
Machine Learning of SPARQL Templates
for Question Answering over LinkedSpending

(Discussion Paper)

Roberto Cocco1, Maurizio Atzori1, and Carlo Zaniolo2

1 Department of Math/CS (DMI), University of Cagliari (Italy)
robertococco@outlook.com atzori@unica.it

https://dmi.unica.it/atzori
2 CS Department, University of California, Los Angeles (USA)

zaniolo@cs.ucla.edu

http://web.cs.ucla.edu/~zaniolo/

Abstract. We present a Question Answering system aimed to answer
natural language questions over open RDF spending data provided by
LinkedSpeding. We propose an original machine-learning approach to
learn generalized SPARQL templates from an existing training set of
(NL question, SPARQL query) pairs. In our approach the generalized
SPARQL templates are fed to an instance-based classifier that associates
a given user-provided question to an existing pair, that is used to answer
the user question. We employ an external tagger, delegating the Named-
Entity Recognition (NER) task to a service developed for the domain
we want to question. The problem is particularly challenging due to the
small training set size available, counting only 100 questions/SPARQL
queries.

We illustrate the results of our new approach using data provided by
the Question Answering over Linked Data challenge (QALD-6) task 3,
showing that it can provide a correct answer to 14 of the 50 questions
of the test set. These results are then compared to existing systems,
including QA3, our previous work where templates were provided by an
expert instead of being generated automatically from a training set.

Keywords: Question Answering · SPARQL · Semantic Web · Machine
Learning

1 Introduction

The recent years saw a steady growth of structured data made available to the
public, with governments giving their contribution by publishing information
about public expenses. At the same pace the need grows to make this data

Copyright © 2019 for the individual papers by the papers authors. Copying permit-
ted for private and academic purposes. This volume is published and copyrighted by
its editors. SEBD 2019, June 16-19, 2019, Castiglione della Pescaia, Italy.

https://dmi.unica.it/atzori
http://web.cs.ucla.edu/~zaniolo/


available to non-technical users. In this paper, we propose a tool capable of an-
swering a question posed in natural language by a user with no experience of
RDF datasets and SPARQL queries. This is a follow-up to our previous template-
based question-answering system called QA3 [1], with the main difference being
the way templates are obtained. In fact, while QA3 requires the templates to be
generated by an experienced user, in this paper we present a system that is able
to learn new templates from datasets fed to an intelligent template generator.
Our system works by processing a dataset containing (question, SPARQL query)
pairs in input. Specific references contained in each question and its associated
SPARQL query are automatically linked by our system, and treated as “vari-
ables” that may vary in different user questions. In other words, both questions
and SPARQL queries are generalized into templates that can be filled in with
different values w.r.t. the instances available in the dataset.

At answering time, the user question is subject to a similar generalization
process, whereby it is matched to a list of generalized templates containing the
same tags and ordered by the Jaccard Index (also known as intersection over
union).
The best matching templates, and their associated queries, are then filled in with
the data so obtained by tagging the user question. Due to the kind of approach
used, in some cases more than a query per template is reconstructed, so we
show the user the template question filled in with the highest Jaccard Index
and ask the user if this has the same meaning as the original one. This allows
our system to exploit user’s feedback to further refine the initial training set.
Furthermore, the system keeps presenting the user with questions until he/she
returns a positive response or no more questions are left to show. This results
in a very flexible system, requiring the user to input only non-technical data as
long as an initial small training set of question/answer pairs.

RDF. The Resource Description Framework3 is a set of specifications used to
represent graph data. It provides us with a general method to decompose knowl-
edge into triples, composed of a subject, a predicate and an object.

Linked Spending. With more and more governments providing spending data
to the public, Linked Spending4 took on the task of making open spending data
available via RDF datacubes, a W3C standard [2]. It now provides more than 2
million planned or carried out financial transactions.

Question answering and QALD. Question answering systems focus on cor-
rectly answering questions posed in natural language, instead of retrieving infor-
mation on the basis of user-generated keywords as traditional search engines
do [4] or SQL-like query languages like SPARQL. This problem can be ap-
proached in many different ways, but the main challenges can be considered:
(i) Extracting the relevant information from the questions and mapping it to
the datacube, (ii) Dealing with terms ambiguity, (iii) Working with more than
one dataset, (iv) Data quality and heterogeneity. In this paper, we leverage

3 https://www.xml.com/pub/a/2001/01/24/rdf.html
4 http://linkedspending.aksw.org/

https://www.xml.com/pub/a/2001/01/24/rdf.html
http://linkedspending.aksw.org/


the award-winning results of QA3, and focus on automating (through machine
learning) the process of generating templates, which previously required a try-
and-error approach by a human expert.

