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Abstract. In the development of the Semantic Web researchers and in-
dustry experts agree that scalability can only be obtained by reducing
standard reasoning tasks to query evaluation over (deductive) databases.
From a theoretical viewpoint much has been done. Conversely, from a
practical point of view, only a few reasoning services have been devel-
oped, which however typically can only deal with lightweight ontologies.
To fill the gap, the paper presents owl2dlv, a modern Datalog system
for evaluating SPARQL queries over very large OWL 2 knowledge bases.
owl2dlv builds on the well-known ASP system dlv by incorporating
novel optimizations sensibly reducing memory consumption and a server-
like behavior to support multiple-query scenarios. The high potential of
owl2dlv is outlined by the results of an experiment on data-intensive
benchmarks, and confirmed by the interest of a major international in-
dustrial player, which has stimulated and partially supported the work.
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1 Introduction

In large-scale Semantic Web scenarios, it is convenient to reduce standard rea-
soning tasks to query evaluation over (deductive) databases. From a theoretical
viewpoint much has been done: in many ontological settings, the problem of
evaluating a conjunctive query (CQ) over a knowledge base (KB) consisting of
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an extensional dataset (ABox) paired with an ontology (TBox) can be reduced to
the evaluation of a Datalog query (i.e., a Datalog program, possibly nonrecursive
and including strong constrains, paired with a union of CQs, both constructed
only from the original query and the TBox) over the same ABox [14,17,22,29,33].
From a practical viewpoint the situation is not so rosy. Many Datalog reasoners,
such as clingo [18] and dlv [26], are based on one-shot executions perform-
ing heavy operations (e.g., loading and indexing) multiple times and hence are
rather unsuited. Also, only a few services with a server-like behavior, such as
mastro [13], ontop [12], and rdfox [28], have been developed, which how-
ever can only deal with lightweight TBoxes. To fill the gap, the paper presents
owl2dlv, a modern Datalog system, based on the aforementioned rewriting
approach, for evaluating SPARQL CQs [32] over very large OWL 2 KBs [15].

Reasoning over OWL 2 is generally a very expensive task: fact entailment
is already 2NExpTime-hard, while decidability of CQ answering is even an
open problem. To balance expressiveness and scalability, the W3C identified
three tractable profiles —OWL 2 EL, OWL 2 QL, and OWL 2 RL— exhibiting
good computational properties: the evaluation of CQs over KBs falling in these
fragments is in PTime in data complexity (query and TBox are considered fixed)
and in PSpace in combined complexity (nothing is fixed) [30]. To deal with
a wide variety of ontologies, owl2dlv implements the Horn-SHIQ fragment
of OWL 2, which enjoys good computational properties: CQs are evaluated in
PTime (resp., ExpTime) in data (resp., combined) complexity. Moreover, it
is also quite expressive: it generalizes both OWL 2 QL and OWL 2 RL, while
capturing all OWL 2 EL constructs except role chain [25].

From the technical side, owl2dlv builds on the well-known ASP system
dlv [26], and in particular its most recent incarnation dlv2 [2], by incorporating
a server-like modality, which is able to keep the main process alive, receive and
process multiple user’s requests on demand, and restore its status thanks to an
embedded persistency layer. Following the approach proposed by Eiter et al. [17],
a Horn-SHIQ TBox paired with a SPARQL query are rewritten, independently
from the ABox, into an equivalent Datalog query.
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Fig. 1: owl2dlv – performance and enhancements.



The high potential of owl2dlv is outlined by the results of an experiment
on data-intensive benchmarks, and confirmed by the direct interest of a big in-
ternational industrial player, which has partially supported this work and also
stimulated the evolution of the system with a major challenge: “deal with LUBM-
8000 —the well-known LUBM [19] standard benchmark for ontological reasoning
collecting about 1 billion factual assertions upon 8,000 universities— over ma-
chines equipped with 256GB RAM and with an average query evaluation time of
at most 10 minutes”. Eventually, not only the system was able to widely win the
general challenge as reported in Figure 1; but, amazingly, the average time taken
by owl2dlv on the ten (out of fourteen) bound queries —i.e., queries containing
at least one constant— of LUBM-8000 was eventually less than one second.

