A condition can be associated to every
dependency to support conditional branches. We allow to define different control flow dependency types which
can be applied and reused within several process definitions. The semantics of a control flow dependency type
is defined by ECA rules as shown in the next section and illustrated in figure 2.

Similar to the definition of control flow dependencies we support the definition of group relationship types.
A group relationship is used within a process definition in order to group arbitrary task components of a task
graph; it applies the behavior defined by the group relationship to its components. A task component can be
part of several not necessarily nested groups. A special kind of a group is a block. Blocks are nested and con-
tain a subtask-graph with exactly one start and end component (particularly useful for exception handling).

Finally, task components can be linked by dataflow relationships according to the input and output pa-
rameters of their task definitions. Furthermore, a data inlet (or outlet) is used as a data source (or sink) in order
to realize a vertical dataflow between the parameters of the task definition and their use within the workflow.

2.2 Distributed Workflow Enactment and its Execution Semantics

The execution semantics of tasks and of the task graph is defined by a statechart variant and event-condition-
action (ECA) rules. Our enactment model is based on treating tasks as reactive components which encapsulates
their internal behavior and interact with other tasks by message/event passing. This is a natural basis for a dis-
tributed enactment of workflows which was one of the design goals of our approach (beside of flexibility), and
it is essential for scaling up to enterprise-wide workflow support.

A task has several built-in operations, which can be categorized into state transition operations, actor as-
signment operations, operations for handling of (versioned) inputs and outputs, and workflow change opera-
tions. For every operation, the task has the knowledge about when to trigger the operation, a condition that
must hold for executing the transition and that acts as guard, and a list of receivers to which events are passed
(to avoid communication overhead, we use no broadcast).

Before we introduce the behavior definition and adaptation on schema level, we briefly sketch syntax and
semantics of our ECA rules (see [JoHe99a] for details; examples are given in figure 1 and 2): First of all, an
ECA rule is always associated with an operation/transition, which defines the action part of the rule. Thus,
ECA rules are structured according to the task’s transitions. Additionally, an ECA rule consists of a list of event
captures, a condition, and a receiver expression. Events define when an operation is to be triggered: when a task
receives an event that matches an event capture in the event capture list, and when the task is in the source state
of the corresponding transition, the event is consumed and the task tries to perform the transition. The invoca-
tion of a transition causes the evaluation of its condition. This transition condition acts as a guard, i.e., the tran-
sition is performed only when the condition holds (otherwise nothing is done). Thus, we follow a state-based
semantics where a transition can be triggered by (internal and atomic) events or externally by user invocation.
Invocation and applicability of a transition are strictly separated. The matching of an event with an event cap-
ture can be qualified to the causing task. For example, this allows a task to react differently on the event ’fin-

                                                     
1 Note, that we use process definition in a more restricted sense defining only how a task has to be done. To avoid misunderstandings, we use workflow

and workflow specification as a general term (independent from our approach) in the usual more broader sense.



- 3 -

ished’ depending on whether the event was received from a predecessor or from a sub-task. Furthermore, a trig-
ger condition can be specified within an event capture which must hold for a valid event capture. Otherwise,
the next event capture which matches the event is searched.

2.3 Definition and Adaptation of the Execution Behavior

The context-free behavior of a task is given by the behavior definition of a task definition by means of a state-
chart variant. It defines the states, their decomposition, and the operations/transitions which can be invoked in a
certain state. Furthermore, exactly one context-free ECA rule can be defined for every transition. A task defini-
tion can inherit from an abstract task
definition, i.e., a task definition with
no process definitions, in order to de-
fine behavior classes of tasks (e.g.,
non-transactional, transactional; cf.
[KrSh95, Wes98]). Within an inher-
ited statechart, states can be refined
and transitions can be added and rede-
fined by changing their associated
ECA rule. This allows to adapt the
context-free behavior of tasks. Every
task definition inherits from a prede-
fined task definition, which consists of
a statechart that defines the basic
states, transitions, and context-free
ECA rules as illustrated in figure 1.

The context-dependent behavior is given by the control flow dependencies and groups within a process defini-
tion. Rather than providing a limited set of different built-in control flow dependency types and group relation-
ship types, arbitrary control flow types can be defined and adapted by a process engineer (cf. [JaBu96]). They
are defined by a label, an informal description, and a set of ECA rules, which give the semantics of the depend-
ency type. Within the task graph, the control flow dependencies or group relationships can be used by their la-
bels abstracting from the detailed definition and reusing complex behavior patterns. Control flow dependency
types are used to define ECA rules which establish intertask dependencies (e.g. end-start, start-start, deadline).
Group relationship types are used to apply a behavior pattern to an arbitrary set of components.

As an example, we briefly explain the definition of the standard end-start dependency which consists of
several rules partially shown in figure 2. We concentrate on the first rule which is defined for the enable transi-
tion and is applied to the target component of the dependency. The event capture defines that the enable transi-
tion is triggered whenever an event ’finished’ has been received along the standard dependency under the con-
dition that the corresponding dependency condition (specified by the placeholder ’dependency_condition’)
evaluates to true. The condition of the transition is defined by an reference to the source component requiring
that it is an state done. The receiver expression is omitted in all examples.

In order to obtain the behavior of a task instance, the (partially) defined ECA rules of the context-free behavior
are joined with the ECA rules that the task instance inherits from its context, i.e. from its dependencies and
group relationships within a process definition. An example is shown in figure 2 for the ’FunctionalCheck’ task
which obtains the behavior of the incoming standard end-start dependency from ’Design’, of the group type ’Ex-
clusion’, and of the context-free statechart. There are different modes for merging the context dependent be-
havior definitions. These modes are defined for every ECA rule (omitted in Fig. 2) and are applied to the tran-
sition condition: (a) conjunctive (default for group relationships) (b) disjunctive (c) using the join type of the
component (default for dependencies) (d) using the inverted join type of the component (e) overriding. De-
pendency or group types using the overriding mode for the same transition cannot be applied simultaneously to
a component. The overriding mode is normally used for adapting the application condition of change opera-
tions (see section 3.3).

suspend
suspended active

disabled ready

donefailed

waiting

running
resume

enable*

disable*

finishabort

terminated

not_executediterate*,
repeat

truncate*, skip start

   FOR enable DEFINE:
       ON resumed, /* event capture list */
             iterated BY self
             process_selected BY supertask,
             output_released BY supplier,
             predecessor_removed,
             incoming_dependency_changed
             [...]
       IF supertask.state=active AND
            mandatory_inputs_available

   FOR disable DEFINE:
      ON suspended,
             output_unreleased BY supplier,
             predecessor_added,
             incoming_dependency_changed
             [...]
      IF NOT condition_of(enable)

   FOR add_predecessor DEFINE:
      IF state=waiting
[...]

add_supplier, remove_supplier, add_predecessor,
remove_predecessor, change_incoming_dependency, ...

select-
workflow

(A) Predefined state transition diagram (B) Predefined context free ECA rules

created

get_input,
produce_output

* = system-internal transition; not controllable by the user

Figure 1: Predefined context-free execution behavior



- 4 -

3. Behavior Definition and Adaptation for Flexible Processes

In this section, we show how the introduced concepts of behavior definition can be used to define a priori flexi-
ble workflows and to adjust the application condition of and the reaction to dynamic changes depending on the
behavior of the task itself and the context.

3.1 Defining Less-restrictive Workflows

We give two examples of defining a-priori less-restrictive workflows, i.e. workflows where a certain degree of
freedom is left open to the actor, using the introduced concepts of user-defined control flow types.

The first example is the definition of the group relationship type ‘exclusion’ which is shown in figure 2. It
forces its members to execute mutually exclusive. In conjunction with parallel branches, we can define that
certain tasks should be executed sequentially, but without defining the actual ordering of the tasks. So, the user
can choose which task he or she wants to perform next. In our example, a QA engineer may decide whether
he/she wants to check a specification first against the functional or against the ergonomic requirements.

The second example focuses on skipping a task. Since skipping a task is normally not desirable (except
from the viewpoint of the actor) and probably cause serve problems when needed output data has not been pro-
duced, its application should be restricted. Furthermore, in our state-based semantic, skipping a task would re-
sult in a deadlock since the successor tasks would wait for termination of the skipped task. Both problems are
solved by the control flow dependency type ‘softsync’ (cf. [ReDa98], which also show useful applications in
the case of dynamic changes). It waits only for the termination of a task when the task still can be executed (see
relaxed enable condition in figure 2). Furthermore, the dependency allows to control when skipping is enabled.
The skip transition is disabled for tasks which have at least one outgoing standard dependency. Thus, the proc-
ess modeler can define which tasks can be skipped in a certain workflow.

3.2 Supporting Collaborative Workflows

Collaborative workflows are supported in our approach by version and workspace control capabilities which
are integrated with the workflow model on conceptual level. Consumed and produced versions are managed
within a task-oriented workspace. Versions can be released for dedicated tasks which allows a versioned data

(B) Definition of different dependency / group types

CONTROL FLOW DEPENDENCY standard
   FOR enable OF target DEFINE:
       ON finished BY predecessor standard WHEN dependency_condition
       IF source.state=done AND dependency_condition
   FOR truncate OF target DEFINE: /* for dead path elimination */
       ON truncated BY predecessor standard,
             finished BY predecessor  WHEN NOT dependency_condition
       IF (NOT dependency_condition AND source.state=termnated)
           OR source.state=not_executed /* inverted mergingis mode used here!*/
   FOR skip OF source DEFINE: /* disable skip for the source task */
      IF false /* using the and merging mode */
   [...]

CONTROL FLOW DEPENDENCY softsync /* in contrast to ‚standard‘ also */
   FOR enable OF target DEFINE: /* enabled when predecessor */
     ON truncated BY predecessor softsync, /* has been truncated */
            finished BY predecessor softsync WHEN dependency_condition
      IF source.state=done AND dependency_condition
          OR source.state=not_executed
   FOR skip OF source DEFINE: /* enable skip for the source task */
      IF true
 [...the rest similar to control flow dependency standard]

CONTROL FLOW GROUP exclusion /* mutual exclusion */

   FOR disable DEFINE:
      ON started BY groupmember_of  exclusion

   FOR enable DEFINE:
       ON disabled BY groupmember_of exclusion,
              finished BY groupmember_of exclusion
       IF FORALL related_members_of  exclusion: state != running

(C) Derived ECA rules for ‚FunctionalCheck‘

DO enable
    ON disabled BY { ErgonomicCheck },
           finished BY { Design, ErgonomicCheck }
           [...]
    IF Design.state=done AND        /* from ‚standard‘ */
        ErgonomicCheck.state != running AND  /* from ‚exclusion‘ */
        supertask.state=active        /* from contxt-free beh.*/
        [...]