Question Answering over Linked Data5 (QALD) is a series of evaluation
campaigns that provides an up-to-date benchmark for assessing and comparing
question answering systems that query RDF-based Linked Data. Over the years,
QALD has generated a series of training/test sets. The relevant one for this work
is Task 3 of QALD6, containing a training set of 100 instances of (question,
SPARQL query) pairs for LinkedSpending, and another 50 pairs as test set.

Template-based approaches. Template-based approaches to question answer-
ing work by constructing templates (or pseudo queries) from a linguistic analysis
of the input questions [4]. These templates are neutral, as they contain no refer-
ence to the dataset, and they stand in the middle between the natural language
question and a query. Since these templates often reflect the linguistic structure
of the questions, structural variations must be included, exponentially increasing
the number of possible queries to build.

For an extensive review of existing work, please refer to [1].

2 Our Approach

The main three components that compose this template-based approach are the
following:

– a tagger, that handles the Named-Entity Recognition task, and is provided
by QA3 [1];

– a template generator, that handles the induction of templates of both ques-
tions and SPARQL queries by processing a given training set of pairs;

– a template matcher, that first performs the ranking of templates for the
question posed by the user, and then fills-in the best-matching template.

Fig. 1. Our System flow, including tools provided by QA3 (lower layer) and inputs by
the user (upper layer)

5 http://qald.aksw.org/

http://qald.aksw.org/


As shown in Figure 1, a dataset of (NL question, SPARQL query) pairs is fed
to the generator, which, through the tagger, outputs a new dataset composed
of a list of query templates paired with their respective questions’ template.
When asked a NL question, the system tags it while the matcher extracts simi-
lar templates from the templates dataset. From these templates, initial queries
and questions can be reconstructed if needed. The scoring of templates w.r.t. a
given question is done by the system using semantic similarity, and the system
presents the user with successive reconstructed questions until it receives a pos-
itive answer, or the list of questions is exhausted. Finally the query, paired with
the question chosen by the user, is used to retrieve the answer from the Linked-
Spending endpoint6. In the following we provide some additional information on
each module of the system.

Tagger. The tagger gets the response from a NER service and makes it usable
by the system. It sends the end-user question to a service specific for the domain
that is being questioned by the user. The service’s response usually contains a
reference to a datacube, the list of entities found on said datacube, along with
the chunk from the question that matched the entity and, optionally, the entity’s
type.

Generator. The generator creates a template by processing a NL question, a
SPARQL query, or both, and removing all the references to the input datacube.
It initially gets the list of entities found on the input datacube and the datacube
found by the tagger. If found in the query, the datacube reference is replaced with
the tag (placeholder) <DATASET>. The prefixes are replaced by their expanded
form, and aliases and the from clause are removed. Next, the expressions and the
supported types (numbers, years) found both on the question and the query are
replaced with tags depending on the type of data they represent (e.g. <PROP> for
properties, <VALUE> for values, <YEAR> for years, <NUM> for numbers ecc). Finally,
the variables get streamlined to a simple naming convention (varA, varB, . . . ),
and predicates with no matching found in the datacube are replaced by blank
nodes. During the filling of a template, the process is basically inverted. The
generator still gets from the tagger a list of expressions, which in this case were
derived from the English question asked by the end-user. Then the template’s
tags are replaced by the obtained results, based on their types.

Matcher. The matcher, given a question template, returns a list of compatible
query templates. This is done by querying a dataset processed by the generator
for the tags in the question template. This list, ordered by the Jaccard Index
(calculated between the question template, and the question templates associ-
ated to the queries in the dataset), will only contain query templates with an
equal or lesser number of tags.

6 http://linkedspending.aksw.org/sparql

http://linkedspending.aksw.org/sparql


3 Running Example

In this section, we detail the various steps performed by our prototype and
how they work, using a running example associated with the following natural
language question: What was the total Wandsworth spending in 2013 from the
housing department?.