2 Background

OWL 2. In Description Logic (DL) terminology, let NI (individuals), NC ⊃
{>,⊥} (atomic concepts) and NR (role names) be pairwise disjoint discrete sets.
A role r is either a role name s or its inverse s−. A concept is either an atomic
concept or of the form C uD, C tD, ¬C, ∀r.C, ∃r.C, > nr.C or 6 nr.C, where
C and D are concepts, r is a role, and n ≥ 1. General concept inclusions (GCIs),
role inclusions (RIs), and transitive axioms (TAs) are respectively of the form
C1 v C2, r1 v r2, and Tr(r), where: t is disallowed in C2, > nr and 6 nr
are disallowed in C1, and they are disallowed also in C2 in case r is transitive.
A Horn-SHIQ TBox is a finite set of GCIs, RIs and TAs satisfying some non-
restrictive global conditions [21,23]. An instance I is a set of assertions of the
form C(a) and r(a, b), where C ∈ NC, r ∈ NR, and a, b ∈ NI. An ABox is any
finite instance. A KB K is a pair (A, T ), where A is an ABox and T is a TBox.
SPARQL. It is the standard language in the Semantic Web for querying OWL 2
KBs [32]. As in databases, the most important class of SPARQL queries are the
conjunctive ones, which syntactically are quite similar to SQL queries. More
generally, when querying OWL 2 KBs the TBox plays the role of a fist-order
theory and it has to be taken into account properly, as described next.
OBQA. By adopting the unique name assumption, a model of a KB K = (A, T )
is an instance I ⊇ A satisfying all the axioms of T , written I |= T [6]. The
set of all models of K is denoted by mods(K). To comply with the open world
assumption, I might contain individuals that do not occur in K. The answers
to a query q(x̄) over an instance I is the set q(I) = {ā ∈ NI

|x̄| | I |= q(ā)} of
|x̄|-tuples of individuals obtained by evaluating q over I. Accordingly, the certain
answers to q is the set cert(K, q) =

⋂
I∈mods(D,Σ) q(I). Finally, ontology-based

query answering (OBQA) is the problem of computing cert(K, q).

3 Query Answering in OWL 2 via Datalog

As said, to perform OBQA, owl2dlv follows the approach of Eiter et al. [17].
From an OWL 2 Horn-SHIQ TBox T and a SPARQL CQ q(x̄), owl2dlv runs
Algorithm 1 to build a Datalog program PT and a union of CQs Qq,T (x̄) such
that, for each ABox A, the evaluation of Qq,T (x̄) over A ∪ PT produces the same
answers as the evaluation of q(x̄) over A ∪ T .



Algorithm 1: TBox and Query Rewriting

Input: An OWL 2 Horn-SHIQ TBox T together with a query q(x̄)
Output: The Datalog program PT together with the query Qq,T (x̄)
1. T ′ ← Normalize(T );
2. T ∗ ← EmbedTransitivity(T ′);
3. Ξ(T ∗)← Saturate(T ∗);
4. PT ← RewriteTBox(Ξ(T ∗));
5. Qq,T (x̄)← RewriteQuery(q(x̄), Ξ(T ∗));

Consider a TBox T . Step 1 transforms T into an equivalent TBox T ′ con-
taining only “simple” axioms [21]. Step 2 transforms T ′ into T ∗ by replacing
TAs with suitable GCIs including new atomic concepts. Step 3 exhaustively ap-
plies inference rules to derive new entailed axioms. The new TBox including this
extra axioms is denoted by Ξ(T ∗). Step 4, identifies the DL axioms with no
existential restrictions in the right-hand side and transforms them into Datalog
rules. Finally, given a CQ q(x̄), Step 5 rewrites it into the union of CQ (UCQ)
Qq,T (x̄) by incorporating parts of Ξ(T ∗).