DO  disable
    ON started BY { ErgonomicCheck },
           suspended BY supertask
           [...]
    IF NOT condition(enable)
[...]

(A) Workflow with different dependency / group types.

Design an
d

Functional
Check

and

Ergonomic
Check

SoftSync

Exclusion

Figure 2: Different control flow types and their application for the definition of flexible workflows



- 5 -

flow and the exchange of intermediate results between tasks. Furthermore, the data flow can be also used for
control flow purposes. The availability of input data can be checked and the operations for releasing outputs
generate events as any other transition so that tasks can react on these events. For example, the event ‘out-
put_released’ triggers the evaluation of the enable transition of the consumers (see figure 1 and 3).
It is out of the scope of this paper to present details about the workspace capabilities (see [Joe98]). Rather, we
like to show, how data exchange between simultaneously active instances can be controlled on the workflow
level by means of the simultaneous dependency (cf. [HJKW96]). The definition of this dependency is illus-
trated in figure 3. It relaxes the activation condition so that the dependent task does not have to wait for the
termination of the preceding task; a task is enabled when all mandatory inputs are available and the preceding
task has been started. The main purpose of the simultaneous dependency is to ensure that the dependent task
does not terminate before the preceding task. This termination synchronization guarantees that the latest results
of the supplier is processed by the consumer. An example application is the design and review of a technical
document where the designer may request for an early feedback from the reviewer (see figure 3).

3.3 Situation-dependent Handling of On-the-fly Changes

Our approach to dynamic changes of enacting workflow instances is based on applying ECA rules also to
change operations. Every change primitive is encapsulated by a pre-condition which restricts its application,
and by raising a corresponding event which is handled by the affected instances in order to ensure the behav-
ioral consistency of the execution states. Thus, conceptually a change operation can be treated like a state tran-
stion, and on-the-fly changes are supported in the presence of distributed workflow enactment since every task
instance object has the knowledge about how to react on a change. The basic idea of this approach has been
presented in our previous work DYNAMITE [HJKW96] on software process management, and all details of
our approach to managing evolving workflow specifications can be found in [JoHe99b].

Whether a change is allowed and how to react on it highly depends on the particular situation and the be-
havior of the involved tasks. In this paper, we concentrate on the situation-dependent handling of dynamic
changes. As an example, we outline useful application conditions and reactions for adding a new predecessor
task (as an insertion between two sequential tasks or as a new parallel branch). In this case, the insertion of a
new control flow dependency is important. It affects the target component which depends on a new predecessor
task. Depending on the behavior of the affected task and on the context in which the task is applied, different
application conditions and reactions can be useful for this change which all can be realized in our approach:
1) In general, this modification can be allowed for target components which have not yet been started. When

the dependent task is already in the state ready, the event 'predecessor_added', which is raised by the
change operation, results in triggering the disable transition. This transition is performed only if the enable
condition no longer holds (see figure 1). Thus, re-evaluation of the enable condition ensures the behavioral
consistency. However, adding a new predecessor task may be also useful and can be handled for target
components which are already active or have been finished. In contrast to [EKR95], [CCPP96], [ReDa98],
or [HoJa98], we do not restrict ourselves to situation-independent theoretical correctness criteria:

2) If the dependent task is already active, a meaningful reaction for example for an automatic batch process is
to abort the task and to restart it later on (probably performing additional compensation activities). Fur-

Design

Document X

output:
designed_doc

Review

input:
designed_doc

V.1 V.2

1) ceckin(V.2)
2) release(V.2, Review) 3) checkout / update

Ê output_released(X, V.2)

release between supplier/consumer

simultaneous

output:
review-
report

output:
feedback

produced consumed

CONTROL FLOW DEPENDENCY simultaneous

   FOR enable OF target DEFINE:              /* relaxed activation condition: */
       ON finished BY predecessor simultaneous   /* allows start after activation */
              started BY predecessor simultaneous    /* of the source task  */
       IF (source.state=done OR source.state=active)

   FOR finish OF target DEFINE:              /* ensure that target does not */
      IF source.state=done              /* finish before source is done */

 [...the rest similar to control flow dependency standard]

process definition

: control flow dependency : data flow relationship : references to document model Ê : event sent to related task

Figure 3: Data exchange between running tasks – controlled cooperation on workflow level



- 6 -

thermore, a manual task may just be suspended and can be resumed when the new preceding task is done.
A human actor can easily work on the changed input values/documents.
Both behaviors can be realized by defining different behavior classes for batch tasks and manual tasks. In
the former case, we add a trigger ‘ON predecessor_added’ to the context-free ECA rule of the abort transi-
tion, in the latter case, we add the same trigger to the suspend transition. Furthermore, we relax the transi-
tion condition of add_predecessor to ‘IF state=waiting OR state=running’.

3) If the target task has been already finished, we may compensate all succeeding task of the new task (if pos-
sible). In figure 4, the behavior of tasks which provide compensation facilities is shown. In our example,
compensation is done with a two phase protocol which takes the ordering of the tasks’ execution into ac-
count (cf. [Ley95, KaRa98]): First, all tasks which are compensational dependent are prepared for compen-
sation. Next, these tasks are compensated in the opposite ordering of their former execution. This complex
behavior is realized by the compensation dependency. A compensation which is not order-dependent can
be realized easily by a group type which just define an ECA rule that triggers the compensation when a
certain event occurs.
However, assume that the affected tasks are part of an iteration loop and that we are interested only in the
future execution; then, we can insert the new task without any impact on the current pass of the loop (in the
sense "now it's too late, but next time we should perform the additional task"). The new task becomes rele-
vant only for the next iteration. This is realized by a group relationship type ‘allow_post_execu-
tion_change’ (shown in figure 5) which is used in a process definition to mark those regions where the
above mentioned situation should be supported (obviously, this policy is not useful in general). Note, that
the interplay of context-free and context-dependent behavior definition results in the appropriate behavior
for all mentioned situation. E.g.,  for a manual task changes may be allowed in any state whereas for a
automatic task changes may be disallowed when the task is active (if rollback/compensation is not possible
or desirable).

4) Finally, for some parts of a process a process engineer may want to disallow dynamic modifications. In this
case, a group relationship type ‘disallow_change’, which disables all change operations using the overrid-
ing mode, can be used to mark the relevant parts of the process (cf. figure 5).

donefailed

finishabort

terminated

not_executed

iterate

prepared_for_compensation

compensated

prepare_for_compensation

truncate

compensate

CONTEXT-FREE ECA rules
   FOR prepare_for_compensation DEFINE:  /* changes to finished task triggers */
      ON predecessor_added, ...  /* preparation for compensation */

   FOR compensate DEFINE:  /* compensation starts when all */
      ON prepared_for_compensation BY self,  /* successors have been compensated */
      IF FORALL sucessors compensational: state = compensated

CONTROL FLOW DEPENDENCY compensational
   FOR disable OF target DEFINE:  /* disable ready tasks when predecessor */
       ON prepared_for_compensation BY predecessor compensational   /* will be compensated */
   FOR abort OF target DEFINE:  /* and abort running tasks in this case */

       ON prepared_for_compensation BY predecessor compensational
   FOR prepare_for_compensation OF target DEFINE: /* transitively prepare for compensation */
       ON prepared_for_compensation BY predecessor compensational,
   FOR compensate OF source DEFINE:  /* trigger compensation in reverse order */

       ON compensated BY successor compensational

Extended Statechart for tasks with compensation

Figure 4: Behavior definition for tasks with compensation

B Cxor

A  

xor

allow_post_execution_change

CONTROL FLOW GROUP disable_changes
   FOR add_predecessor DEFINE:   /* same definition for all */

      override: IF false         /* change operations */

   [...]

CONTROL FLOW GROUP allow_post_execution_change
   FOR add_predecessor DEFINE
      IF state=terminated

an
d

D E

disable_changes

and

Figure 5:Situation-dependent adaptation of the behavior of dynamic changes



- 7 -

4. Conclusion

The definition and situation-dependent adaptation of the tasks execution behavior is the basis for both, provid-
ing a priori flexible workflows and supporting dynamic changes in every possible situation. For the latter case,
it is essential to note that there exist several practical cases where theoretical correctness properties, in particu-
lar the compliant property (cf. [CCPP96]), are too restrictive. We have shown, that the definition of control
flow dependency and group relationship types on the basis of ECA rules is a powerful concept for behavior ad-
aptation and dynamic changes in the present of distributed workflow enactment. Finally, human actors can re-
act very flexible on changes of the context of a task. The integration of version and workspace control capabili-
ties substantially supports adequate reactions to workflow changes in the case of manual and cooperative tasks.

The workflows which can be defined in this approach are by far more complex than in the case of workflows
which consists only of conditional and parallel branches. Therefore, the analysis of correctness properties (e.g.
deadlock-freeness) of the resulting task behaviors and their interaction are is a hard problem on which we cur-
rently work. The introduced concepts have been implemented in the project MOKASSIN which is funded by
the German Ministry for Research and Technology (BMBF). Experiences as well as the architecture of our
system which is realized as an distributed object system based on CORBA will be discussed in subsequent pa-
pers.

References
[CCPP96] Casati F., Ceri, S., Pernici B., Pozzi, G.: „Workflow Evolution“. In Proc. of 15th Int. Conf. on Conceptual Mo-

deling (ER’96), Cottbus, Germany, 1996; pp. 438-455.
[ElNu96] Ellis C.A. and Nutt, G.J.: "Workflow: The Process Spectrum", in NSF Workshop on Workflow and Process

Automation in Information Systems, Athens, Georgia, 1996.
[EKR95] Ellis C.A., Keddara K. and Rozenberg, G.: "Dynamic Change Within Workflow Systems", in Proc. of the Int.

