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Abstract—We introduce a general approach which aims at
combining machine learning and logic-based techniques in order
to model its user’s cognitive and motor abilities. In the context
of motor rehabilitation, hybrid systems are a convenient option
as they allow both for the representation of formal constraints
needed to implement a clinically valid exercise, and for the
statistical modelling of intrinsically noisy data sources. Moreover,
logic-based systems offer a transparent way to look at the
decisions taken by an automated system. This is particularly
useful when an AI system needs to interact with a therapist in
order to assist therapeutic intervention, e.g. by explaining why
a given decision is sound. This methodology is currently being
developed within the context of the AVATEA project.

Index Terms—Multimodal Fusion, Epistemic Probabilistic
Event Calculus, Motor Rehabilitation

I. INTRODUCTION

In this work, we introduce some of the ongoing activities in

the context of the AVATEA project (Advanced Virtual Adap-

tive Technologies e-hEAlth). The project aims at developing

an intelligent system to support the rehabilitation process

of children with neuro-motor disorders. More specifically,

AVATEA aims at creating an integrated system consisting of:

(i) an adjustable seat, (ii) different types of sensors, and (iii) an

interactive visual interface to perform rehabilitation exercises

in the form of games. Such games/exercises are going to

be specifically targeted at supporting therapeutic sessions for

Development Coordination Disorders (DCD).

Although a significant amount of work has been done in

the general area of motor rehabilitation with promising results

[1], there is still a need for developing personalised therapeutic

scenarios. Adaptation techniques typically only focus on max-

imising effort during the rehabilitation session [2]. However,

it is also necessary to take into account parameters such as the

individual subject’s capabilities [3] and the child’s emotional

response, e.g. in terms of motivation and engagement [2].

In this direction, AVATEA aims to assist the activity of a

therapist through the use of data acquired from its sensors.

Machine learning techniques can process this data to profile

the user’s motor abilities, his/her psychophysiological state,

and to monitor the child’s response to the exercise being

performed. The resulting user model can then be used e.g. to

monitor the user’s performance and decide what is the most

appropriate rehabilitation strategy.

However, handling data coming from different sources

requires a complex system able to integrate them and take

decisions accordingly, i.e. a multimodal system [4]. Moreover,

in existing rehabilitation games, the patient motivational state

has been considered to evaluate the game effectiveness [5],

without providing the possibility of taking decisions with

respect to the online adaptation of the rehabilitation exercise.

Alongside machine learning techniques, we also intend to

employ a logic-based system. Indeed, in a complex domain

such as that of AVATEA, much of the experts’ knowledge

would have to be re-learnt from scratch (thus requiring a

considerable amount of data) if we were to use machine learn-

ing techniques exclusively. Logic-based systems, on the other

hand, are progressively becoming able to handle uncertain

knowledge (e.g., using Probability Theory or Fuzzy Logic).

This provides the opportunity to retain important parts of this

knowledge even when it comes with a degree of uncertainty.

Moreover, logic-based systems offer a transparent way to look

at the information in AI systems. For example, a therapist

might want not only to see what decisions were taken by the

system but also why they were taken. A logic-based system

is able to reconstruct the rationale behind the decisions taken

by considering the chain of rules that were applied starting

from the facts in the knowledge base. Such an advantage does

not also apply to machine learning algorithms, that generally

cannot provide explanations in human-readable terms. It is also

worth noting that these systems can be used by an expert to

sketch the causal relationships of a domain, and then use other

techniques to learn the appropriate parameters when they are

not available to the expert.

II. BACKGROUND AND RELATED WORK

Gamification strategies have proven to be extremely suc-

cessful to engage young children in diagnostic or therapeu-

tic exercises, even before the advent of digital gaming. By

leveraging on Self-Determination Theory [6], the concept of
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intrinsic motivation has been applied to engage children in

activities designed to provide therapists with reports about

their competence levels in either cognitive or physical tasks.

While games to test cognitive capabilities (see e.g. [7]) do

not form a sharply defined class, games designed to test and

improve motor skills are usually referred to as exergames.