3.1 Data Preprocessing

Data preprocessing is done by feeding a dataset containing (NL question, SPARQL
query) pairs to the generator. The result is a dataset containing a list of query
templates associated with a list of question templates and a list of tags. Take a
look at Table 1 for an example of such a pair. Pairs that produce the same query
template will be joined into an individual entity that references both question
templates.

Table 1. An Example of question/SPARQL pair

Question SPARQL query

“What was the total
Wandsworth spending in 2013
from the housing department?”

select sum(xsd:decimal(?amount)) {

?obs qb:dataSet ls:wwspending_2013.

?obs lso:wwspending_2013-Department "housing".

?obs lso:wwspending_2013-amount ?amount. }

Question Template SPARQL query Template

“What was the <AGGRA>

<DATASET> from
the <VALUE1> department?”

select <AGGRA>(xsd:decimal(?varA)) {

?obs qb:dataSet <DATASET> .

?obs [] <VALUE1> .

?obs <MEASURE> ?varA . }

3.2 Question analysis & data matching

These tasks are done by the system’s tagger with the aid of a domain-specific
NER service, in our case the one provided by the QA3 tagger. The tagger has
the following two goals: (i) finding the correct dataset and (ii) matching question
terms with the dataset terminology (NER). Missing the correct dataset or failing
to find the correct terms will lead to an incorrect answer, so the NER service’s
accuracy needs to be very high for our system to work properly.

QA3 proposed an approach based on choosing “the dataset that better covers
the question, that is, the one that minimizes the portion of the question not
referring to elements in the dataset” [1]. The question-to-dataset terms matching
is done by first creating an in-memory index of all literals (labels, comments,
and values) for each dataset, and normalizing the textual elements that are keys
in the indexes and the questions by removing the stop words.
The response from the NER service usually consists of a dataset and a list of
entities, as seen in Figure 2.
We then feed the question and the entities found by the tagger to the generator
to obtain a template (e.g. “What was the <AGGRA> <DATASET> from the
<VALUE1> department?”).



Dataset: wandsworthspending_2013

Chunk: What was the total

Chunk: Wandsworth spending in 2013

S: ls:/ instance/wandsworthspending_2013

P: <http :// www.w3.org /2000/01/ rdf -schema#label >

O: "Wandsworth spending (2013)"

Chunk: from the

Chunk: housing

S: ls:/ instance/observation -wandsworthspending_2013 -...

P: lso:wandsworthspending_2013 -Department

O: "housing"

Chunk: department

S: lso:wandsworthspending_2013 -Department

P: <http :// purl.org/dc/terms/identifier >

O: "Department"

Fig. 2. Response’s structure

3.3 Query Construction

Inverting the data preprocessing process, the query construction takes a template
as input, and returns a query. In this process, the templates are filled-in with the
data obtained by the tagger from the NL question. In those cases where the same
type of tag appears more than once, or we’re working with a template with less
tags than the NL question, the system creates a query for every combination,
in order to cover different structural variation (e.g., the question “Which class
achieved the highest revenue for the Town of Cary, North Carolina?” processed
as “Which <PROP0> achieved the <AGGRa> revenue for the <VALUE1>,
<VALUE2>?”, will result in the queries shown in Table 2). This outputs a total
of n! queries, where n is the number of times the tag appears in the template,
unless templates have fewer tags than the NL question. In this second situation,
n!/m templates are returned with m denoting the difference between the number
of NL question’s tags and the number of template’s tags.

Table 2. Example of a query’s variations

Query template select <AGGRa> (?varA) {?obs <SUB1> ?varA }

Variation A select max (?varA) {?obs lso:town of cary ?varA }

Variation B select max (?varA) {?obs lso:north carolina ?varA }

3.4 Scoring

The scoring process takes place in two different steps. In the matcher, we order
the list by the Jaccard Index, for which we can also specify a threshold value. If
none of the questions in the list has a value over the threshold, the system widens



the search to include templates with fewer tags than the ones on the question.
This is done in order to avoid matching unrelated templates, a situation that
could occur when more entities are tagged than those that are actually needed.
After the query construction, since both the matcher and the generator can
return more than a query, our system ranks them by the Jaccard Index (higher
scores first) and presents them one-by-one to the user, until the system gets a
positive feedback (Figure 3), in which case the system will proceed to the next
step. Otherwise it will terminate refusing to provide an answer.