Conf. on Organizational Computing Systems COOCS’95, Milpitas, CA, 1995; pp. 10-21.
[HJKW96] Heimann, P.; Joeris, G.; Krapp, C.-A.; Westfechtel, B.: "DYNAMITE: Dynamic Task Nets for Software

Process Management", in Proc. of the 18th Int. Conf. on Software Engineering, Berlin, Germany, 1996; pp. 331-341.
[HoJa98] Horn S. and Jablonski S.: "An Approach to Dynamic Instance Adaption in Workflow Management Applica-

tions", in Proc. of the CSCW-98 Workshop - Towards Adaptive Workflow Systems, Seattle, WA, Nov. 1998
[JaBu96] Jablonski, St.; Bussler, Ch.: “Workflow Management - Modeling Concepts, Architecture and Implementation”,

International Thomson Computer Press, London, 1996.
[Joe98] Joeris, G.: “Aspekte und Konzepte der Flexibilität in Workflow-Management-Systemen”, in D-CSCW’98 Work-

shop on 'Flexibilität und Kooperation in Workflow-Management-Systemen‘, Technical Report Angewandte Mathe-
matik und Informatik 18/98-I, University of Münster, 1998; pp. 3-12.

[JoHe98] Joeris, G; Herzog, O.: "Managing Evolving Workflow Specifications", in Proc. of the 3rd Int. IFCIS Conf. on
Cooperative Information Systems (CoopIS’98), New York, Aug. 1998, IEEE Computer Society Press; pp. 310-319.

[JoHe99a] Joeris G.; Herzog O.: “Towards Flexible and High-Level Modeling and Enacting of Processes“, in Proc. of the
11th Int. Conf. on Advanced Information Systems Engineering (CAiSE’99), LNCS 1626, Springer-Verlag, 1999; pp.
88-102.

[JoHe99b] Joeris G.; Herzog O.: “ Managing Evolving Workflow Specifications With Schema Versioning and Migration
Rules“, TZI Technical Report 15-1999, Center for Computing Technologies (TZI), University of Bremen, 1999.

[KaRa98] Kamath, M.; Ramamrithan, K.: "Failure Handling and Coordinated Execution of Concurrent Workflows", in
Proc. of the 14th Intl. Conf. on Data Engineering (ICDE’98), Orlando, Florida, Feb. '98.

[KrSh95] Krishnakumar, N.; Sheth, A.: "Managing Hetereogeneous Multi-system Tasks to Support Enterprise-wide Ope-
rations", in Distributed and Parallel Databases, 3, 1995; pp. 1-33.

[Ley95] Leymann, F.: "Supporting Business Transactions Via Partial Backward Recovery in Workflow Management Sy-
stems, in Lausen, G. (Hrsg.): Datenbanksysteme in Büro, Technik und Wissenschaft. GI-Fachtagung, Springer Ver-
lag, 1995; pp. 51-70.

[ReDa98] Reichert, M; Dadam, P.: “ADEPTflex - Supporting Dynamic Changes of Workflows Without Losing Control”,
Journal of Intelligent Information Systems - Special Issue on Workflow Managament, 10(2), 1998; pp. 93-129.

[Wes98] Weske, M: “State-based Modeling of Flexible Workflow Executions in Distributed Environments”, in Ozsu, T.;
Dogac, A.; Ulusoy, O. (eds.) Proc. of the 3rd Biennial World Conference on Integrated Design and Process Techno-
logy (IDPT’98), Volume 2 – Issues and Applications of Database Technology, 1998; pp. 94-101.



Enterprise-Wide and Cross-Enterprise Workflow Management:
Challenges and Research Issues for Adaptive Workflows

Manfred Reichert, Thomas Bauer, Peter Dadam
Dept. Databases and Information Systems, University of Ulm

{reichert, bauer, dadam}@informatik.uni-ulm.de
http://www.informatik.uni-ulm.de/dbis

Abstract

The paper discusses important challenges and research issues for adaptive workflow management sys-
tems (WfMS), especially if they shall be applied to enterprise-wide applications. It shows that an adaptive
WfMS must provide support for different kinds of (dynamic) workflow (WF) changes in order to be appli-
cable to a broader spectrum of processes. In this context, both, requirements for WF schema evolution
and issues related to ad-hoc changes of individual WF instances are discussed. A particulary interesting
aspect, which is described in more detail, is how to combine such dynamic changes with a distributed
execution of workflows, taking into account performance issues. For enterprise-wide and cross-enterprise
workflows, the distributed execution of workflows may be attractive due to several reasons.

1 Introduction

Workflow Management Systems (WfMS) offer a promising technology that has the potential to change
the implementation of enterprise-wide and cross-enterprise application systems significantly. In fact, only
this technology makes it possible to realize process-oriented application systems in larger quantities and
at affordable costs. To adequately support enterprise-wide and cross-enterprise applications, a WfMS
must not only cope with a large number of users and concurrently active workflow (WF) instances, but it
must also cover a broad spectrum of processes. In this context, high flexibility, maintainability, and scala-
bility are essential requirements. In the ADEPT1 project we, therefore, have spent a lot of effort especially
on these subjects [BaDa97, BaDa98, BaDa99a, DaRe98, ReDa98, RHD98].

In this paper we discuss important challenges and research issues for adaptive WfMS [CCPP98, JoHe98,
RHD98, Sieb98, Wesk98], especially if they shall be applied to enterprise-wide and cross-enterprise pro-
cesses. We denote a WfMS as adaptive if it supports run-time changes of in-progress WF instances. Such
adaptations become necessary, for example, when new tasks have to be added to a WF instance at run-
time or when pre-defined control or data flow dependencies between WF activities have to be dynami-
cally changed [ReDa98]. In such cases the execution of the WF instance must be (partially) suspended,
the modification of its WF instance graph, its attributes and/or its state be performed, and afterwards its
execution be resumed. The paper is organized as follows: In Section 2 we show that an adaptive WfMS
must support different kinds of (dynamic) WF changes in order to be applicable to a broader spectrum of
processes. We discuss major requirements for the evolution of WF schemes and for the concomitant run-
time adaptation of corresponding WF instances. Furthermore we deal with issues related to ad-hoc
changes of individual WF instances and we discuss problems that arise from the integrated support of
both kinds of changes. A particularly interesting aspect is discussed in Section 3, namely how to combine
dynamic WF changes with a distributed execution of workflows, taking into account performance issues.
For enterprise-wide and cross-enterprise workflows, the distributed execution of workflows may be ad-
vantageous in several respects. In Section 4 we summarize further issues. The paper concludes with a
summary and an outlook on future work.

                                                
1 ADEPT stands for Application Development based on Encapsulated Pre-Modeled Process Templates.



2 Workflow Schema Evolution and Support of Ad-hoc Deviations

Enterprise-wide and cross-enterprise business processes may change rather frequently [RHD98]. Once an
application system has been made to behave strictly process-oriented, it must be adjustable to process
changes and to evolving organizational structures very quickly and at reasonable costs. Such adaptations
may affect WF templates or other aspects of the process-oriented application system (e.g., the model
capturing organizational entities). In any case, they must be performed without causing inconsistencies
between the different models of the process-oriented application (e.g., faulty references).

In order to increase the robustness of the WF-based application system, it is very important to detect and
to eliminate design and implementation errors as early as possible. Potential problems introduced by the
concept of process-orientation are that the process may block itself during execution, may never be able
to enter certain branches of the WF graph, may not meet temporal constraints (e.g., minimal or maximal
time distances between the execution of two activities), or may invoke activity programs with missing or
incomplete input data, for example. To avoid such problems, an adequate formal basis must be provided
for WF modeling. On the one hand such a formal model must allow WF designers to capture business
processes as naturally as possible and in a way understandable to the user. On the other hand, it must en-
able formal verifications for the absence of deadlocks, the proper termination of the flow, the correctness
of the data flow, or the consistency of a time schedule, to name a few examples. With respect to consis-
tency issues, commercial WfMS show severe limitations that disqualify them for the support of sophisti-
cated WF applications. – In the ADEPT project we have exhaustively investigated WF modeling issues
and we have developed the ADEPTbase model as a formal basis (for details see [ReDa98]).

The use of a formal WF model and the provision of corresponding analysis algorithms are also prerequi-
sites for keeping maintenance costs low. Structural modifications of a WF schema (WF type changes),
like the insertion, deletion, or shift of process steps, must not lead to undesired side-effects and program
failures. Instead, the system must assist the WF designer in detecting all concomitant schema modifica-
tions, which become necessary in order to guarantee a robust and correct execution for (new) WF in-
stances of the changed WF type. To maintain the correctness of a WF schema, however, is only one of
several requirements for WF schema evolution. Changing a WF type does also mean, in general, that we
still have WF instances active in the system that follow the "old" schema. Especially for long-running
processes, it is desirable to automatically adapt them to the new process structure as well (as far as this is
possible). As the WF instances may be in different states, however, the respective schema modifications
may be propagated only to a subset of them [CCPP98, JoHe98]. For example, an already completed ac-
tivity must not be deleted from a WF instance graph. For the same reason, a new activity cannot be in-
serted into a region of a WF instance graph, which has already been processed. For modifications of a
loop body, another important aspect has to be considered: A change, which is not valid in the current state
of a loop iteration, may become applicable when the loop enters its next iteration. In such a situation, it is
favorable to record the change and to apply it when this loop back will be performed. In any case, the
WfMS must ensure a correct and stable execution behavior afterwards. Again, the provision of a formal
model can help a lot, since it will allow the system to check whether a particular change is valid in the
current state of a WF instance or whether it is not. In the former case, the WfMS must also adapt the state
of the WF instance after its modification [ReDa98]. Since there may be a large number of active instances
of the same WF type in the system, the necessary checks and adaptations must be performed efficiently
and automatically by the WfMS. Finally, the WfMS must cope with the co-existence of WF instances
following either the old or the new schema. This presumes appropriate concepts and mechanisms for the
versioning of WF schemes and for the adequate representation of WF instances [JoHe98].