The effects of exergames have been found to be generally

positive [8]. Therefore, combining Computerised Adaptive

Tests (CATs) with gamification strategies results in systems

that are able to engage young users in playful activities,

while adapting the current challenge according to level of

user competence. Furthermore, sessions are typically logged

in order to provide detailed feedback to therapists. On the

cognitive side, these adaptive systems have been designed to

evaluate subjective well-being [9] and phonological acquisition

[10] among others. Adaptive exergames have been used e.g.

in the context of children with spinal impairments [11],

and to test gross motor skills [12]. These works, however,

typically use a single modality to implement CATs and do not

consider social feedback as a part of the adaptation process to

recover engagement. Considering the challenge posed both by

multimodal fusion and by adaptation strategies, an integrated

system for both fusion and decision making represents an

ambitious goal, with potentially broad impact on the field

of adaptive diagnosis and treatment of both cognitive and

physical impairments.

Moreover, in the specific case of CATs, the domain knowl-

edge is known to the developers, as the experimental procedure

must remain safe and informative. It is necessary to keep

records of the decisions taken by the system, in order to

reconstruct and explain how the session was managed by the

system. In this specific situation, statistical modelling alone is

not advantageous because: (i) it would require a lot of data

to discover elements that are already known, and (ii) it would

make it difficult to provide human-readable feedback to the

therapists.

In this context, hybrid systems are a convenient option as

they allow both for the representation of formal constraints

needed to implement a clinically valid exercise, and for the

statistical modelling of intrinsically noisy data sources. Re-

cently, logic-based approaches have been successfully applied

to several fields of Artificial Intelligence, including (but not

limited to): event recognition from security cameras [13], [14],

robot location estimation [15], understanding of tenses [16]

and natural language processing [17]. Due to the increasing

relevance of Machine Learning and Probability Theory in AI,

these frameworks and languages have gradually started em-

ploying probabilistic semantics (see e.g. [18]) to incorporate

and deal with uncertainty. This has given birth to the field of

Probabilistic Logic Programming (see e.g. [19]). For example

[15], which is based on the Situation Calculus ontology, can

model imperfect sensors and effectors. The Situation Calculus’

branching structure makes these frameworks mostly suitable

for planning under partial states of information. On the other

hand, MLN-EC and ProbEC [13], [14] extend the semantics

of the Event Calculus using Markov Logic Networks [20]

and ProbLog [21] to perform event recognition from security

cameras. In the proposed case study, the logical part of

the architecture receives time-stamped events as inputs and

processes them in order to detect complex long-term activities

(e.g., detect that two people are fighting from the fact that they

have been close to each other and moving abruptly during the

last few seconds). Given their semi-probabilistic nature, these

frameworks are able to handle uncertainty in the input events

(ProbEC) or in the causal rules linking events and fluents

(MLN-EC). We envisage that similar systems, especially the

Event Calculus-based ones, could be employed as a way to

perform fusion between different modalities.

III. THE AVATEA ARCHITECTURE

The proposed architecture is essentially a multimodal sys-

tem. These were first formally defined in [4] as systems that

“[. . . ] process two or more combined user input modes such as

speech, pen, touch, manual gestures, gaze, and head and body

movements in a coordinated manner with multimedia system

output”. The possibility to handle multiple communication

channels is expected to simplify interaction with the user and

to result in a more natural way to control an automated system.

Available modalities may be used in an exclusive or concurrent

way, with no integration between them [22]. However, it is

more often the case that a multimodal system processes mul-

tiple channels in a parallel and integrated way [23]. Moreover,

whether it is more advantageous to adopt an early or late

model for data fusion strongly depends on the amount of

available knowledge about the domain. From a system design

perspective, it is better to develop separate, more specialised,

approaches to analyse each single data source and then fuse the

results using a subsequent layer. However, when the domain

knowledge is limited, key interactions among input modalities

may be overlooked: in this case, early fusion is more adequate.

Generally, the problem of deciding when to apply fusion is one

of the main issues when designing multimodal systems (see

e.g. [24]). In our domain, the amount of available knowledge

about training exercises supports the adoption of a late fusion

approach.

Figure 1 shows the envisaged architecture for the AVATEA

project which main modules we will discuss in the following

paragraphs.

A. Sensors

We are going to use different types of sensors, including:

(i) pressure sensors, (ii) 2D and 3D cameras, (iii) motion

detectors, and (iv) an EEG sensor. Pressure sensors, motion

detectors and cameras are going to be used to make sure that

exercises are being executed correctly by detecting front and

back posture, head-pose, movement speed, balance and feet

relative position. In some cases, the cameras may be used

to let the user interact with the system, e.g. by pointing at

the screen. Moreover, data from cameras and EEG data are

going to help checking the user’s current level of stress and

engagement and e.g. decide whether the difficulty level of the

exercise should be changed.
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Fig. 1. The AVATEA architecture

B. Input Trackers

Adaptive games require the ability to dynamically track

children movements. For example, movements must be taken

into account if we want the system to automatically adapt

the game speed to the children’ physical capabilities. To this

aim, pressure sensors, head pose and skeleton data from video

images will be processed and then given on input to the game.

