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Abstract. In ontology-based query answering a user query is typically
evaluated over instances containing both known and anonymous indi-
viduals. In this context, the algebraic notion of isomorphism is relevant
in many application scenarios, such as the so-called parsimonious chase.
Two atoms are isomorphic if there is a bijection among them that, in
addition, is the identity on the known individuals. A naive upper bound
on the maximum cardinality of any instance containing non-isomorphic
atoms is well-known from the literature. However, there are cases in
which this bound is far from being optimal. This paper generalizes Bell
numbers to provide a tight bound in the above setting. The main re-
sult is also relevant in classical databases by characterizing the family of
non-equivalent atomic queries.
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1 Introduction

Ontology-Based Query Answering (OBQA) consists in querying databases by
taking ontological knowledge into account. It is a fascinating research topic
deeply studied not only in database theory [1,13], but also in artificial intelli-
gence [6,5,11] and in logic [2,3,12]. Moreover, OBQA is strictly related to others
important application areas such as data integration [21], data exchange [9], and
consistent query answering [23,24]. In particular, OBQA is the problem of an-
swering a query q against a logical theory consisting of an extensional database
D paired with an ontology Σ. The goal is to find certain answers to q, i.e. the
query must be true in every possible model of the theory [20,7]. Here, we fo-
cus on ontologies expressed via existential rules, also known as tuple generating
dependencies (TGDs) or datalog∃ rules. They are at the core of Datalog± [14],
an emerging family of ontology languages, which collects the basic decidable
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classes of TGDs, and generalizes several ontology specification languages such
as Description Logics (DLs) [10]. Indeed, datalog∃ generalizes the well-known
language Datalog [16] with existential quantification in the head.

OBQA can be reduced to the problem of answering q over a universal model U
that can be homomorphically embedded into every other model of the logical
theory. A way to compute a universal model is to employ the so called chase
procedure. Starting from D, the chase “repairs” violations of rules by repeatedly
adding new atoms –introducing fresh values, called nulls, whenever required by
an existential variable– until a fixed point satisfying all rules is reached. There-
fore, in the classical setting, the chase is sound and complete. But, unfortunately,
the chase does not always terminates [17,18].

Recently, in [22] a new class of datalog∃ ontologies, called Shy, has been singled
out for existential rules. It enjoys a new semantic property called parsimony
and results in a powerful and decidable class that combines positive aspects of
different Datalog± classes [4]. The parsimony property is based on the parsi-
monious chase (pchase) procedure that repairs violations of rules only if the
(inferred) head atom can not be homomorphically mapped to any atom previ-
ously produced. For some classes of Datalog±, the parsimony property is sound
and complete with respect to atomic query answering. Moreover, the termina-
tion of the pchase is always guaranteed, and computational complexity has been
studied [22]. Understanding the nature of the pchase procedure can lead to ob-
tain practical improvements of existing implementations [22]. Indeed, so far, the
research has been focused on establishing the termination of the pchase proce-
dure, thus providing just a very rough upper bound of its maximal size, without
any understanding of the relations between the logical theory and the atoms
generated by the pchase. We fill this gap deepening this relevant connection. In
particular, we need to understand what kind of atoms belong to the pchase. This
has as side effect and it is strictly related to count the number of atoms gen-
erated by the pchase. An immediate consequence of this better understanding
of the chase leads to re-prove computational complexity results, as we improve
the upper bounds previously identified in [22]. Indeed, these are very large, as
they are aimed at demonstrating computational complexity, and not how many
atoms can be produced by the chase.

In this paper, we present contents already set out and published in [8]. In par-
ticular, we provide an exact upper bound for the pchase. To this end, we exploit
the notion of “equality type” defined in [19], which we show to be strictly related
to the form of non-isomorphic atoms of a given predicate. Then, by exploiting
the notion of Bell numbers, counting the number of distinct partitions of a finite
set, we compute an upper bound for the number of atoms generating by the
pchase procedure and we show that there exists a family of ontologies for which
the pchase can produce exactly the upper bound previously computed, so that it
corresponds to the maximal number of atoms effectively generated by the pchase
procedure.