Ask a ques t i on :
> Which c l a s s achieved the h i ghe s t revenue f o r the Town o f Cary?

Did you meant ”Which c l a s s earned the most f o r the Town o f
Cary?” [ y , N]
> y

Answer : [ ’ ht tps : // openspending . org / town o f ca ry r evenue s / Class / 1 ’ ]

Fig. 3. User feedback exploitation (self-learning)

3.5 Answer retrieval & presentation

The reconstructed query associated to the question picked by the user is executed
over the LinkedSpending datacube [3]. The answer obtained by running the
SPARQL query computed from the SPARQL query template is run against the
LinkedSpending endpoint. Unless the answer is empty, the results are shown to
the user as the final answer to the processed question, as in Figure 3.

4 Experiments

We used a simple command line interface, i.e. the one shown in Figure 3, where
the user poses a question to the system and is then presented with the questions
found in the scoring process. The system executes the query associated with the
question chosen by the user. We assume that on the scoring step the user always
picks the correct question from the proposed ones if available, or a wrong one
in case no correct questions are shown. We think this is the expected scenario
whenever the user is practically using the prototype, that is, not in an adversarial
worst-case setting. If each proposed question is associated with a query that
returns an empty answer, we count the user question as not processed.

QALD-6 Dataset. We tested our system with the datasets of the QALD-6
challenge for statistical question answering over RDF datacubes. It consists in
a training dataset of 100 questions, and a test dataset of 50. For each question,
both datasets contain the correct answer and other metadata.



Results. The results are obtained by feeding the training dataset to the system
generator, and then asking the questions from the training and test datasets
respectively. The system scored a total of 14 answers on the test dataset, pro-
cessing 30 out of 50 questions (precision 47% over processed questions). On the
training dataset, it managed to process 59 out of 100 questions, and correctly
answered to 41 (69% over processed questions). These results are reported in
Table 3. Although precision and recall are lower than our award-winning QA3

system, we believe these are great results considering that no human expert con-
tributed to this result. In fact, measures are reasonable when compared against
existing approaches despite our approach being completely automatic. That is,
the system will support new queries as long as at least one example is provided
in the training set or the user provide a positive feedback. We believe this rep-
resents a significant improvement of the state-of-the-art in unsupervised QA on
knowledge bases.

Table 3. Results on training and test datasets, obtained by feeding the training dataset
to the system

Dataset N Processed Correctly answered

Training 100 59 41
Test 50 30 14

Table 4. Comparison against other QA systems, as reported by the QALD-6 indepen-
dent competition

System Processed Recall Precision F-1

This approach 30 0.41 0.47 0.44
QA3 44 0.62 0.59 0.60

CubeQA 49 0.41 0.49 0.45
SPARKLIS (expert user) 50 0.94 0.96 0.95

SPARKLIS (beginner user) 50 0.76 0.88 0.82

References

1. Atzori, M., Mazzeo, G.M., Zaniolo, C.: QA3: a Natural Language Approach to
Question Answering over RDF Data Cubes. Semantic Web 10(3), 587–604 (2019).
https://doi.org/10.3233/SW-180328, https://doi.org/10.3233/SW-180328

2. Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary (W3C Recommen-
dation). https://www.w3.org/TR/vocab-data-cube/ (Jan 2014)

3. Höffner, K., Martin, M., Lehmann, J.: Linkedspending: Openspending becomes
linked open data. Semantic Web 7(1), 95–104 (2016). https://doi.org/10.3233/SW-
150172, http://dx.doi.org/10.3233/SW-150172

4. Unger, C., Freitas, A., Cimiano, P.: An introduction to question answering over
linked data. In: Reasoning Web. Reasoning on the Web in the Big Data Era -
10th International Summer School 2014, Athens, Greece, September 8-13, 2014.
Proceedings. pp. 100–140 (2014)

https://doi.org/10.3233/SW-180328
https://doi.org/10.3233/SW-180328
https://www.w3.org/TR/vocab-data-cube/
https://doi.org/10.3233/SW-150172
https://doi.org/10.3233/SW-150172
http://dx.doi.org/10.3233/SW-150172

	Machine Learning of SPARQL Templates for Question Answering over LinkedSpending(Discussion Paper)