Particular emphasis will be put on tracking children’ posture:

for instance, the head-pose will be a triggering event for some

games. We are going to employ one of the several available

skeleton detection algorithms. Existing methods include those

using R-GBD or 2D cameras (e.g. the OpenPose library [25])

which can identify various positions, even those of ambigu-

ous interpretation (sitting, three-quarter backward perspective,

etc..).

C. Classifiers

In AVATEA, the focus is on human activities. These are

very difficult to classify due to the diversity of individual con-

ditions. Leveraging on the expressive power of deep networks

as feature extractors, and by exploiting features modelling

techniques of the human body, we will research and design

novel algorithms for Social Signal Processing [26]. Video and

EEG data will be used to monitor the attention of the children

during the exercise, as well as his/her emotional state and

engagement. The Modalities Recognisers classify the features

extracted from the sensor data, and create a list of possible

interpretations (N-Hypothesis) for the AI engine.

D. User Models

We will use personalised machine learning techniques to

learn a model of the children abilities and interaction prefer-

ences [27]. In turn, these profiles will make the system able to

recognise anomalies with respect to such model [28] so that it

is possible to track improvements in the user’s performance.

Moreover, user’s performance over time will be correlated with

how they felt about the exercise (or similar exercises) in the

past. This can be used to create a personalised exercise plan

(e.g., exercise type, modality of execution of the exercise, etc).

E. AI Engine

The system we envisage implies the use of noisy data

sources coming from multiple sensors and trained classifiers.

These drive a decisions layer conducting adaptive rehabili-

tation exercises. If, on one hand, this makes it necessary to

handle classification estimates with probabilistic reasoning,

on the other hand, one needs to keep a rule-based structure

to ensure clinical effectiveness and human-readable session
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summarisation. Hybrid systems, typically consisting of prob-

abilistic rules, combine the best of the two approaches by

allowing the definition of strict rules. These rules can be used

to model the structure of the clinical procedure, and adapt

to the information from the classifiers (i.e. confidence and

probability distributions over classes). A user model based

on probabilistic estimates can be used by a rule system to

estimate the best course of action using expert knowledge

encoded in a rule system. This user model can be then further

processed in order to customise the therapeutic intervention,

and therefore to raise the quality of the children experience,

by also taking into account the behaviour of the child during

the rehabilitation process. Indeed, the visual interface will be

used to offer children the exercises as part of recreational

activities that make use of detected social signals. This will

offer a rehabilitation process based on games whose behaviour

automatically adapts to the child.

1) EPEC: We propose the use of language EPEC (short for

Epistemic Probabilistic Event Calculus) as a foundation for

our methodology. Similarly to MLN-EC and ProbEC, EPEC

is a language in the style of the Event Calculus for reasoning

about actions, but goes beyond these languages in that it allows

for the modelling of noisy sensors. Its foundations were laid

in [29], and it has since then been extended in [30] to also

include sensing actions and propositions conditioned on belief.

We briefly introduce its syntax in the following.

In the tradition of reasoning about action languages,

EPEC models a given domain using fluents (which represent

properties of the world), instants (which represent time points

at which events may occur) and actions (which represent

actions under the control of the agent being modelled or the

environment itself). The causal interactions between fluents

and actions are captured by the specialised propositions below:

• the v-proposition

F takes-values 〈V1, . . . , Vn〉

states that fluent F can take values V1, . . . , Vn.

• the i-proposition

initially-one-of {(ψ1, P1), . . . , (ψn, Pn)}

states that the environment is initially in one of the states

ψ1, . . . , ψn with probabilities P1, . . . , Pn.

• the c-proposition

θ causes-one-of {(ψ1, P1), . . . , (ψn, Pn)}

states that θ, a formula encoding one or more actions

and some fluent preconditions, has the effect of causing

exactly one of the fluent conjunctions ψ1, . . . , ψn with

probabilities P1, . . . , Pn respectively.

• the s-proposition

θ senses F with-accuracies M

states that θ has the effect of sensing fluent F with an

accuracy given by the confusion matrix M .

