
Towards a Real-Time BDI Model for ROS 2

Francesco Alzetta

University of Trento

Trento, Italy

francesco.alzetta@unitn.it

Paolo Giorgini

University of Trento

Trento, Italy

paolo.giorgini@unitn.it

Abstract—In the race for automation, electronic devices are
required to become more and more intelligent in order to
make the correct choices in unforeseen situations without any
need of human intervention. AI proposes basically two different
approaches: machine learning algorithms and multi-agent sys-
tems. While the former perform very well when dealing with
single, independent, computing units, multi-agent systems are
more suitable in case of different components interacting with
one another. In this paper, we propose a real-time multi-agent
approach to improve practical reasoning, integrating the Belief-
Desire-Intention model into one of the most popular robotics
framework, ROS 2.

Index Terms—BDI model, ROS 2, Multi-Agent Systems, Soft
Real-time, Robotics framework, Smart devices

I. INTRODUCTION

Robots and devices involved in complex environments gen-

erally require both high level, deliberative, capabilities (such

as reasoning, knowledge representation, planning, communi-

cation) and low level, reactive, primitives (such as sensor man-

agement, obstacle avoidance, navigation). While nowadays

the reactive capabilities are quite satisfyingly achieved, with

devices able to reliably sense the environment and promptly

react to stimuli, the deliberative part still presents a number

of open problems.

Reasoning and planning, for instance, are activities that

usually consume time and resources, making them unsuitable

for real-world scenarios involving devices with real-time con-

straints.

Furthermore, for many years robotics developers struggled

with a large variety of open source and proprietary standards,

which forced them to find ad hoc solutions to make possible

the interaction and communication between devices sold by

different vendors. Robot Operative System (ROS) [1] solves

this problem, giving the developers an across-the-board tool

able to deploy the same code on devices of different vendors.

ROS 2 overcomes some of the ROS limitations [2], such as

the possibility to write real-time nodes when using a proper

Real-Time Operating System (RTOS) and the implementation

of a distributed structure for discovery and interaction between

nodes.

In this paper, we propose a new approach that allows

integrating the notion of agent into devices running ROS 2.

We develop a model of a real-time agent, implementing a BDI

architecture [3] natively by using the core functionality of the

middleware. The choices of the agent, then, are influenced

not only by its internal status and by the stimuli coming from

the environment, but also by time restrictions. Our proposal

represents a first step towards implementing in ROS 2 the

concept of agents whose practical reasoning is bounded for

real-time performances.

In Section II we briefly cover the background knowledge

needed to understand the technical part of the work. In

Section III we show the architecture of our system, discussing

the most interesting details about how we implemented it in

Section IV. We conclude with an overview of the related work,

followed by a discussion about the future improvements and

the contributions of this work.

II. BACKGROUND

Despite its name, ROS 2 is not an operative systems, but

it can rather be seen as a distributed framework of processes

(or nodes) that enables executables to be individually designed

and loosely coupled at run-time.

As mentioned in the introduction, there are many improve-

ments made in ROS 2, concerning in particular real-time

compliance and system scalability, which led us to choose

it instead of its widely adopted first version. Moreover, ROS

2 has several desirable properties that are missing in other

robotics frameworks taken into consideration such as ORO-

COS [4], YARP [5] or CARMEN [6], namely:

• Modularity: This characteristic allows a developer to

decide which parts of the general implementation take

from the packages shared by other developers and which

implement by himself instead. In our case, for instance,

we focused mainly on the development of the BDI

system, leaving the management of other tasks such as

locomotion or sensing to modules designed and imple-

mented by other developers.

• Compatibility: Being ROS designed to be as thin as pos-

sible, the code written for it can be easily integrated inside

other robot software frameworks. Some ROS code has

been already integrated with OpenRAVE[7], Player[8]

and OROCOS.

• Language independence: Having the possibility of writ-

ing different parts of the code with different languages

(C++, Python, Lisp, Java are some of the supported

languages) allows the developer to exploit the advantages

of each language and their libraries.

• Wide adoption: ROS is a very popular framework among

the robotics developers and manufacturers so, by choos-

Workshop "From Objects to Agents" (WOA 2019)

1

ing it, we are widening the possible application fields of

our work.

The main concepts of ROS 2 are: packages, nodes, mes-

sages, topics, and services.