The pair (Qq,T (x̄), PT ) returned by Algorithm 1 is further optimized by a
pruning strategy followed by the so-called Magic Sets rewriting —the latter is
already in use in dlv2 but it has been further improved due to the specific nature
of PT . The result of this phase consists of the pair (opt(Qq,T (x̄)), opt(PT )).
Pruning Strategy. Pairs of GCIs of the form C1 v C2 and C2 v C1 give rise
to Datalog queries containing rules with multiple predicates having the same
extensions: C1(X) :− C2(X) and C2(X) :− C1(X). The same happens with RIs.
During the evaluation of the query, however, this can be considerably expensive.
Hence, we adopt the following pruning strategy. Let E = {E1, ..., Ek} be a set of
equivalent concepts or roles. First, we remove from PT all the rules of the form
Ei(X) :−Ej(X) with 1 < i ≤ k and 1 ≤ j ≤ k. Second, let P 1

T be the subset of
PT containing only rules of the form E1(X) :−Ej(X) with 2 ≤ j ≤ k, for each
i ∈ {2, ..., k}, we replace each occurrence of Ei by E1 both in Qq,T (x̄) and in
each rule of PT that does not belong to P 1

T . An analogous technique is applied
over RIs of the form r v s− and s− v r by taking into account, in this case,
that the first argument of r (resp., s) maps the second one of s (resp., r).
Magic Sets Rewriting. To optimize the rewriting, owl2dlv performs two
novel steps: (1) Eliminate rules that have a magic atom with predicate m#p#α if
α 6= f · · · f and m#p#f· · · f also occurs in the rewritten program; and (2) Remove
every rule r1 whenever it is subsumed by some other rule r2 (r1 v r2), namely
there is a variable substitution mapping the head (resp., body) of r2 to the head
(resp., body) of r1. To avoid the quadratic number of checks, owl2dlv associates
each rule with a suitable hash value of size 64 bits. Then, r1 v r2 is checked only
if the bit-a-bit equation hash(r1) & hash(r2) == hash(r2) is satisfied.

4 System architecture

The owl2dlv architecture is depicted in Figure 2. The system features four main
modules: Loading, Rewriting, Query Answering, and Command Interpreter. Clients



Fig. 2: System Architecture

interact with the system through the latter one. This module allows to “keep
alive” the system, and execute multiple commands (e.g., loading, warmup, data
updates, and query evaluations) without having to instantiate a new process for
each client request. The Loading module processes an OWL 2 ABox encoded in
Turtle [8] via the ABox Loader. The result of the parsing phase are Datalog-like
facts stored in the owl2dlv data structures handled by the Data Manager. Con-
cerning the TBox, owl2dlv supports OWL 2 Horn-SHIQ ontologies encoded
in RDF/XML [15]. The input is parsed by the TBox Loader using the OWL
API [20] and loaded in DL-like data structures. The system supports a set of
SPARQL CQs via the Query Loader. Then, the Rewriting module implements Al-
gorithm 1 via the Datalog Rewriter submodule and optimize —by applying the
pruning strategy and the Magic Sets rewriting— its output via the Optimizer.
The Rewriting module is in charge of evaluating Datalog queries over the parsed
ABox, and producing the answers. Finally, the Query Answering module repre-
sents an extension of i-dlv [10] (the grounder of dlv2). The overall evaluation
procedure is based on a bottom-up process based on a semi-näıve approach [31]
empowered with optimizations working in synergy [10,11] and extended via tech-
niques devised to manage efficiently large sizes of data.

5 Experimental Evaluation

We report the results of an experimental evaluation of owl2dlv over LUBM [19]
and DBpedia [5]. Note that, by focusing on the few ready-to-use OWL 2 reasoning
services with a server-like behavior, neither mastro nor ontop nor rdfox fully
support query answering in both domains: all of them do not process some LUBM
axioms. Further experiments with computationally intensive benchmarks, such
as LUBM∃ [27] and UOBM [24], will be part of an extended version of this paper.
Moreover, a comparison against mastro, ontop and rdfox on lightweight
ontologies as well as a comparison against modern Datalog-based systems like
vadalog [9] and graal [7] for query existential rules [3,4] is also in our agenda.