Things become even more complicated if ad-hoc deviations from the pre-defined WF schema must be
supported at the instance level. Examples for such run-time deviations are the deletion of one or more WF
steps (e.g., to skip their execution) from a WF instance graph or the dynamic insertion of a new activity.
Such interventions into the control of a WF instance may become necessary to handle exceptional situa-
tions [MüRa99, RHD98] or to model parts of the WF that cannot be completely pre-defined at build-time
(late modeling). In our experience, due to combinatorial reasons, for more complex processes it is neither
possible nor cost-effective to capture all possible task sequences and all exceptions in advance. But even
for simple workflows, unpredictable situations may occur that require ad-hoc deviations from the pre-
planned process at run-time [RHD98]. Such ad-hoc deviations must not lead to consistency problems or
to an unstable system behavior (e.g., program failures due to the invocation of an activity with missing
input data). This means, in fact, that one has to show that none of the correctness guarantees or assertions,



which have been achieved by formal checks at build-time, are being violated by the introduction of ad-
hoc changes at run-time. Instead the system must assist the user in detecting all concomitant adaptations
that are necessary to ensure a robust and correct execution behavior afterwards. To achieve this, all as-
pects of the WF model (control flow, data flow, temporal constraints, etc.) and their possible interactions
have to be taken into consideration. For example, when deleting a step from a WF instance graph, the data
flow may have to be adapted as well in order to preserve its correctness. Due to the numerous interde-
pendencies that exist between the different aspects of a WF model, with increasing expressiveness of the
used WF meta model, it becomes more and more difficult to handle ad-hoc changes in a correct and con-
sistent manner. Therefore, it is extremely important to hide details of a change (like e.g., the complexity
arising from the re-mapping of input and output parameters of WF activities) from the user. Again, an
adequate formal model can help a lot. Such a model must offer a clear semantics, which enables the sys-
tem to argue on correctness issues and which covers all possible cases, either by supporting the desired
action or by rejecting it (no implementation holes). Ideally, such a model enables the system to restrict the
necessary analysis to a portion of the WF instance graph in most cases and, by doing so, to perform the
necessary checks very efficiently. Further details and a discussion of other issues related to dynamic WF
changes can be found in [ReDa98, RHD98].

Generally, an adaptive WfMS has to consider both kinds of changes, i.e., it must support adaptations of a
potentially large number of WF instances to modifications of their WF type as well as ad-hoc changes of
single WF instances. To adjust in-progress WF instances to a type change, however, is a non-trivial
problem if ad-hoc changes have to be supported as well. In this context, the main problem arises from the
fact that the instances of a WF type may not only be in different states when a type change shall be
propagated, but may also have a process structure (represented by the WF instance graph) that deviates
from that of their original schema. While in some cases this may not affect the applicability of the type
change to a particular instance, in other cases there may exist unresolvable conflicts between previously
applied ad-hoc changes of a WF instance graph and the type change. Well, how can WF type changes be
efficiently propagated to a potentially large number of WF instances under these conditions? In principle,
for each instance of a modified WF type, the system must check whether the type change is currently
applicable to the corresponding WF instance graph or not. As a large number of WF instances may have
to be adapted to the type change, the necessary checks should be automatically performed by the WfMS
without causing a performance penalty. Costly user interactions, which are also not tolerable due to ro-
bustness and correctness reasons, must be avoided.

The simplest solution would be to disallow the propagation of a WF type change to all WF instances
whose execution graph was “locally” modified due to some exceptional situation. This approach could be
simply handled, but it is rather unsuited for the support of long-running processes [RHD98]. Another
solution would be to completely reapply all formal checks for each of these WF instances. For perform-
ance reasons, however, this approach would be disadvantageous, especially if a large number of instances
have to be adapted. The challenge, therefore, is to provide efficient mechanisms, which enable the system
to propagate WF type changes to a large number of WF instances, independently from whether they pos-
sess a process structure that differs from that of their original schema or not. To achieve this goal, for all
WF aspects that may be subject of a change, proper conflict relations have to be defined. On top of this, it
must be possible to detect potential conflicts between concurrent changes by means of simple conflict
tests. For example, the WfMS must be able to efficiently check, under which conditions conflicting
changes of the data flow of a WF instance may lead to inconsistencies or errors in the sequel. Having a
closer look at the nature of ad-hoc changes, however, this approach is not as simple as it looks like at first
glance. The reason for this is that ad-hoc changes of a WF instance graph may have a different durability.
While some of them may be permanently valid until the termination of the instance, others may be only of
temporary nature and must therefore be removed from the WF instance graph at the occurrence of corre-
sponding events (e.g., when a loop back is performed).

3 Scalability Issues in Adaptive Workflow Systems

Enterprise-wide and cross-enterprise WF-based applications are characterized by a large number of users
and concurrently active WF instances. As a consequence the WF servers have to cope with a very high
load. Already the processing of a single WF activity may require the transfer of multiple messages be-
tween the WF server and its clients, e.g., to transmit input and output data of the activity, to update work-
lists, to invoke activity programs, or to exchange application data between activity programs and external



data sources. Obviously, this amount of communication may overload both, WF servers and subnets, if
the number of concurrently active WF instances increases. In addition, the organizational units, which
participate in a cross-organizational WF, are often connected by slow wide area networks. The load of the
communication system, therefore, is extremely critical for the performance of the system. In order to keep
communication local within one network segment as far as possible, in many cases, it is advantageous to
dynamically migrate the control of in-progress WF instances to a new WF server in another network
segment. Apart from this, due to autonomy reasons, a business company will not always tolerate that its
activities are controlled by the WfMS of a foreign company. For cross-organizational workflows this
means, that they cannot be completely executed by the WfMS of a single company, but may have to be
controlled by distributed, (potentially) heterogeneous WfMS.

At least for some WF classes, it would be very attractive to distribute WF control onto several servers.  In
the WF literature, a number of distribution models have been proposed [BaDa99a, Muth98, ShKo97]. In
the ADEPT project, we have also developed such a model, which is called ADEPTdistribution [BaDa97,
BaDa98]. It supports the WF designer in partitioning a WF schema and in distributing the different
partitions across several WF servers. This distribution is done in a way that prevents single system
components (WF servers, network segments, and gateways) from becoming overloaded at run-time. Like
other distribution models, so far, ADEPTdistribution has assumed that the structure of a WF instance graph is
not changed during run-time. As shown in Section 2,  this assumption does not hold for adaptive WfMS.
Which additional issues arise if dynamic WF changes have to be supported in such environments? And
how can we ensure that the advantages of a distributed WF control do not get lost if dynamic changes
have to be supported as well? In order to be able to discuss relevant issues, first of all, we sketch the basic
ideas of the ADEPTdistribution approach in Section 3.1. Based on this model, in Section 3.2 we discuss
important issues arising from the integrated support of dynamic WF changes and distributed WF control.

3.1 Distributed Workflow Control in ADEPTdistribution

At build-time, the schema of a WF is divided into several partitions. Each partition is assigned to a WF
server, which controls the activities of this partition during run-time. For this purpose, at each server a
copy of the (complete) WF schema is stored. If a WF instance reaches a transition between two partitions,
its control migrates to the WF server of the target partition. Before this WF server may proceed with the
execution of the WF instance, WF control data and WF relevant data have to be transmitted. Activities
from parallel execution branches can be controlled by different WF servers in this approach, so that more
than one WF server may be involved in the current execution of a particular WF instance. In order to keep
communication costs low, generally, ADEPTdistribution does not require that these WF servers synchronize
with each other. An example of a WF instance graph, which is controlled by multiple WF servers, is de-
picted in Figure 1. In the current state, two servers – S2 and S3 – participate in the processing of this in-
stance. Note that S2 does not know the execution state of the lower branch, i.e., it does not know whether
this branch is still controlled by S1 , the control has already been migrated to S3 (as in the example shown),
or it has been given back to S1 (in order to control the partition P4). Conversely, S3 has no knowledge
about the processing state of the partition P2, which is controlled by S2.

ADEPTdistribution partitions a WF schema in a way that minimizes the communication load of the system at
run-time. For this purpose the WF designer is supported by a set of algorithms, which allow him or her to

E

d

data element

B
AND split

H
AND join

D

A

C

GF

ü

ü

ü

Activity States:

TRUE_SIGNALED

ü COMPLETEDACTIVATED RUNNING

Edge States:

I

ET = DATA_E

P2

P3

P4

WF server S1

server S2

server S1

server S3

WF partition P1

Migration when
signaling the edge

Figure 1: Distributed execution of workflows in ADEPT



automatically calculate optimal server assignments for the activities of a given WF schema – a partition
then consists of a subgraph of which the activities are assigned to the same WF server. In doing so, it is
assumed that a WF activity may be controlled by an arbitrary WF server of the WfMS, unless the WF
designer explicitly excludes it from the control of this activity. To determine optimal server assignments,
we use a formal cost model that allows us to evaluate the quality of a selected distribution. Among other
things, this model considers costs for the transfer of parameter data, for the update of worklists, and for
the migration of WF instances. In most cases, a WF activity will be controlled by a WF server, which is
located nearby its potential actors. Since migrations do also generate communication costs, however, they
are only used if they improve the communication behavior of the system. Details on this work and de-
scriptions of the developed algorithms for partitioning WF schemes can be found in [BaDa98]. These
algorithms do also consider so-called variable server assignments. Unlike static server assignments,
where the WF servers that control the activities of a WF, are completely pre-defined at build-time, vari-
able server assignments enable the WfMS to select the WF server of a particular WF activity dynami-
cally, depending on the control data of preceding activity executions 2 (see [BaDa99b] for details). This
approach contributes to improve the communication behavior of the system, especially if dependent actor
assignments3 are used [BaDa98, BaDa99b].

3.2 Dynamic Workflow Changes and Distributed Workflow Execution
In the ADEPT project [DaRe98] we have developed the ADEPTflex calculus, which provides a complete
and minimal set of change operations for dynamic WF modifications in process-oriented WfMS
[ReDa98, RHD98]. Most of the concepts offered by ADEPTflex have been prototypically implemented in
the ADEPT-WfMS. ADEPTflex uses the same formal WF meta model as the ADEPTdistribution approach
described in the previous section. So far, ADEPTdistribution does not consider aspects related to dynamic WF
changes. Conversely, up to now ADEPTflex has assumed that a WF instance is controlled by one central
WF server. From a logical point of view, this assumption is helpful for verifying the correctness of a
change [ReDa98]. The deletion of a WF activity from a WF instance graph, for example, may lead to
missing input data of subsequent activities. In order to preserve a proper data flow, these data dependent
steps either have to be deleted as well (cascading deletion) or the correctness of the data flow specifica-
tion has to be restored by additional adaptations (e.g., by adding so-called data provision steps to the WF
instance graph) [RHD98]. If a WF is controlled by multiple servers, such a change may affect more than
one server. In the WF instance graph from Figure 1, for example, the deletion of activity C (change within
the partition P2) would entail concomitant changes of the partition P4, like the deletion of the data-
dependent activity I or the addition of a preceding data provision step to I. Generally, a structural change
may affect several partitions of a WF instance graph that may be controlled by different servers.