• Packages are collections of nodes, datasets, configuration

files and anything else that logically constitutes a useful

module, where module is intended as an easy-to-consume

piece of software that can be nimbly reused by other

users.

• Nodes are processes responsible for performing compu-

tations. They can be seen as entities that can execute code

and communicate with each other.

• Messages are simple data structures that comprise typed

fields. Standard primitive types (integer, floating point,

boolean, string) are supported, as long as arbitrarily

nested structures and arrays. Messages are passed be-

tween nodes when they have to share information.

• Topics can be seen as containers in which the publishing

nodes send out messages that will be gathered by the

subscribing nodes. For each topic, there may be multiple

concurrent publishers and subscribers, and each node may

publish and/or subscribe to multiple topics. This publish-

subscribe pattern allows the system to be more scalable,

since new nodes can be added and start publishing

and/or subscribing to already existing topics in a totally

transparent way to all the other nodes, which do not need

to be aware of the newly joined nodes.

• Services are used when the designer of the system wants

request/reply interactions between two nodes, instead of

the many-to-many mechanism of the publish-subscribe

pattern. They are defined by a pair of message structures,

one defining the request a client can send towards the

provider of the service, and one representing the struc-

ture of the reply the provider should send back to the

client. Services, then, should be used when a one-to-one

communication is needed.

The tangible part of our work, then, is represented by a

package containing design skeletons and examples of im-

plementation of some nodes which are interacting through

the exchange of messages published on topics or sent via a

service.

III. ARCHITECTURE

In this section, we show the multi-layered architecture we

propose to integrate BDI agents in ROS 2.

The general architecture

In Fig. 1 we show how our implementation (in orange)

wedges in the general ROS 2 architecture.

Starting from the bottom, the proposed architecture can be

deployed without restrictions in any operative system running

ROS 2, even though an RTOS is necessary when running

systems that need hard real-time behavior. The Data Dis-

tribution Service (DDS) implementation provides a publish-

subscribe transport that allows any two DDS programs to

communicate without the need for a central coordinator. This

Module1 Module2 ModuleN RT-BDI...

Rclcpp Rclpy Rclcs Rcljava

ROS middleware API

DDS implementation

Linux / Windows / MacOS / RTOS

A
p
p
lic

a
ti
o
n

M
id

d
le

w
a
re

O
S

ROS client library API

User Code

Fig. 1: The software architecture.

layer extremely simplifies the job to the developer, since it

avoids him the task of setting up a connection between two

nodes to exchange information. The ROS middleware API,

instead, is responsible for providing support to multiple DDS

implementations despite the fact that each of them differs

slightly in their exact API. This interface, then, allows using a

general publish-subscribe system in the upper layers without

worrying about the specific DDS implementation used. The

ROS client library API layer makes ROS concepts easy to use

and to access via code. It allows the programmer to implement

its own nodes in the desired language (obviously provided that

a client library for ROS exists for that language), being sure

that it will be fully compatible with all the other nodes in

the system, even those written in a totally different language.

The upper layer is where the code written by the designer of a

package is located. All the nodes run by the device reside here,

hence this is the level at which our work has focused most.

In the following, we present the architecture of our agent,

showing how the ROS 2 nodes make use of the BDI model.

The real-time BDI architecture

We designed our BDI model to explicitly consider timing

constraints in the actions of the agents and in the interactions

between them. This is particularly helpful when assuming that

agents have different ways to reach their goals, so that timing

restrictions play an important role in deciding which actions

to perform in order to achieve the desired result.

In the real-time domain, there is a clear distinction between

soft and hard real-time. These two terms do not differ in how

the real-time is guaranteed, but rather in the extent of the

damage caused to the system in case the real-time constraints

Workshop "From Objects to Agents" (WOA 2019)

2

are not met. In a soft real-time agent, missing a deadline

may prevent the data to be processed or the behavior of the

agent from being accurate, but it will not be considered as

a catastrophic failure by the system. Conversely, a hard real-

time system will treat as a failure the non-fulfillment of its

temporal restricted responsibilities.

Since our work operates at a high-level layer, being al-

most completely transparent to those low-level components

responsible for achieving hard real-time constraints, it can only

guarantee soft real-time constraints. Missing a deadline, then,

should be tolerated by the system.

In our model, the designer of the MAS will define a deadline

for desires, namely the time the agent has to accomplish that

goal, while for plans it represents the maximum time required

to complete a plan.