Finally, as a corollary, our estimation of the maximum cardinality of any instance
containing non-isomorphic atoms also provides a tight bound on the maximum
number of non-equivalent atomic queries over a given relation, where two queries
are considered equivalent if they give the same answers on every database.

2 Preliminaries

Throughout this paper we use the following notation. Let ∆ = ∆C ∪∆N ∪∆V

the domain of the terms, consisting of the union of the three countably infinite
domains of constants, nulls and variables, respectively. We write ϕ to denote
a null; X a variable; a an atom, that is an expression of the form p(t), where
p = pred(a) is a predicate, t = t1, . . . , tk is a tuple of terms, k = arity(a) is
the arity of a or p, and a[i] is the i-th term of a. Moreover, const(a) (resp.,
vars(a)) is the set of constants (resp., variables) occurring in a. The set of
predicates is denoted by R. Let T ⊆ ∆ a nonempty subset, then the set of all
atoms that can be formed with predicates of R and terms from T is denoted
by base(T ). Moreover, any subset of base(∆C ∪ ∆N ) constitutes an instance
I, and whenever I ⊆ base(∆C), then it is also called database. A substitution
is a total mapping s : ∆ → ∆. Let χ1 and χ2 be two structures containing
atoms. An homomorphism h : χ1 → χ2 is a substitution such that: (1) if c ∈
∆C , then h(c) = c; (ii) if ϕ ∈ ∆N , then h(ϕ) ∈ ∆C ∪ ∆N ; (iii) h(χ1) is a
substructure of χ2. An existential rule r is a logical implication of the form
∀X∀Y(∃Z a(X,Z) ← φ(X,Y)), where X, Y, and Z denote sets of variables;
head(r) = a(X,Z), while body(r) = φ(X,Y) is a conjunction of atoms and can
also be empty. We define a datalog∃ program P as a finite set of existential
rules, called ontology and denoted by dep(P ) (dependencies of P ), paired with
a database instance, denoted by data(P ). Moreover, pred(P ) (resp., const(P ))
represents the set of predicates (resp., constants) occurring in (P ) and arity(P )
is the maximum arity over pred(P ).

Given an instance I, we say that a rule r is satisfied by I if whenever there is
a homomorphism h : body(r)→ I, there is a homomorphism h′ ⊃ h|vars(body(r))
s.t. h′ : head(r) → I. An instance I is a model of a program P if each rule of
dep(P ) is satisfied by I, and data(P ) ⊆ I. A firing homomorphism for r and
I is any homomorphism h : body(r) → I s.t. h = h|vars(body(r)). The fire of r
via h produces the atom fire(r, h) = σ(h(head(r))), where σ = σ|vars(h(head(r)))
(i.e., it replaces each existential variable of r with a different fresh null). Given a
firing homomorphism h for a rule r and an instance I, we say that the pair 〈r, h〉
satisfies the parsimonious fire condition w.r.t. an instance I ′ ⊇ I if there is no
homomorphism from {h(head(r))} to I ′. Finally, given a datalog∃ program P ,
the parsimonious chase (pchase) of P (pchase(P )) is constructed as follows. We
start from I ′ = data(P ) and create a copy of it in I. Then, for each r in dep(P ),
for each unspent firing homomorphism h for the pair 〈r, I〉 we add the fire(r, h)
to I ′ if 〈r, h〉 satisfies the parsimonious fire condition w.r.t. I ′. If I 6= I ′, we
create a new copy of I ′ and repeat the previous steps. Otherwise, we return I.



3 Parsimonious Chase Estimation

In this section, we introduce some basic notions that will help us to find a tight
upper bound for the pchase. We highlight a main property of the pchase, based
on isomorphic atoms, a crucial notion in several Datalog± classes [15].