• the o-proposition

A occurs-at I with-prob P if-holds θ

states that action A is known to be occurring at instant I

with probability P , but only if its preconditions encoded

in θ are satisfied.

• the p-proposition

A performed-at I if-believes (θ, P̄ )

states that action A is performed by the agent at instant

I if its state of belief in formula θ at instant I falls in

the (open, half-open or closed) interval P̄ .

A domain description in EPEC is a collection of these

propositions satisfying some integrity constraints (e.g. exactly

one i-proposition must belong to any domain description). We

are not going to describe these constraints formally here, but

the interested reader can find them in [29], [30].

EPEC has a possible-worlds semantics where each world

represents a possible evolution of the world from the ini-

tial state and is weighted according to the propositions in

the domain descriptions. Four implementations of EPEC are

available and/or under active development, and can answer

queries regarding what is true (and with what probability)

in a given domain. Two of them are optimised for the non-

epistemic fragments of EPEC, called PEC+. While the exact

implementation (written in clingo [31]) exhaustively works

out all the possible worlds and their associated weights,

the approximate implementation (written in the probabilistic

programming language Anglican [32]) samples a user-defined

number of worlds using Anglican’s built-in Markov Chain

Monte Carlo sampling capabilities, and uses the obtained sam-

ple to approximate the probability of a query. Similarly, there

are two implementations of EPEC (including the epistemic

fragment) to deal with exact and approximate inference.

2) Knowledge Base: The following simple domain

description demonstrates some features of EPEC:

Engagement takes-values 〈false, true〉 (1)

initially-one-of {({Engagement}, 1)} (2)

EEG senses Engagement (3)

with-accuracies

(

0.7 0.3
0.4 0.6

)

Watching senses Engagement (4)

with-accuracies

(

0.8 0.2
0.1 0.9

)

Cutscene causes-one-of {({Engagement}, 0.9), (∅, 0.1)} (5)

∀I,EEG performed-at I (6)

∀I,Watching performed-at I (7)

if-believes (Engagement, [0, 0.7])

∀I,Cutscene performed-at I (8)

if-believes (Engagement, [0, 0.5])

These propositions aim at describing an automated system

used to detect the degree of engagement of the patient, which

can sound a dedicated alarm to raise the patient’s level of
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engagement if this falls below an appropriate threshold. In

this example, Engagement is a boolean valued fluent which at

every instant can take values true or false (proposition (1)) and

initially the patient is known to be fully engaged (proposition

(2)). Propositions (3) and (4) specify the confusion matrices

associated with the actions of EEG and Watching through

the system’s sensors, while proposition (5) defines what the

expected effects of playing the Cutscene is, i.e. raising the

patient’s level of engagement in 90% of the cases. EEG is

continually performed (proposition (6)), whereas Watching

is only performed if belief in Engagement falls below the

0.7 threshold (proposition (7)). Finally, the Cutscene is only

played if Engagement is believed to have fallen below the 0.5
threshold (proposition (8)).

The AI engine therefore established if this is more appro-

priate to select more exercises or if it is necessary to apply

an attention recovery strategy. Indeed, also the modality of

execution of an exercise (e.g., its speed) can be adjusted with

respect to the children profile.

In this simple case, EEG and Watching are thought

to be independent. In EPEC it is also possible to model

dependency between actions. For instance, consider a case

in which a high-res camera is also employed to perform

engagement detection, and consider its associated action

HiResWatching. This could be modelled by appropriately

reworking proposition (4)’s precondition and adding the two

propositions:

HiResWatching ∧ ¬Watching senses Engagement (10)

with-accuracies

(

0.9 0.1
0.1 0.9

)

HiResWatching ∧ Watching (11)

with-accuracies

(

0.91 0.09
0.07 0.93

)

Notice that, although HiResWatching is more accurate than

Watching (compare propositions (4) and (10)’s matrices) these

two actions are correlated, and the confusion matrix in propo-

sition (11) reflects this.

IV. CONCLUSIONS

We have presented the system architecture designed for the

AVATEA project to manage adaptive rehabilitation exercises

and provide therapists with interpretable feedback about the

session. Also, we have presented the hybrid approach to com-

bine the use of explicit rules with probabilistic management

of noisy data sources, like automated classifiers working on

streamed sensor data. The system will autonomously manage

rehabilitation exercises and will react to social feedback com-

ing from young users during a gamified experience. After the

end of the session, the system will provide a detailed report

about the session to support therapists in evaluating children

improvement and design further interventions.
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