Belief topic Goal topic

Scheduler_Node Executor_NodeMonitoring_Nodes

Plans

- Goal

- Preconditions

- Context

- Priority

- Deadline

- Actions

Desires

- Goal

- Preconditions

- Priority

- Deadline

Beliefs

- Name

- Value

R
e
a
l-T

im
e
 B

D
I

R
O

S
 2

Gets information from

Sends information to

Fig. 2: The agent architecture.

A real-time agent is represented as a tuple defined by the

name of the agent, its belief-set, its desire-set and the set of

all possible applicable plans. These are pre-defined, and they

represent what an agent could know about the world, which

are the goals it could achieve, and how it can interact with the

surrounding environment to accomplish that goal. Currently, a

plan is a sequence of actions defined by the designer but, in

future work, we will consider the development of an automated

planner in order to make more flexible agents, which will be

able to autonomously build a plan.

In Fig. 2 we illustrate the relationships between the ele-

ments constituting an agent, highlighting how the ROS 2 part

interacts with the real-time BDI model.

Beliefs

The elements of the belief-set are defined as couples com-

posed by a string, which identifies the belief, and a value

assigned to that belief, which could be of any type supported

by ROS 2 messages. In the following, the BNF grammar of a

belief.

<bel i ef > : : = <name> <t er m_exp>

<name> : : = st r i ng

<t er m_exp> : : = bool ean | st r i ng | i nt | f l oat

Desires

The elements of the desire-set are expressed by a tuple: the

goal that has to be achieved, represented by the desired belief,

a set of preconditions that will trigger the desire when all of

them are satisfied, a variable stating which is the priority of

that goal and a variable indicating the deadline, that is the time

the agent has to complete the intention selected to achieve the

goal.

<desi r e> : : = <bel i ef > <pr econd> <pr i or i t y> <deadl i ne>

<pr econd> : : = ? | <pr econd> <bel i ef >

<pr i or i t y>: : = i nt

<deadl i ne>: : = f l oat

In future work, the last two parameters should be inferred

directly by the agent, that should be able to autonomously

decide which goal should have priority over the others, and

how much time each desire should take in order to be satisfied.

In this phase, predetermine such values is a task left to the

designer.

Plans

The plan-set contains all the possible plans an agent can

execute. The scheduler will choose a plan on the basis of the

goal it wants to achieve, on its current beliefs, on its priority

and on the executing time being available.

<pl an> : : = <name> <desi r e> <pr econd> <cont ext >

 <pr i or i t y> <deadl i ne> <body>

<name> : : = st r i ng

<pr econd> : : = ? | <pr econd> <bel i ef >

<cont ext > : : = ? | <cont ext > <bel i ef >

<pr i or i t y> : : = i nt

<deadl i ne> : : = f l oat

Indeed, when specifying a plan, the designer should explicit,

besides the body of the plan (i.e. the actions to perform), also

the priority of that plan (in order to make the scheduler choose

rapidly among a number of possible plans) and the maximum

time required by the plan to complete.

We decided to split the concept of current beliefs into two

different data structures, preconditions and context, since the

conditions necessary for the activation of a plan could be

Workshop "From Objects to Agents" (WOA 2019)

3

different from the ones that must hold during its execution. For

instance, a drone could require to be fully charged as the only

precondition to start a journey, but requiring the wind speed

to stay below 10 km/h to continue its traveling and not land

immediately. Preconditions are those beliefs that must hold at

the very start of the plan selection, so the necessary conditions

for the scheduler to consider the plan an applicable plan in

the current situation. The context, instead, is the set of beliefs

that must hold for the entire execution of the plan, causing

the failure of the plan otherwise. This is particularly useful

in highly dynamic environments where important beliefs are

updated frequently. Obviously, not all the plans with the same

goal must have the same preconditions and context.

The agent’s nodes, running in Ros 2, use these structures to

instantiate at run-time the actual beliefs, goals, and intentions

of the agent.

The monitoring nodes (i.e. those nodes responsible for

sensing the environment and monitoring the internal state of

the agent) take from the real-time BDI model the representa-

tion of those beliefs and desires that could belong to the agent,

and instantiate at run-time a message corresponding to the

actual belief/desire when perceived/generated. This message,

then, will be published to the appropriate topic.