Theorem 1. Given a program P , pchase(P ) does not contain isomorphic atoms.

Proof. Assume, by contradiction, that there are two isomorphic atoms a and
a′ in pchase(P ). Thus, there is a homomorphism h from {a} to {a′} s.t. h−1

is a homomorphism from {a′} to {a}. W.l.o.g. assume that a ∈ I, for some
I generated during the pchase procedure. As a′ ∈ pchase(P ), then there is
a rule r, an instance I ′ ⊇ I, and an unspent firing homomorphism h′ for
〈r, I ′〉, s.t. fire(r, h′) = a′, against the fact that h−1 ◦ σ is a homomorphism
from {h′(head(r))} to I ′. Indeed, (h−1 ◦ σ)(h′(head(r)) = h−1(σ(h′(head(r)) =
h−1(fire(r, h′)) = h−1(a′) = a ∈ I ⊆ I ′. ut

To provide a precise upper bound for the number of steps execute by the pchase,
we introduce the concept of type that is equivalent to the notion of equality type
defined in.

Definition 1 (Type). Let m be a positive integer, S an arbitrary partition of
{1, . . . ,m}, C a set with |C| ≤ |S|, and f : C → S an injective map. We define
the type of S,C and f as the family of sets T (S,C, f) =

{
s ∪ f−1(s) | s ∈ S

}
.

Example 1. Let m = 6, C = {c1, c2}, and let S =
{
{1, 2}, {3, 6}, {4}, {5}

}
be a

partition of {1, . . . , 6}. Consider the injective map f : C → S such that f(c1) =
{3, 6} and f(c2) = {5}. Then, T (S,C, f) =

{
{1, 2}, {3, 6, c1}, {4}, {5, c2}

}
.

Fixed an integer m, our aim is to count the number of all possible types that
can be generated from any partition of the set {1, . . . ,m}, by varying C on a
superset D of a fixed size d. In order to do this, we resort to the Bell number
Bn, that is the number of ways to partition a set of n labeled elements.

Theorem 2. Let m ∈ N, D a finite set of size d > 0, and Bn the n-th Bell
number. Hence, the number of all possible types generated from all the partitions
of the set {1, . . . ,m} and all subsets of D is given by γdm =

∑m
h=0

(
m
h

)
dhBm−h.

Proof Sketch. Recall that, given two sets A and B with |A| = α ≤ |B| = β, the
number of injective maps from A to B is β!

(β−α)! . Then, fixed a partition S of

{1, ...,m} with |S| = s, the number of injective maps from any subset C ⊆ D to
S, with |C| = c ≤ s, is s!

(s−c)! , while the number of subsets of size c is
(
d
c

)
. Thus,

the number of all possible types for the fixed partition S is
∑min{s,d}
c=0

(
d
c

)
· s!
(s−c)! .

Hence, the number of types generated from all the partitions of the set {1, . . . ,m}
and all subsets ofD is given by

∑m
s=1 S(m, s)·

∑min{s,d}
c=0

(
d
c

)
· s!
(s−c)! , where S(m, s)



is the Stirling number counting the number of partitions of size s on m elements.
It can be shown that it is equivalent to γdm. ut

Taking advantage of the notion of type, we can provide a new representation of
an arbitrary atom.

Definition 2 (Atom Type). Given an atom a = p(t) of arity m, we define the
type of the atom a as Ta = T (S,C, f), where C = const(a); S =

{
{n | a[n] =

ti} | i = 1, . . . ,m
}

; and f : C → S such that f(c) = {n | a[n] = c}.

Hence, the type of an atom a has the form Ta = {σ(t1), . . . , σ(tm)}, where σ
is such that σ(ti) = {n | n ∈ {1, . . . ,m} ∧ a[n] = ti} ∪ {ti} if ti is a constant,
and σ(ti) = {n | n ∈ {1, . . . ,m} ∧ a[n] = ti} otherwise. Intuitively, the type of
an atom is formed by the sets of positions where a term occurs, by highlighting
positions where constants occur.