LUBM-8000 DBpedia

CQ name informed responsive dynamic CQ name informed responsive dynamic

q01 0.00 0.00 71.77 q01 0.18 0.32 2.51

q02 194.48 179.65 295.74 q02 0.17 0.29 2.15

q03 0.00 0.00 160.95 q03 0.22 0.32 2.29

q04 0.01 0.01 379.22 q04 0.21 0.30 0.33

q05 0.03 0.03 19.60 q05 0.20 0.29 7.52

q06 844.65 854.35 978.46 q06 0.19 0.29 0.38

q07 0.01 0.01 5.07 q07 0.19 0.38 0.79

q08 0.40 0.32 0.50 q08 0.18 0.32 0.31

q09 972.63 1,008.43 1,053.82

q10 0.00 0.01 4.66

q11 0.00 0.00 0.00

q12 0.03 0.03 0.03

q13 6.32 6.69 8.13

q14 14.64 14.50 14.12

Max Memory 250.0 251.0 249.3 63.6 96.4 106.2

Loading 5,226.8 5,196.4 5,186.8 3,845.3 3,719.0 3,811.2

Warmup 4,144.4 3,102.3 1,303.8 226.5 1,136.3 595.5

Query Answering (all) 145.2 147.4 238.9 0.2 0.3 2.0

Query Answering (bound) 0.7 0.7 106.2 0.2 0.3 2.0

Table 1: Experimental evaluation of owl2dlv in different scenarios. Bound queries are
reported in bold. The rows “Query Answering (all)” and “Query Answering (bound)”
show, respectively, the average evaluation time computed over all queries and bound
queries only. Times are expressed in seconds and memory peaks in GB.

Benchmarks. LUBM is the prime choice of our industrial partner for the chal-
lenge. It describes a very-large real-world application domain encoded in OWL 2
Horn-SHIQ with customizable and repeatable synthetic data. The benchmark
incorporates 14 SPARQL queries, 10 of which are bound (i.e., containing at least
a constant). When rewritten together with the TBox, each LUBM query gives rise
to a Datalog query consisting of about 130 rules. Data generation is carried out
by the LUBM data generator tool (UBA) whose main parameter is the number
of universities to consider: 8,000 in our case, for a total number of about 1 billion
triples. This dataset is next referred to as LUBM-8000. Concerning DBpedia, it
is a well-known KB created with the aim of sharing on the Web the multilingual
knowledge collected by Wikimedia projects in a machine-readable format. For
this benchmarks, we inherited a set of queries from an application conceived to
query DBpedia in natural language applying the approach [16]. When rewritten
together with the TBox, each DBpedia query gives rise to a Datalog query of
almost 5400 rules. The latest release of the official DBpedia dataset consists of
13 billion pieces of multilingual information (RDF triples). Here, we focus on the
information extracted from the English edition of Wikipedia that is composed by
about half a billion triples (https://wiki.dbpedia.org/public-sparql-endpoint).

Results and Discussion. The machine used for testing is a Dell server with an
Intel Xeon Gold 6140 CPU composed of 8 physical CPUs clocked at 2.30 GHz,
with 297GB of RAM, and running a Linux Operating System. According to the
challenge, a memory limit of 256GB has been set during all tests. Table 1 shows
the results of our analysis; bound queries are reported in bold. The upper part
of the table reports times taken by owl2dlv to answer queries under the three
scenarios: informed, responsive, dynamic; the second part shows extra statis-
tics about peaks of memory, loading and warmup times, and average answering

https://wiki.dbpedia.org/public-sparql-endpoint


times computed over all queries and over bound queries only. In the informed
scenario —where we assume that the TBox and the template queries are known
in advance— we obtain the best performance. Despite the large ABox sizes, on
LUBM almost all bound queries are answered in less than 0.1 seconds leading to
an average time of about 0.7 seconds, while on DBpedia the average evaluation
time over all queries is about 0.2 seconds. These results show the effectiveness of
the Magic Sets technique to dramatically reduce the part of the dataset needed
to answer the query, together with all other optimization strategies discussed
through the paper. In the responsive scenario —where only the TBox is known
in advance— the system performance is comparable with the one obtained in
the informed scenario, although in general the evaluation time is a bit higher.
These results confirm that the warmup policy of this setting has a positive im-
pact on the system performance although queries are not known. Finally, in the
dynamic scenario —where nothing is known— the parsimonious indexing policy
is adopted since 256GB are not enough to use the aggressive one. Uniformly,
the same policy is also used for DBpedia although not expressly needed. This
produces a general gain in the warmup phase later unavoidably paid during the
query evaluation due to some missing index that has to be computed on-the-fly.
For further details we refer to [1].
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