The scheduler node, which is the reasoner of the agent,

is continuously listening on belief and goal topics, updating

the belief-set and the desire-set whenever a message on these

topics is published. Furthermore, since such an update could

be meaningful for the failure or instantiation of a plan, or for

the activation of a pending one, the scheduler will check if a

reschedule is necessary every time a node publishes to those

topics.

In case a new schedule has been processed, this will be

sent to the executor node, which is the node that actually

executes step by step the actions of the currently selected

plan. An executor node is necessary because executing a

plan is a blocking operation, and leaving this task to the

scheduler would have meant preventing any rescheduling until

the current plan either fails or succeeds, causing the system

to be very unresponsive.

The executor node, during the execution of a plan, will

send messages to the belief and goal topic to make all the

nodes subscribed to them know about the changes in agent’s

belief or the completion of a goal. This is important because

some beliefs cannot be generated by the monitoring nodes,

but have to be inferred from the actions of the agent. For

instance, a robot vacuum could not rely on sensors to know

if it has scoured the entire room, but this information can be

provided from the executor node, that will publish the belief

Room cleaned, true when a plan for cleaning the room has

been completed, implying that the room has also been entirely

scoured.

In the next section, we discuss more in depth how we

implemented the architecture in ROS 2.

IV. IMPLEMENTATION

As briefly introduced previously, our package strongly relies

upon the advantages provided by the publish-subscribe system

implemented in ROS 2.

The reason why we decided to make the monitoring nodes

and executor use topics instead of services, preferring a many-

to-many communication even though a one-to-one could seem

more straightforward, is scalability. With this solution, in

fact, the designer should not take care of the communication

between a newly added node and other nodes which can

potentially be interested in the info the node is meant to share,

but it is sufficient that the new node publishes the message to

the proper topic.

The main listener on belief and goal topics is the scheduler

that, by subscribing to them, is constantly updated on the state

of the device. This node, every time either beliefs or desires are

updated, reschedules the intentions of the agent on the basis of

the priorities and deadlines of its current desires, if necessary.

This choice is made by exploring the set of plans, searching

for all the applicable ones, and scheduling a sequence of plans

which can guarantee at least the achievement of the most

critical goals (i.e. the ones with the highest priority).

Once the scheduler has decided the order in which the

plans should be executed, it communicates the sequence to

the executor via a service, as it is the only node interested in

this information. The main task of the executor is to control

the execution and to publish messages to the belief topic, in the

case where an action performed by the agent changes any of its

states, or to the goal topic when an intention finishes, achieving

the goal. If the plan, instead, finishes due to a failure, there can

be two reasons: the first one involves the executor encountering

an error during the execution (e.g. an exception is raised). In

this case, the node sends a message to the scheduler node

via a service, asking for a rescheduling. The second reason

is that one condition of the context does not hold anymore.

In this case, the executor should do nothing, as the scheduler

will be autonomously aware of the fact, starting immediately

a rescheduling.

We now illustrate the most relevant parts of the implemen-

tation and the solutions we found to overcome some of the

limits of ROS 2.

Message structure

ROS 2 does not allow to use generic types for message

fields, hence there is no way to use the same message to

represent, for instance, both a boolean-typed and a string-typed

belief. To cope with this limitation, we took into consideration

two different solutions: the first one consists in providing eight

different types of messages, representing the four standard

primitive types (boolean, string, int, and float) for both beliefs

and desires, while the second one involves only two types of

messages, one for beliefs and one for desires, having a field

for each primitive type.

Despite the last choice would allow a cleaner code, it forces

the developer to find a way to make the nodes understand

which is the intended value type among all the fields.

Workshop "From Objects to Agents" (WOA 2019)

4

We implemented four different ROS 2 messages describing

a belief (containing the name of the belief and its corre-

sponding value) and four different ROS 2 messages describing

a desire (containing the goal’s name, value, priority, and

deadline).

Belief and desire representation

Beliefs and desires can be represented by messages when

they are simply treated as information that should be ex-

changed between nodes, but when nodes need to use that

information; for instance, to check if they have a suitable plan

to deal with an incoming desire, nodes have to be encapsulated

in a more standard structure to be easily handled. For this

reason, when the scheduler node acquires the information that

a new belief or desire has been published on the proper topic,

it instantiates a new Belief or Goal object, passing into the

constructor the fields contained in the message. Then, this new

object will be added to the belief-set if being a belief, or will

try to activate a new plan if being a goal.