Example 2. Let a = p1(ϕ1, ϕ3, ϕ2, ϕ1) and b = p2(c, ϕ1, d, c, ϕ2, ϕ2, ϕ1). Then,
Ta =

{
{1, 4}, {2}, {3}

}
and Tb =

{
{1, 4, c}, {2, 7}, {3, d}, {5, 6}

}
.

Theorem 3. Let a = p(t1, . . . , tk) and a′ = p(t′1, . . . , t
′
k) be two atoms. Then, a

and a′ are isomorphic if, and only if, pred(a) = pred(a′) and Ta = Ta′ .

Proof. Let us consider two atoms a and a′. If pred(a) 6= pred(a′) or arity(a) 6=
arity(a′), then of course can not exists an isomorphism between them. Hence,
we can take for granted that the two atoms have same predicate and arity.
[⇒] Assume that there is an isomorphism between a and a′, i.e., there is a homo-
morphism h : {a} → {a′} s.t. h(ti) = t′i, i = 1, . . . , k and s.t. h−1 : {a′} → {a}
is a homomorphism. Let Ta = {σ(t1), . . . , σ(tk)} and Ta′ = {σ′(t1), . . . , σ′(tk)}.
We claim that σ(ti) = σ(t′i), for i = 1, . . . , k. Assume that σ(ti) ⊆ σ(t′i), and let
n ∈ σ(ti) ∩ N, so that a[n] = ti. Therefore, we have that t′i = h(ti) = h(a[n]) =
h(a)[n] = a′[n]. Hence, n ∈ σ(t′i). Moreover, if n = c is a constant, by definition
of homomorphism, we have c ∈ σ(ti)⇒ ti = c⇒ t′i = h(ti) = ti = c⇒ c ∈ σ(t′i).
The reverse inclusion can be easily proved by replacing h by h−1.
[⇐] Let us assume that Ta = Ta′ . Let h : {a} → {a′} be s.t. h(ti) = t′i. First, we
prove that h is a homomorphism. Let ti = c be a constant. Suppose that c ∈ σ(ti),
then by assumption c ∈ σ(t′i), hence t′i = c. It remains to be shown that h is also
injective. Let t′i = t′j . Then, σ(t′i) = σ(t′j)⇒ σ(ti) = σ(tj)⇒ ti = tj . ut

Now, we are able to provide an upper bound for the maximum number of atoms
generating by the pchase procedure.

Theorem 4. Let P be a program with arity(P ) = w, |const(P )| = d, and lm the
number of predicates in pred(P ) of arity m. Then, |pchase(P )| ≤

∑w
m=0 lmγ

d
m.

Proof. By Theorem 2 and Theorem 3, the total number of non isomorphic atoms
over pred(P ) and const(P ) ∪ ∆N is given by

∑w
m=0 lmγ

d
m. Moreover, by The-

orem 1, we know that pchase(P ) does not contain isomorphic atoms. Hence,
|pchase(P )| ≤

∑w
m=0 lmγ

d
m. ut



Let Γ dw be the upper bound in Theorem 4. To show that it is also tight, we
introduce an ordering on types that will allow us to build a program with a
sequence of firing homomorphisms generating a pchase of size exactly Γ dw.

Definition 3 (Type ordering). Let T = T (S,C, f) and T ′ = T (S′, C ′, f ′).
Then, T precedes T ′, if (i) |C| < |C ′|, or (ii) |C| = |C ′| and |S| > |S′|.

Intuitively, such a program should have a rule for each possible atom tag, when-
ever constants are allowed in the rules. Otherwise, we need a predicate to collect
all constants of the database. To better understand our idea, we give an example
of such a program before we provide the formal result.