How can dynamic WF changes be supported in a distribution model like ADEPTdistribution, without loosing
the advantages offered by the distributed control of workflows? First of all, it is important to minimize the
synchronization effort, which becomes necessary when a dynamic change is performed. A naive solution
would be to synchronize all servers that have already been involved in the processing of the WF instance
or that may become active in the future. Generally, such a strict synchronization is not required and – in
the case of variable server assignments (cf. Section 3.1) – it is also not possible. Instead, it is more favor-
able to synchronize only those WF servers, which are currently involved in the processing of the instance.
If a WF instance graph does not contain AND-splits (i.e., there are no parallel execution branches), at
each point in time only one WF server is responsible for the control of this instance. Consequently, no
additional synchronization effort results. For parallel execution branches, however, several servers may
be concurrently involved, so that a dynamic WF change may require a synchronization between them.

We will illustrate this by a simple example. Taking the change operations provided by ADEPTflex

[ReDa98] and the WF instance graph from Figure 1, it is possible to dynamically insert a new activity X
into this graph, of which the execution may not start before step F is completed and must terminate before
activity D can be activated. Internally, this change is realized by the application of a well-defined set of
graph transformation and graph reduction rules [ReDa98]. After its insertion, the step X constitutes a new
branch of the parallel branching defined by the AND-split B and the corresponding AND-join H. The

                                                
2 An example of a variable server assignment may be “Server(A2):= Domain(Actor(A1))”. This means that activity
A2 is dynamically assigned to the server that is located in the domain of the actor who worked on activity A1.
3 With this, we mean logical assignments like “Activity A2 must be executed by the same actor who has worked on
the preceding activity A1”.



desired execution order (X after F, X before D) is enforced by the additional insertion of the two synchro-
nization edges4 F → X and X → D (cf. Figure 2). Assume that this change is initiated by a client con-
nected to the WF server S3. Obviously, the desired modifications are only allowed, as long as D has not
been started. In order to check this, first of all, the WF server S3 must retrieve the current state of activity
D from the WF server S2 (Note that S3 itself does not know the state of the upper branch). Conversely, the
change must not only be applied to the WF instance graph stored at S3, but it must also be considered for
the copy of this graph stored at S2. The latter becomes necessary in order to ensure that S2 delays the
execution of D until the newly inserted step X will be completed. WF servers that may become active in
the future (like S1 in our example) must not be immediately notified about the change. Instead, it is suffi-
cient to transmit the corresponding information, when the control of the WF instance migrates to this
server. This approach, however, causes additional communication costs for “normal” migrations, which
should be kept as minimal as possible.

For distributed workflows the correct handling of dynamic WF changes is a non-trivial problem. In the
following, we discuss important issues that arise in connection with the approach described above:

• How must a migration be performed, if the corresponding WF instance graph has been changed? – As
already mentioned, the target server of a migration may only possess an old version of the schema of
the WF instance. On the one hand, it should be avoided that a complete description of the modified
WF instance graph is transferred to the target server. On the other hand, the new process structure
must be made available at this server, in order to correctly proceed with the flow and to provide a
proper basis for subsequent changes. The use of execution and change histories, which already exist in
ADEPTflex [ReDa98], offers a promising approach for reducing the communication amount. In the ex-
ample from Figure 2, when migrating the control from the S2 (or S3) to S1 (S1 controls the partition P4),
in addition to WF control data and WF relevant data, the corresponding entries from the change his-
tory have to be transmitted as well. The WF server S1 must then apply the modifications to its local
copy of the WF instance graph, before the execution may proceed. As far as possible, the redundant
transfer of information about a change should be avoided.

• Is it possible to perform a dynamic WF change without synchronizing all WF servers currently in-
volved in the control of the WF instance? – Similarly to the execution of parallel branches, it is desir-
able to perform dynamic changes of single branches without costly communication with other WF
servers. As shown in the example, for changes that affect multiple partitions of a WF instance graph
this will not always be possible. Instead, it must be ascertained for how long and in which mode the
WF instance has to be locked at the respective WF servers. As far as possible, long-term locks should
be avoided, so that the WF execution is not blocked unnecessarily long. There are numerous examples
for dynamic WF changes, for which such a strict synchronization does not become necessary. Taking
the WF instance graph from Figure 1, for example, the WF server S2 might insert a new activity be-
tween C and D or delete the activity C (incl. the deletion of the outgoing data edge connected to d and
the deletion of the data-dependent activity I) without synchronizing this change with S3. This is possi-
ble, since S2 does not require information about the state of the lower branch in order to apply the
change. Conversely, S3 must not be informed about the modification of the upper branch in order to
proceed with the control. Such local modifications do occur often in practice. Therefore it does make

                                                
4 Synchronization edges are a special edge type of our graph-based WF meta model ADEPTbase [ReDa98]. They can
be used for modeling different kinds of "wait-for" situations between activities from parallel execution branches.

E

B H

D

A

C

GF

ü

ü

ü

I

P2

P3

P4

 P1

X
P5

ET = SYNC_E

WF server S1

server S2

server S1

server S3

Figure 2: The same instance graph after performing a dynamic change.



sense to differentiate between different classes of changes with respect to a WF instance graph (e.g.,
local change of a partition, changes of several partitions controlled by the same WF server, changes of
partitions controlled by different WF servers, etc.) and to offer optimized procedures for their applica-
tion. Generally, if a WF server wants to perform a dynamic change, it must determine which informa-
tion have to be retrieved from which other servers to perform the desired modifications and which
servers must be informed about the change afterwards.

• Which adaptations will become necessary regarding server assignments, if a WF instance graph is
structurally changed? – For newly inserted activities, for example, appropriate WF servers must also
be assigned to. On the one hand, it seems to be attractive to use the same distribution algorithms that
are applied at build-time [BaDa98] (Note that this may lead to changed server assignments of other
WF activities as well). On the other hand, if these run-time calculations are too costly, simpler ap-
proaches for the (dynamic) assignment of servers may be favorable. In the example from Figure 2, the
newly inserted activity X has been assigned to the WF server S3, which initiated the change.

• Assume that a WF server S, which wants to apply a dynamic change to a WF instance, controls a par-
ticular partition from a parallel branch of the WF instance graph. How can this WF server find out,
which other WF servers are currently involved in the processing of this WF instance (see above)? –
The main problem in this context arises from the fact that, generally, S has no information about the
state of activities from parallel branches (cf. Section 3.1), unless S controls these activities itself or has
obtained additional information when an incoming synchronization edge was signaled [ReDa98]. The
server S does also not know, whether the processing of a parallel branch is in a state before or after a
migration. Using the information locally available, S does not know, which other WF servers are cur-
rently active. With respect to the WF instance graph from Figure 1, this applies to the WF server S2,
for example. This server does not know, whether the lower branch is currently controlled by S1 or S3.
This problem even gets worse if variable server assignments (cf. Section 3.1) are used.

• Which additional problems arise in connection with variable server assignments? – If the server selec-
tion of an activity A2 depends on the execution of a preceding activity A1 (cf. Section 3.1), it must be
ensured that a WF server can be assigned to A2, even if A1 will be dynamically removed from the WF
instance graph. In this context, it seems to be attractive to apply similar exception handling mecha-
nisms, as they have been used in ADEPTflex to guarantee the provision of activity input parameters in
the case of structural WF changes [ReDa98].

Although we have used the ADEPT workflow model for illustration purposes, most of the issues dis-
cussed, do also apply to other flexible WF models.

4 Further Issues

We shortly discuss two other basic requirements, which are essential for the flexible support of large-
scale WF-based application systems.

4.1 Semantic Rollback of Workflows in Adaptive WfMS
An adaptive WfMS must offer adequate concepts to cope with semantic failures of single WF activities at
run-time. During the last years, a number of advanced transaction concepts have been developed [Alon96,
JaKe97, Leym95]. With few exceptions [LiPu98, MüRa99], however, most of them are based on the as-
sumption that the flow structure of the transaction or the workflow, respectively, is completely known at
build-time. As shown in Section 2, this assumption is only valid for completely static workflows and does
not apply to adaptive WfMS. The proposed concepts are therefore not suited for the flexible support of a
broader spectrum of workflows.

Normally, for the transactional support of long-running processes, we cannot strictly enforce the
atomicity of the whole composite transaction (workflow). Instead, intermediate results may become visi-
ble and may be modified by other transactions. As a consequence ordinary transaction rollback is no
longer applicable in this context. An extended transaction mechanism must allow the WF designer to
define compensation steps for WF activities in order to enable the WfMS to support some kind of “logical
rollback” for already completed and committed activities, if semantic failures occur at run-time [JaKe97].
One important problem in this context, which has not been satisfactorily solved in the literature so far,
arises from the fact that the kind of compensation of a WF step may depend on the current state of the WF
instance, on the point in time a failure occurs, or on other factors. Obviously, these dependencies compli-



cate the definition of appropriate “recovery spheres” [Leym95] and they also complicate application de-
velopment. It will be one of the key factors for the success of adaptive WF technology, whether it will be
possible to develop sophisticated concepts for describing compensation spheres, for implementing WF
activities and their (perhaps different) compensation steps, and for dealing with dynamic cases and dy-
namic WF changes (see above). In connection with dynamic changes, among other things, it must be con-
sidered that the definition of compensation spheres may have to be adapted when the structure of the WF
instance graph is dynamically modified.