Obviously, since we have eight different messages, we

also need eight different classes to encapsulate every type of

possible belief and desire.

Nodes

As introduced in Section III, we have different nodes with

different purposes. The monitoring nodes give information

about the perception the agent has of the environment and its

internal state, instantiating also the goals when their precon-

ditions are met. In a real-case scenario, the majority of such

nodes are implemented by the vendor of the device running

ROS 2, and the only job left to the designer of the agent is

to forward the information coming from these nodes to the

appropriate topic. The scheduler is the main consumer of this

information.

In the following, Algorithm 1 describes the main function

to reschedule an intention.

Algorithm 1

1: procedure RESCHEDULEINTENTION(Goal g)

2: possiblePlans← empty array of possible plans

3: chosenPlan← the plan to be executed

4: for each plan p in plan-set do

5: if p.verifyGoal(g) & p.verifyPrec(desire-set) then

6: add p to possiblePlans

7: sortBySuitability(possiblePlans)

8: for each plan p in possiblePlans do

9: if checkIfSchedulable(p) then

10: chosenPlan← p

11: break

12: sendToExecutor(chosenPlan)

It is composed of four steps: first, it collects all the possible

plans by selecting those designed to reach the desired goal and

whose preconditions are respected (lines 5-7). Then, it sorts

them by suitability. In our implementation, the most suitable

plan is the one having the greatest priority value being less or

equal than the goal’s priority value (here we assume that lower

is the priority value, more urgent is the desire). This way, we

give precedence to those plans that at the same time respect

the priority required by the goal and are the less invasive,

hence leaving room for more urgent plans that may come

later. The third step involves deadlines: the algorithm checks

every plan in the sorted order until it finds one whose deadline

fits in the current schedule (lines 9-12). In case there is no

way to insert that plan into the current schedule, the scheduler

checks if the desire it is taking into consideration has a higher

priority then any of the desires for which a plan has been

previously added to the schedule. If that is the case, that plan

will be deleted from the scheduling queue and the third step

is repeated, otherwise the considered desire is added to the

pending ones, waiting for a new reschedule. We preferred to

not include this case in our pseudocode for clarity. Finally, the

new schedule is sent to the executor, which will manage the

execution of the new intention.

Plan structure

To ensure that the scheduler will be able to process all

the plans made available by the designer, we decided to

force every plan to derive from a superclass called Plan.

This decision brings at least two advantages: the first one

is that, since every plan has the same basic declarations, we

guarantee that all the plans have the same structure and the

same fundamental functions. Secondly, this allowed us to have

collections of plans, simplifying a lot the data structures in

both the scheduler and executor nodes.

Scheduler and executor, then, are guaranteed that the three

functions declared in the superclass will be defined in every

instantiated plan. We illustrate these functions by showing how

we designed a robot vacuum’s plan for cleaning a room.

Algorithm 2 defines how the scheduler should check if the

plan is suitable to achieve the requested desire. In our example,

the scheduler checks if the instantiated goal has the same name

of the plan’s goal (e.g. clean room) and the same value (e.g.

true).

Algorithm 2

1: procedure VERIFYGOAL(Goal goal)

2: if plan.goal.name = goal.name then

3: if plan.goal.value = goal.value = true then

4: return true

5: return false

Algorithm 3 has to implement the procedures needed to

check if the plan is applicable given the agent’s set of beliefs.

In our case we designed the plan so that the first precondition

is battery charge, 15, which means that a minimum of 15 %

of remaining charge is necessary for the robot to start this

plan (otherwise the function will return false). The second

precondition is room clean, false, hence the agent should have

the perception (i.e. the belief) that the room is dirty.

Workshop "From Objects to Agents" (WOA 2019)

5

Algorithm 3

1: procedure VERIFYPRECONDITIONS(Belief[] belief-set)

2: for each belief b in belief-set do

3: if b.name = plan.precondition[0].name then

4: if b.value < plan.precondition[0].value then

5: return false

6: for each belief b in belief-set do

7: if b.name = plan.precondition[1].name then

8: if b.value 6= plan.precondition[1].value then

9: return false

10: return true

Algorithm 4 defines the actions the agent should perform

in case the scheduler chooses that plan as the next plan to be

executed.