Example 3. Let C be a finite set of constant, and P be a program such that
data(P ) = {t(c1), t(c2)}, and dep(P ) is given by

∃X,Y, Zp(X,Y, Z) ∃X,Y p(Z,X, Y ) ← t(Z) ∃Xp(X,Y, Z) ← t(Y ), t(Z)
∃X,Y p(X,X, Y ) ∃X,Y p(X,Z, Y ) ← t(Z) ∃Xp(Y,X,Z) ← t(Y ), t(Z)
∃X,Y p(X,Y,X) ∃X,Yp(X,Y,Z) ← t(Z) ∃Xp(Y,Z,X) ← t(Y ), t(Z)
∃X,Y p(X,Y, Y ) ∃Xp(X,X, Y ) ← t(Y ) p(X,Y, Z) ← t(X), t(Y ), t(Z)
∃Xp(X,X,X) ∃Xp(X,Y,X) ← t(Y )

∃Xp(Y,X,X) ← t(Y ) ∃Xt(X)

We build pchase(P ) by starting from rules in the first column from top to bot-
tom. For each rule r in this ordering, we consider all firing homomorphism h for
r. E.g., the rule in bold produces the atoms {p(ϕ1, ϕ2, c1), p(ϕ3, ϕ4, c2)}. Thus,
the number of atoms with predicate p generated by the pchase will be 37 = γ23 ,
and |pchase(P )| = 40 = γ23 + γ21 .

Theorem 5. Let w be a positive integer, D a set of constants of size d, and Γ dw
as above. Then, there is a family Pw of programs s.t. |pchase(Pw)| = Γ dw.

Proof Sketch. We build a program Pw having two predicates p (of arity w) and
t (of arity 1). We set data(Pw) = {t(c) | c ∈ D}, and define dep(Pw) as follows.
Given a partition Si = {Λ1, . . . , Λn} of w, where n = |Si|, we construct a rule
ri with an empty body, by adding X1, . . . , Xn existential variables so that Λj =
{k | p[k] = Xj , k ∈ [w]}. Now, fixed a rule ri with n > 1 existential variables,
we produce n− 1 blocks of rules as follows. We translate j existential variables
into universal ones, by adding j atoms over predicate t in the body. Hence, we
construct

(
n
j

)
rules. Then, we add the rules p(X1, . . . , Xw) = t(X1), . . . , t(Xw),

and ∃Xt(X). Finally, we remove all rules having in the head more than one
repeated universal variable. To prove that |pchase(Pw)| = Γ dw, we provide a
sequence of Γ dw−d firing homomorphisms. To each rule r in dep(Pw) we associate
uniquely an atom g(head(r)), where g maps existential variables to fresh nulls,
and universal variables to a fixed constant. The type ordering on the atoms gives
an ordering on the rules, and so to the sequence of firing homomorphisms. ut



4 Discussion and Future Work

In this work, we identified the maximal number of distinct atoms generable
by the pchase procedure. In particular, γdm improves the bound given in [22],
that is (d + m)m. In particular, dm ≤ γdm ≤ (d + m)m. Since in the OBQA
context, normally, d is much bigger than m, it could seem that the effort to
find such a precise upper bound can be useless for practical purposes. However,
this is not the case, as shown in the paper. Indeed, the search for a precise
upper bound led to identify the fundamental notions of type and type ordering
that highlighted some qualitative characteristics of the pchase. Moreover, there
could be other contexts where m is much bigger than d (think for example to
scenarios where tuples encode strings over a certain alphabet, as in complexity
proofs based on Turing Machine simulation). In this cases, our bound represents
a concrete improvement. As future work, we plan to extend the pchase condition
to rules with a complex head, and to compute the maximal number of distinct
atoms generable in this case. Then, we will try to analyze the orderings of fire
homomorphisms in the generation of the pchase to understand if we can identify
a sort of best ordering that minimizes the number of atoms produced. Finally,
we will try to apply this metodology to give exact estimations of others chase
versions.
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