In addition to these requirements, for enterprise-wide and cross-enterprise workflows numerous other
problems have to be solved. It has to be specified, for example, under which conditions an actor is
authorized to reset WF activities that are controlled by the WfMS of a foreign company. In this context,
we must not only deal with technical issues (e.g.,  support of different commit protocols), but we must
also consider numerous other aspects (privacy, documentation, differences in law for companies from
different countries, etc.). All these issues must be carefully analyzed and understood, taking into consid-
eration all the non-trivial interdependencies with other features of the system, like e.g., the support of
different kinds of changes (cf. Section 2) or the distributed execution of workflows (cf. Section 3).

4.2 Security Issues in Adaptive WfMS

Very often, a WfMS processes data for which high standards must be set with respect to privacy and data
security. Generally, in a WfMS the access rights of a person are determined by the roles or functions he or
she may take. Already for the static (“unflexible”) case, however, the definition of appropriate roles and
organizational rules for substitutions may become very complex and poses high requirements for the
WfMS, especially when looking at the maintenance of organizational models. For the “flexible” case, in
addition, we must ensure that dynamic changes of a WF instance do not lead to “security gaps”. For
cross-organizational workflows we have to deal with the difficulty that WF changes, which are reasonable
from the point of view of a single organizational unit, may be in conflict with superior process goals (e.g.,
temporal constraints, quality requirements, etc.). For these reasons, it must be possible to control, at a
very fine level of granularity, which persons or roles may perform which changes with respect to a par-
ticular WF instance or with respect to instances of a particular WF type.

Most of the challenges discussed in the previous sections apply to "normal" WF applications as well.
Nevertheless, in the context of enterprise-wide and cross-enterprise workflows they have a special rele-
vance and an extreme importance.

5 Summary and Outlook

To be applicable to enterprise-wide and cross-enterprise workflows, a process-oriented WfMS must cover
a broad spectrum of processes and it must support different kinds of dynamic changes at run-time. These
changes must be accomplished in an efficient and secure manner and without affecting the robustness of
the system. This must also apply if the number of users and concurrently active WF instances is high. In
this context, it is important that the "normal" WF execution is not affected too much by the additional
features of an adaptive WfMS. In the ADEPT project the described challenges have been exhaustively
investigated. Formal issues and the basic principles of dynamic WF changes are well understood in the
meantime. Furthermore they have been prototypically implemented in the ADEPT-WfMS [ReDa98,
RHD98]. We also work on issues related to WF schema evolution and their interrelation with ad-hoc de-
viations. The same applies to scalability issues [BaDa97, BaDa98, BaDa99a] as well as to some other
aspects (for an overview see [DaRe98]). An important next step will be, to interweave the different con-
cepts and to realize common implementations.

References

[Alon96] Alonso, G.; Agrawal, D.; El Abbadi, A.; Kamath, M.; Günthör, R.; Mohan, C.: Advanced Transaction
Models in Workflow Contexts. Proc. 12th Int'l Conf. on Data Engineering. New Orleans, February 1996

[BaDa97] Bauer, T.; Dadam, P.: A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration . Proc. CoopIS '97, Kiawah Island, June 1997, pp. 99-108



[BaDa98] Bauer, T.; Dadam, P.: Variable Migration of Workflows in ADEPT (in German). Ulmer Informatik-
Berichte, Nr. 98-09, September 1998

[BaDa99a] Bauer, T.; Dadam, P.: Distribution Models for Workflow Management Systems – Classification and
Simulation (in German). Ulmer Informatik-Berichte, Nr. 99-02, University of Ulm, March 1999

[BaDa99b] Bauer, T.; Dadam, P.: Efficient Distributed Control of Enterprise-Wide and Cross-Enterprise
Workflows. Proc. Workshop Enterprise-wide and Cross-enterprise Workflow Management: Concepts,
Systems, Applications, 29. Jahrestagung der GI (Informatik’99). Paderborn, October 1999

[CCPP98] Casati, F.; Ceri, S.; Pernici, B.; Pozzi, G.: Workflow Evolution . Data & Knowledge Engineering, 24(3),
Jan. 1998, pp. 211-238

[DaRe98] Dadam, P.; Reichert, M.: The ADEPT WfMS Project at the University of Ulm. Presented at the 1st
European Workshop on Workflow and Process Management (WPM'98) – "Workflow Management
Research Projects", Zürich, October 1998

[JaKe97] Jajodia, S.; Kerschberg, L. (Eds.): Advanced Transaction Models and Architectures. Kluwer Academic
Publishers, 1997

[JoHe98] Joeris, G.; Herzog, O.: Managing Evolving Workflow Specifications. Proc. CoopIS’98, New York,
August 1998.

[Leym95] Leymann, F.: Supporting Business Transactions via Partial Recovery in Workflow Management Sys-
tems, Proc. Datenbanksysteme in Büro, Technik und Wissenschaft (BTW '95), Dresden, March 1995,
pp. 51-70

[LiPu98] Liu, L.; Pu, C.: Methodical Restructuring of Complex Workflow Activities. Proc. 14th Int’l Conf. On
Data Engineering (ICDE’98), Orlando, Florida, February 1998, pp. 342-350.

[MüRa99] Müller, R.; Rahm, E.: Rule-Based Dynamic Modification of Workflows in a Medical Domain. Proc.
Datenbanksysteme in Büro, Technik und Wissenschaft (BTW '99), Freiburg, March 1999, pp. 429-448.

[Muth98] Muth, P.; Wodtke, D.; Weißenfels, J.; Kotz-Dittrich, A.; Weikum, G.: From Centralized Workflow
Specification to Distributed Workflow Execution. Journal of Intelligent Information Systens, Special
Issue on Workflow Management Systems, Vol. 10, March/April 1998, pp. 159-184

[ReDa98] Reichert, M.; Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows Without Losing
Control. Journal of Intelligent Information Systems, Special Issue on Workflow Management Systems,
Vol. 10, March/April 1998, pp. 93-129

[RHD98] Reichert, M.; Hensinger, C.; Dadam, P.: Supporting Adaptive Workflows in Advanced Application
Environments. Proc. EDBT-Workshop on Workflow Management Systems, Valencia, March 1998, pp.
100-109

[ShKo97] Sheth, A.; Kochut, K.: Workflow Applications to Research Agenda: Scalable and Dynamic Work Coor-
dination and Collaboration Systems. Proc. NATO Advanced Study Institute on Workflow Man Sys and
Interop. Istanbul, August 1997, pp. 12-21

[Sieb98] Siebert, R.: An Open Architecture for Adaptive Workflow Management Systems. Proc. 3rd Biennial
World Conf on Integrated Design and Process Techn, Vol 2, Berlin, July 1998, pp. 79-85.

[Wesk98] Weske, M.: Flexible Modeling and Execution of Workflow Activities. Proc. 31st Hawaii Int'l Conf. on
System Sciences (HICSS–31), Software Technology Track (Vol VII), 1998, pp. 713–722



WorkflowsoverWorkflows:
PracticalExperienceswith theIntegrationof SAPR/3Business

Workflows in WISE
�

ChristophSchuler Heiko Schuldt Gustavo Alonso Hans-J̈org Schek

Instituteof InformationSystems
SwissFederalInstituteof Technology(ETH)

ETH Zentrum
8092Zürich,Switzerland

Email:
�
schuler,schuldt,alonso,schek � @inf.ethz.ch

Abstract

Businessprocesseswithin companiesarein generalwell establishedandsupportedby commer-
cially availableworkflow managementsystems.However, whenprocessesspanmultiple compa-
nies(suchas,for instance,in thecaseof virtual enterprisesor in businessto businesselectronic
commerce),softwaresupportquiteis limited. In suchcases,processesneedto beimplementedon
top of alreadyexistingsystems.TheWISE projectaddressesthis problemandprovidesadequate
infrastructureto supportthewholelife-cycleof virtual enterpriseprocesses,includingtheintegra-
tion of legacy systems,especiallyof workflow managementsystems.In this paper, we describe
our experiencewith theintegrationof SAPR/3 BusinessWorkflows into WISE. In addition,and
sinceanimportantcharacteristicsof theWISE systemis theenactmentof processeswith execu-
tion guarantees,wealsodiscusstheprovisionof executionguaranteeswhenexternalsystemslike
SAPR/3BusinessWorkflowsareinvolved.

1 Intr oduction

In avirtual enterprise, differentcompaniestemporarilywork togetherin commonprojectsto achieve
commongoals. In order to supportthis collaboration,the necessaryinfrastructurehasto be avail-
able.In general,businessprocesseswithin eachcompany canbesupportedby workflow management
systems.In virtual enterpriseenvironments,however, processesgo beyond corporationboundaries
andencompassservicesprovidedby thedifferentparticipants.A workflow managementsystemsup-
portingvirtual businessprocessesin avirtual enterprisemustnow facethechallengeof incorporating
existingprocessesrunningwith avarietyof workflow managementsystems.

TheWISE project[AFH � 99] addressesthisproblemandprovidesaninfrastructureto supportthe
executionof virtual businessprocessin virtual enterprises.As partof theWISE project,wehavebeen
workingontheintegrationof workflow processesrunningin differentworkflow managementsystems
suchas,for instance,SAPR/3 BusinessWorkflow andIBM FlowMark, into theWISE system.This

�
Part of this work hasbeenfundedby theSwissNationalScienceFoundationundertheprojectWISE (Workflow based

Internet Services,http://www.inf.ethz.ch/department/IS/iks/research/wise.html) of the Swiss
Priority Programme“InformationandCommunicationSystems”.

1



extendedabstractfocuseson theintegrationof SAPR/3BusinessWorkflows,discussestheapproach
taken,andpresentspracticalexperiencesmadeduringthisendeavor.

Thepaperis structuredasfollows: In Section2, we presentthe WISE system,a workflow man-
agementsystemdevelopedto supportviable businessto businessElectronicCommerce.Then, in
Section3, we provide a brief overview of the interoperabilityproblemsthat have to be addressed
whenembeddinglegacy applicationsin workflow processeswhile at thesametime providing execu-
tion guaranteesfor theseprocesses.Wethenfocusin Section4 onthepracticalexperiencesgainedby
integratingSAPR/3BusinessWorkflow processesinto WISE. Section5 finally concludesthepaper.