Algorithm 4

1: procedure ACTIVATEPLAN

2: goto(room)
3: startV acuum

4: while room clean = false do

5: roam(room)

6: stopV acuum

The designer of a plan, besides implementing these three

functions, has to instantiate in the class constructor the pa-

rameters declared in the superclass, namely: the plan’s name,

the goal that it achieves, preconditions, context, priority, and

deadline.

V. RELATED WORK AND FUTURE WORK

The source code and an implementation example are avail-

able at https://github.com/ElDivinCodino/ROS2BDI. In such

an example, we simulated the behavior of a robot vacuum

having three different sensors that check the cleanliness of

the rooms, the charge of the battery, and the filling level

of the dirt tank, and being able to activate different plans

depending on the situation. This implementation, despite a

scheduling algorithm being still raw, shows that the robot

is able to autonomously take smart decisions, planning mid-

term strategies in order to adapt to the priorities given by the

different desires that originate during the simulation. Further

experiments involving a simulated MAS are planned, so as to

have a more complex environment that allows us to formally

compare our work with other state-of-the-art frameworks, as

JADE [9], Jason [10] or JACK [11].

JADE, a framework written in Java, simplifies the devel-

opment of intelligent multi-agent systems by offering to the

developer desirable features, such as FIPA-compliant specifi-

cations, a distributed platform (agents can be split on different

hosts), parallel task execution and a GUI to manage several

agents and agent platforms. The JACK framework exploits

the Java Virtual Machine to build multi-agent architectures. It

implements the BDI model by extending the Java language,

adding concepts such as agent, plan, and event as first-class

components of the language. Although JADE and JACK are

very powerful tools, extending an already existing language re-

quires constant maintenance of the framework. Indeed, JACK’s

syntax supports Java versions until J2SE 1.4, hence important

features such as annotations and generics are not available.

Due to the structure of ROS 2, we do not face this problem,

since it is continuously maintained by the ROS community,

which deals with the changes in the language by updating

the ROS client library API layer. We took inspiration from

JACK for the design of our plans, which describe the exact

sequence of actions an agent should perform, in order to reach

the goal, when a given event occurs. However, in future, we

will also consider implementing a planner that allows the agent

to autonomously build a plan, similarly to what currently do

solvers based on STRIPS [12] and PDDL [13] languages. This

will greatly improve the adaptability of the agent, making

it able to find a suitable plan also in unforeseen situations.

Another relevant improvement, to make the design of our agent

easier, concerns a design tool similar to the one developed

for JACK. Indeed, the main problem with ROS 2 is about its

learning curve, as while once reached an intermediate level

of knowledge ROS 2 is pretty easy to manage, the first steps

can be problematic, especially for a developer which does not

have a strong C++ background. Such a tool would provide

the visual representation of the various components and of

the links between them, creating and editing the appropriate

design skeletons, i.e. well-formed and already linked files

whose implementation can be developed further at any time.

During the design of our BDI architecture, we followed

the real-time approach proposed in the ARTS architecture

[14]. This work is particularly interesting because it introduces

in a BDI architecture the concepts of deadline and priority

for goals and plans, scheduling intentions so as to make the

highest priority intentions achieved by their deadlines. This

comes together with a deadline monotonic intention schedul-

ing algorithm which, although it does not output the optimal

schedule, gives precedence to the most urgent intentions.

We designed our scheduler to have the same behavior. An

important improvement to the decision-making process of the

agent concerns adding a dynamic inference of the priority

and the deadline of a desire. Indeed, while now the task of

assigning such values to each possible desire is left to the

designer, there could be situations where these values may

change on the basis of the situation, or simply the designer

could not know a priori how much time a plan will need in

order to complete.

The idea of having a process dedicated to the management

of the execution of intentions is inspired by [14] and [15].

These architectures, however, demand to one single process

(called, respectively, executor and interpreter) both the activ-

ities of selecting and executing a plan, while we decided to

split these tasks into two different processes for the reasons

explained in Section III.

Concerning strictly the robotics field, the BDI model is

often applied in very specific contexts such as robot com-

Workshop "From Objects to Agents" (WOA 2019)

6

petitions [16] and social interactions [17], [18]. However, few

general-purpose BDI implementations, such as the previously

mentioned CogniTAO [19], exist. However, while CogniTAO

implements the BDI model in the ROS architecture by creating

an ad-hoc structure, delivering the execution of the agent

paradigm to a unit (called TAO machine) logically separated

from the other ROS-related components, in our work the BDI

model is completely integrated with the ROS main concepts,

since it strongly relies upon them. Furthermore, real-time

constraints are not considered in CogniTAO, and there is no

scheduler that decides the order of the execution of the tasks.

The problem of achieving agent cooperation has been

treated in an initial phase of our study, but the actual im-

plementation of a distributed computing algorithm that allows

splitting tasks among agents has been left as a further im-

provement.

VI. CONCLUSIONS

We have proposed an approach to enhance the decision-

making process of robotics devices by exploiting the core

mechanisms of the ROS 2 middleware. Our work fully inte-

grates the BDI model in the ROS 2 architecture, in the sense

that it does not need the support of ad-hoc structures or the

execution of external software. Moreover, it provides support

for real-time, allowing the agent to take into consideration

time when generating its intentions. We acknowledge that the

current implementation merely shows that this approach is

possible, but we planned to test it in more complex scenarios.

Lastly, we have planned future work that facilitates the user

experience and the design of a MAS, and improvements on

the scheduler and agent capabilities.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[2] V. A. Hax, N. L. Duarte Filho, S. S. da Costa Botelho, and O. M.
Mendizabal, “Ros as a middleware to internet of things,” Journal of

Applied Computing Research, vol. 2, no. 2, pp. 91–97, 2013.
[9] F. Bellifemine, A. Poggi, and G. Rimassa, “Jade–a fipa-compliant agent

framework,” in Proceedings of PAAM, vol. 99, no. 97-108. London,
1999, p. 33.

[3] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a bdi-
architecture.” KR, vol. 91, pp. 473–484, 1991.

[4] H. Bruyninckx, “Open robot control software: the orocos project,” in
Proceedings 2001 ICRA. IEEE international conference on robotics and

automation (Cat. No. 01CH37164), vol. 3. IEEE, 2001, pp. 2523–2528.

[5] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 8, 2006.

[6] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming: The carnegie mellon navigation (carmen)
toolkit,” in Intelligent Robots and Systems, 2003.(IROS 2003). Proceed-

ings. 2003 IEEE/RSJ International Conference on, vol. 3. IEEE, 2003,
pp. 2436–2441.

[7] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.

CMU-RI-TR-08-34, vol. 79, 2008.

[8] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings of

the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317–323.

[10] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-

agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007,
vol. 8.

[11] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents-components for intelligent agents in java,” AgentLink News

Letter, vol. 2, no. 1, pp. 2–5, 1999.

[12] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application
of theorem proving to problem solving,” Artificial intelligence, vol. 2,
no. 3-4, pp. 189–208, 1971.

[13] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “Pddl-the planning domain definition lan-
guage,” 1998.

[14] K. Vikhorev, N. Alechina, and B. Logan, “The arts real-time agent
architecture,” in International Workshop on Languages, Methodologies

and Development Tools for Multi-Agent Systems. Springer, 2009, pp.
1–15.

[15] D. Morley and K. Myers, “The spark agent framework,” in Proceedings

of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems-Volume 2. IEEE Computer Society, 2004, pp. 714–
721.

[16] S. Gottifredi, M. Tucat, D. Corbatta, A. J. Garcı́a, and G. R. Simari,
“A bdi architecture for high level robot deliberation,” in XIV Congreso

Argentino de Ciencias de la Computación, 2008.

[17] A. Van Breemen, K. Crucq, B. Kröse, M. Nuttin, J. Porta, and E. De-
meester, “A user-interface robot for ambient intelligent environments,” in
Proc. of the 1st Int. Workshop on Advances in Service Robotics,(ASER).
Citeseer, 2003, pp. 132–139.

[18] B. R. Duffy, R. Collier, G. M. O’Hare, C. Rooney, and R. O’Donoghue,
“Social robotics: Reality and virtuality in agent-based robotics,” in Bar-

Ilan Symposium on the Foundations of Artificial Intelligence: Bridging

Theory and Practice (BISFAI), 1999.

[19] Cogniteam, “Cognitao (bdi),” 2014. [Online]. Available:
http://wiki.ros.org/decision making/Tutorials/CogniTAO

Workshop "From Objects to Agents" (WOA 2019)

7