2 WISE: Workflow basedInter net SErvices

TheWISE project[AFH � 99] aimsto provideaviableinfrastructurefor businessto businesselectronic
commercein virtual enterprises.To thisend,existingservicesof companiestemporarilyparticipating
in a virtual enterpriseare linked togetherandembeddedwithin a virtual businessprocess.To do
this, WISE implementsfour different components:definition, enactment, monitoring, and ad-hoc
coordination.

Thedefinitioncomponentprovidesthepossibility to createvirtual businessprocessessupported
by an appropriategraphicalinterface(IvyFrame,a commercialbusinessmodelingtool by IvyTeam
[Ivy]). The enactmentcomponentcompilestheseprocessmodelsin a formatsuitablefor execution
andcontrolstheexecutionof virtual businessprocesses.In orderto keeptrackof thestateof virtual
businessprocesses,themonitoringcomponentextractsandvisualizesthenecessaryinformation.The
coordinationcomponentfinally offers theparticipantsof a virtual businessprocessthepossibilityto
establishmultimediaconferencesbasedon theinformationproducedduringexecution.

3 Integration of Applications into WISE

Thetypical processesimplementedin WISE encompassactivities which areinvocationsof different
subsystems(e.g.processesrunningin differentworkflow managementsystems).Onekey featureof
the WISE engineis to provide executionguaranteesfor theseprocesseseven in caseof failuresand
of concurrentaccessto sharedresources.To this end,theideasof transactionalprocessmanagement
[SAS99] areapplied. Among others,theseexecutionguaranteesincludeguaranteedtermination,a
moregeneralnotionof atomicitythanthestandardall or nothingsemantics.Guaranteedtermination
is realizedby partial compensationandalternative executions. In addition,WISE alsocontrolsthe
parallelizationof concurrentprocessesto guaranteecorrectinterleavings.

3.1 TransactionalCoordination Agents(TCAs)

In orderto enforcesuchexecutionguaranteesby theWISE engine,eachparticipatingsubsystemmust
meeta seriesof requirements.Theserequirementsincludethe following databasefunctionality for
singleactivities: All activitieshaveto beatomicto avoid inconsistenciesdueto theundefinedoutcome
of non-atomicactivities within a subsystem.In casethatactivities canbesemanticallycompensated
oncethey have beenexecutedcorrectly, the availability of this compensationhasto be guaranteed.
When activities can not be compensated,their commit may have to be deferredin certaincases.
Finally, for someactivities a repeatedinvocationwith “exactly-once-semantics” is necessaryin order
to guaranteetheir successfulexecution.Furthermore,whenparallelaccessto sharedresourcestakes
place,ordersestablishedbetweenactivitiesby theWISE enginehaveto berespectedin theunderlying
subsystems.

2



Sincethegoal is to integratearbitraryapplicationsinto WISE (andespeciallyarbitraryworkflow
managementsystems),theserequirementsarein generalnot met. Therefore,eachparticipatingsub-
systemis wrappedby atransactionalcoordinationagent(TCA) [NSSW94,SST98]. TheWISE system
thenactsasa processscheduleron top of severalTCAs servingaslower level schedulers.The task
of theTCA thathasto beprovidedfor eachapplicationis thereforenotonly to exploit thesubsystem
specificinterfacesto allow local servicesto be invoked from WISE but alsoto provide the required
databasefunctionalityontopof theapplication(adetaileddiscussioncanbefoundin [SSA99]).Thus,
TCAsextendtheideaof theapplicationagentsdefinedwithin theworkflow referencemodel[Hol93]
of the Workflow ManagementCoalition (WfMC) by providing additionaldatabasefunctionalityon
topof applicationsystems.

3.2 Structure of GenericTCA

With respectto the functionality to be provided by eachTCA, thereare four differentmodulesto
consider[Wun96]: communication,scheduling,monitoringandexecution(figure1).

To supportexecution, activitiesmustbemappedto localoperations.For thispurpose,subsystem-
specificinterfaceshave to beexploitedandthus,theexecutionmodulehasto betailoredto theappli-
cationto beintegrated.

Furthermore,schedulingof local operationswith respectto the activities specifiedby the
WISE systemhasto be performedby
theschedulingmodule. This includes
thepreservationof thegivenordersas
well asthe provision of local atomic-
ity, theguaranteedavailability of com-
pensatingactivities,andeventuallythe
defermentof localcommits.For these
purposes,theTCA hasto persistently
log the activities executedwithin the
subsystemandeventuallyalsotheac-
tivities neededfor compensationpur-
poses.

In order to support the interac-
tion betweenthe WISE systemand
TCAs,acommoncommunicationpro-
tocol hasto be provided by the com-

ExecutionMonitoring

Transactional

Scheduling

Agent

Communication

WISE

Subsystem

Coordination

Figure1: Structureof agenericTCA

municationmodule.
Finally, themonitoringmodulecoverstheextractionof localstateinformationfromtheunderlying

application.For this purpose,againexisting interfaceshave to beexploitedsuchthatthemonitoring
modulealsohasto betailoredto thesubsystem.

4 Integration of SAPBusinessWorkflows

SAP R/3 [SAP] is one of the mostcommonlyusedapplicationsystemsfor businessmanagement
purposes.It consistsof specializedmodulesfor severalapplicationareas(e.g.,productionplanning,
logistics,humanresourcemanagement,or controlling).Thesystemis built in aclient/server architec-
tureandis basedona relationalDBMS [BEG96].

3



In orderto integratearbitrarySAPR/3 BusinessWorkflows [WFB � 95, SAP96] aspartof WISE

processes,a transactionalcoordinationagentfor SAPR/3 hasbeenimplemented[Sch98]. Thearchi-
tectureof this TCA is depictedin figure2. Theagentspecificpartsarecoloredin light graywhereas
thestandardSAPR/3 systemis depictedin white color. Theagentis tightly integratedinto thecore
systemas,for instance,R/3’sunderlyingdatabaseis usedfor themanagementof theTCAs’ metadata
andis accessedthroughthestandardDBMS interfaceof SAPR/3. Thekernelof theTCA is itself a
SAPworkflow process(metaprocess)in whichthefunctionor theworkflow to beexecutedis embed-
dedin a genericway by simply passingits nameasparameterto themetaprocess.In what follows,
wedescribein detailthearchitectureof thisSAPR/3agent.

Trans-

SAP R/3

Agent

actions

Metadata

SAP Gateway

Local User

SAP GUI

(Communication)
RFC Library Adapter

WISE

...
(Moni-
toring)

(S
ch

ed
ul

in
g)

SAP R/3

comp.ok

Workflow
Meta

(Execution)

t-RFC

Figure2: Architectureof theSAPR/3agent

For executionpurposes,themetaworkflow of theTCA is calledwith a specificationof thename
of thefunctionor processto beexecuted.

Communicationwith theWISE systemtakesplaceby exploiting thetransactionalremotefunction
call (t-RFC)of SAPR/3 (t-RFC is the transactionalvariantof SAP’s implementationof the remote
procedurecall, RPC,which is availablevia a setof C library functions). It supportsboth multiple
parallelcallsof R/3 functionsfrom externalapplicationsaswell ascall-backsof externalapplications
from within theR/3systemvia theSAPgateway. Thecommunicationmodule(t-RFClibrary adapter)
is thusa thin softwarelayertransformingrequestsfrom WISE into t-RFCcallsandviceversa.

4



Themonitoringtaskis implementedby customizationof thenec-
essaryR/3 transactionsandprocesses.This is possiblesincecertain
hooks(customerexits) areforeseenin R/3 to adduser-specificcode
and sincethe ABAP/4 [KW97] sourcesof all R/3 transactionsare
available (ABAP/4, AdvancedBusinessApplication Programming
Language,is the4��� generationprogramminglanguagein which the
greatestpartof theR/3 system—asideof a smallC kernel—is im-
plementedin).

SAPR/3 supportsthenotionof transactionsandguaranteesfull
ACID propertiesfor them. Whena single function hasto be exe-
cutedasan activity in WISE, atomicity is provided by the R/3 sys-
tem.Whenacompleteworkflow processhastobeexecuted,however,
appropriatefailure handling mechanismsneedto be implemented
within this processto do a rollback in the caseof failuresin order
to guaranteetherequiredall-or-nothingsemanticsof activities.

In general,the metaworkflow encompassesonly two activities:
the function or processto be executedand its associatedcompen-
sation. In this, we follow the ideaof an explicit registrationof the
compensationwhich is advantageousin that all instancesof SAP
R/3 workflow processestogetherwith theassociatedparametersare
storedpersistentlyin theunderlyingDBMS. Thus,no additionalef-
fort hasto betakento log theparametersassociatedwith anactivity
executedby WISE. After anactivity of WISE (which correspondsto
a workflow processof SAP)within themetaworkflow hasbeenex-
ecutedsuccessfully, the metaprocessperformsan idle wait (which
doesnot consumeany resources).If the nestedSAP processneeds
to becompensated,aninternaleventin SAPR/3 is generatedvia a t-
RFClibrary call andthenext activity of themetaworkflow, thecom-
pensation,canbeexecutedwithoutexplicitly specifyingtherequired
parameters.Otherwise,whencompensationno longerhasto becon-
sidered,the metaprocessis terminated. The structureof the meta
workflow, which formsthebodyof theTCA, is depictedin figure3
usingthe event-controlledprocesschainnotationof SAP. Although
this processconceptuallyencompassesonly two activities, a couple
of internalchecksandeventsarerelevant. First, themetaworkflow
writes a log entry to prevent multiple startsof the sametask. After
this, thedesiredworkflow is startedwhile in themeantime,themeta
workflow waits in parallelon its terminationsignal(a). If an error
occurredandtheworkflow is markedto berepeatable,theflow goes
backto starttheworkflow again(b). After successfulterminationor
abortof the workflow, the result is calledbackto theWISE system
(c). The parallelsection(d) communicateswith the externalWISE

system.At this point themetaworkflow waits in anidle wait until a
decisionis sentfrom theWISE systemin orderto compensate(e) or
not.

Theretriability of SAPprocessesis achievedby exploiting SAP
R/3’stransactionalremotefunctioncall mechanisms.After thet-RFC

(a)

(b)

(c)

(c)
(d)

(e)

999501 SGVT

Workflow gestartet
�
000153	 FUNC

WI_ID in DB

schreiben

XOR



000226 EXCP

Doppelt gestartet

...

000156 EXCP

XOR



000081
	

FUNC

Starten des
�
WorkFlows
� 000282

	
WAIT

Warten auf
�
CALLBACK

Ereignis

000083 EXCP 000284 WEVT

CALLBACK

erhalten�
000321 IF

Wiederholbar ?

XOR

000326 IFRS

Nein

000324 IFRS

Ja



000331 OPRT

Nicht Wiederholen!

000334 OPRT

Muss wiederholt

werden ?

000332 CEVT

Variable gesetzt
� 000335

	
CEVT

Variable gesetzt
�

END

000313 UNTL

Wiederholen

XOR



000315 UNRS

wiederholen

000316 UNRS

nicht wiederholen

000097 IF

Client Erfolgreich ?

XOR



000102 IFRS

JA

000100 IFRS
�

NEIN

000034 CASE

Kompensierbar ?

000184
	

FUNC
�

Rueckmeldung an

OPERA
�

XOR

 000187 EXCP

000039 COTH

Nicht

Kompensierbar !

000037 CRES

Ist Kompensierbar

!
�

000231
	

FUNC

Rueckmeldung an

OPERA

000233 EXCP 000244 FUNC

Rueckmeldung an

OPERA
� 000045 WAIT

Warten auf Ende −
�

Ereignis

000246 EXCP 000047 WEVT

COMPEvent

erhalten�

000050 CASE

Soll kompensiert
�

werden ?

XOR



000052 CRES

Kompensieren

000053 COTH

Beenden

XOR



000261
	

FUNC

Starten des

Kompensations

Workflows

000262 WAIT
�

Warten auf

CALLBACK

Ereignis

000265 EXCP 000266 WEVT

CALLBACK

erhalten�
000110 UNTL

Ausfuehrung OK

XOR

000113 UNRS

OK

000112 UNRS

ERROR

000227
	

OPRT

OK −>
�

COMPENSATED

000228 CEVT

bearbeitet

000215 FUNC

Rueckmeldung an

OPERA

000217
	

EXCP

END

END

END

END

999502 EFUN

Workflow beenden
�
999503
�

EVTG

Workflow beendet

Figure 3: Structure of the agent’s
metaworkflow in EPCnotation

5



library adapterof theTCA hasrequesteda t-RFC identifier from the R/3 system,all invocationsof
a retriableactivity areperformedwith this ID andtheR/3 systemguaranteesthat is is executedonly
onceevenwhenmultiple invocationsof this activity occur.

SAPR/3’s t-RFCwasoriginally designedto starta functionon anotherR/3 system.In orderto
invoke a workflow, a thin layer of SAP-R/3functionsis neededto propagaterequestsfrom outside
to the SAP workflow managementsystem.For this purpose,we useABAP/4 functionsin orderto
propagatecallsfrom theoutsideworld to theworkflow componentof SAPR/3.

This function layer also implementsthe mappingfrom the external ID usedin WISE for each
activity to SAP’s internalworkflow identificationnumber. Oncea metaworkflow hasbeenstartedit
handlesall themessagesfrom theWISE system.For every typeof command,a functionis provided
to sendthiscommandto themetaworkflow by aninternalevent.

Thestartcommandinvokesaninstanceof this metaworkflow, passingthenameandcorrespond-
ing parametersto theworkflow processto be invoked. Themetaworkflow marshallstheparameters
andstartsthedesiredR/3workflow asif it wasstarteddirectlyfrom within thesystem.All parameters
of a SAPworkflow processarestoredin a so-calledcontainer, which is anarrayof parametername
andvaluepairs.Sincethemetaworkflow hasto storethecontainerof theworkflow, thiscontainerhas
to bepacked into thecontainerof themetaworkflow. Thatway every built-in SAPworkflow canbe
invokedwithout changeson its definition. Furthermore,sinceonly standardcomponentsof SAPR/3
areexploited, the TCA implementationwill not be affectedby changesintroducedby new releases
(it is, for instance,guaranteedthatall customerexits of R/3 arealsopresentin futureversionsof the
system).

After theworkflow terminates,themetaworkflow sendsa notificationbackto the WISE system
andstaysin idle wait until it canterminateitself or until it hasto startthecompensationworkflow in
orderto undothefirst workflow. Thewholecontainerof theworkflow in theendstateof theworkflow
is passedthroughmetaworkflowscontainerin orderto preserve all informationsto undothechanges.
Thiswaywecanstoreall this informationpersistentlyin themetaworkflow’s container.

Theworkflow modelof SAPR/3 is designedto reacha consistentstateaftertheterminationof a
process.As in our casewe have have anadditionalworkflow managerabove SAP, we needa mech-
anismto propagatesomeresultstateback. To provide this feature,we introduceda specialvariable
WF RESULT which representstheresultof theworkflow execution.

5 Conclusion

In this shortpaper, we have discussedthe practicalexperiencesgainedfrom the integrationof SAP
R/3 BusinessWorkflows into the WISE system.This integrationnot only involvesthe invocationof
SAPprocessesfrom WISE but alsothe provision of executionguaranteesfor SAPprocesseswhich
canbeexploitedby WISE. To this end,a transactionalcoordinationagent(TCA) is required,which
is in thecaseof theSAPR/3 implementationtightly integratedinto thesystem.Togetherwith aTCA
thathasbeenimplementedfor IBM’ sFlowMark [IBM94], theSAPR/3TCA complementstheeffort
to allow theWISE systemto runprocesseson topof processes.

Basedon theTCAs alreadyimplemented,our futurework aimsin providing furthersupportwith
respectto the monitoringof nestedprocessesthatare,in general,not known to WISE. To this end,
anabstractdescriptionof nestedprocesseswill bemadeavailable. TheTCA thenpublishesinternal
statesof nestedprocesseswith respectto thisabstractdescriptionsuchthatit canbedisplayedby the
monitoringfacilitiesof WISE.

6



References

[AFH � 99] G. Alonso, U. Fiedler, C. Hagen,A. Lazcano,H. Schuldt,and N. Weiler. WISE: Businessto
BusinessE-Commerce.In Proceedingsof the9��� InternationalWorkshopon Research Issuesin
DataEngineering. InformationTechnologyfor Virtual Enterprises(RIDE-VE’99), pages132–139,
Sydney, Australia,March1999.

[BEG96] R. Buck-EmdenandJ.Galimow. SAPR/3System:A Client/ServerTechnology. Addison-Wesley,
1996.

[Hol93] D. Hollingsworth. WorkflowManagementCoalition: TheWorkflowReferenceModel. Workflow
ManagementCoalition,December1993.DocumentTC00-1003.

[IBM94] IBM. FlowMark for OS/2:ManagingYourWorkflow, first edition,May 1994.

[Ivy] IvyTeam,Zug,Switzerland.http://www.ivyteam.com.

[KW97] R. KretschmerandW. Weiss.DevelopingSAP’sR/3Applicationswith ABAP/4. Sybex, 1997.

[NSSW94] M. Norrie, W. Schaad,H.-J.Schek,andM. Wunderli. CIM ThroughDatabaseCoordination.In
Proceedingsof theInternationalConferenceonDataandKnowledgeSystems, May 1994.

[SAP] SAPAG, Walldorf, Germany. http://www.sap.com.

[SAP96] SAPAG, D-69185Walldorf. SystemR/3: SAPBusinessWorkflow, 1996.WhitePaper.

[SAS99] H. Schuldt,G. Alonso, and H.-J. Schek. Concurrency Control and Recovery in Transactional
ProcessManagement.In Proceedingsof theACM Symposiumon Principlesof DatabaseSystems
(PODS’99), pages316–326,Philadelphia,Pennsylvania,USA, May 31-June2 1999.

[Sch98] C. Schuler. DesignandDevelopmentof a CoordinationAgent for the Integrationof SAPR/3 in
Workflow Processes.Diplomathesis,DatabaseResearchGroup,Instituteof InformationSystems,
ETH Zürich,July1998.In German.

[SSA99] H. Schuldt,H.-J.Schek,andG. Alonso. TransactionalCoordinationAgentsfor CompositeSys-
tems.In Proceedingsof the3��� InternationalDatabaseEngineeringandApplicationsSymposium
(IDEAS’99), pages321–331,Montréal,Canada,August1999.

[SST98] H. Schuldt,H.-J.Schek,andM. Tresch. Coordinationin CIM: Bringing DatabaseFunctionality
to ApplicationSystems.In Proceedingsof the5��� EuropeanConcurrentEngineeringConference
(ECEC’98), pages223–230,Erlangen,Germany, April 1998.

[WFB � 95] H. Wächter, F. Fritz, A. Berthold,B. Drittler, H. Eckert, R. Gerstner, R. Götzinger, R. Krane,
A. Schaeff, C. Schl̈ogel,andR. Weber. ModellierungundAusführungflexibler Gescḧaftsprozesse
mit SAP BusinessWorkflow 3.0. In F. Huber-Wäschle,H. Schauer, andP. Widmeyer, editors,
GISI95– HerausforderungeneinesglobalenInformationsverbundesfür dieInformatik, Informatik
Aktuell, pages197–204.Gesellschaftfür Informatik(GI) undSchweizerInformatikerGesellschaft
(SI), Springer-Verlag,1995.In German.

[Wun96] M. Wunderli. DatabaseTechnology for theCoordinationof CIM Subsystems. PhDthesis,Swiss
FederalInstituteof TechnologyZürich,1996.

7


	Table of Contents
	Preface
	WISE: An Infrastructure for E-Commerce
	Give me all I pay for - Execution Guarantees in Electronic Commerce Payment Processes
	Performance Assessment and Configuration of Enterprise-Wide Workflow Management Systems
	Efficient Distributed Control of Enterprise-Wide and Cross-Enterprise Workflows
	Modelling Inter-organizational Processes with Process Model Fragments
	Adaptive Workflows Based on Flexible Assignments of Workflow Schemas und Workflow Instances
	Defining Flexible Workflow Execution Behaviors
	Enterprise-Wide and Cross-Enterprise Workflow Management: Challenges and Research Issues for Adaptive Workflows
	Workflows over Workflows: Practical Experiences with the Integration of SAP/R3 Business Workflows in WISE

	Back: Back to ToC


