
A Metamodel of a Multi-Paradigm Approach to

Smart Cyber-Physical Systems Development

Massimo Cossentino, Salvatore Lopes, Giovanni Renda, Luca Sabatucci, Flavia Zaffora

National Research Council

ICAR Institute, Palermo, Italy

{name.surname}@icar.cnr.it

Abstract—This paper illustrates an approach to the develop-
ment of a shipboard power system reconfiguration as a Smart
cyber-physical system (CPS). It is developed by representing it
through a meta-model, providing a multi-paradigm approach
that exploits the best features of three available frameworks,
Jade, Jason and Akka. The resulting developing framework
allows the creation of a new composite entity (labelled H-Entity)
that exploits the advantages of Jade, Jason and Akka.

Index Terms—CPS, smart, meta-model, multi-paradigm

I. INTRODUCTION

The CPS application fields are nowadays several in all

the domains of human activities. Here the paradigm of CPS

is presented with the added quality of smartness, trying to

find a flexible solution integrating heterogeneous technologies

to easily communicate, although formerly not thought to

cooperate at all. The specific case study is the Shipboard Power

System (SPS) reconfiguration, where the use of a smart CPS is

particularly compelling. The proposed solution to the problem

adopts a multi-paradigm approach, where the selected require-

ments of adaptivity, proactivity, reactivity and smartness led to

the consideration of different paradigm frameworks, especially

referring to Agents and Actors entities. Among the available

frameworks, three of the most representative, Jason, Jade and

Akka, have been examined. Thus, this approach allowed to use

each paradigm’s strength points for the most suitable task. The

resulting developing framework is proposed in the form of a

meta-model, representing the composition of the so-called H-

Entity, the core element of the meta-model. It constitutes the

central reasoning of the proposal, gathering in itself different

entities finally able to exchange information. In the end, an

appendix with the definition of all meta-model elements is

provided.

II. THEORETICAL BACKGROUND

Before entering the proposal of a smart CPS development,

it is better to briefly introduce what a CPS is, which are the

principal domain applications, and what kind of frameworks

can be taken into account. Thus, a short presentation of CPS,

Ptolemy, Jade, Jason and Akka is following.

A. Cyber-Physical System (CPS)

A Cyber-Physical System (CPS) is a new generation of

systems integrating the physical processes with those of the

digital systems [1], [2]. In CPS, components are usually

distributed over a network. The term ‘cyber-physical’ was born

around 2006 at the National Science Foundation (NSF) in the

United States. This Foundation supports the collaboration of

cyber and physical components with the objective to extend the

capabilities of the physical layer. The join between the cyber

and the physical will create new applications [3]–[6]: industry

4.0, biomedical/healthcare systems, next-gen transportation

systems, smart grid and renewable energy.

Since their very start in early 2000, the research and appli-

cations on this field increasingly evolved influencing several

human activities [1]. Whereas a CPS is by nature adaptive

and predictive [7], adding the word smart means to define

it with a specific quality of intelligence that the CPS does

not necessarily require. Nevertheless, the smartness of a CPS

lies in the property of the reasoning, and in the ability

of communication and knowledge-sharing among dissimilar

components to take run-time decisions.

Current approaches to the development of smart CPSs en-

compass several alternative frameworks. Some selected are

illustrated in the following.

B. Ptolemy II

Ptolemy II was born around 1996, successor to Ptolemy

Classic. It is a framework of Java-based components with

a graphical user interface called Vergil. As described from

the developer [8], “the Ptolemy project studies the modelling,

simulation and design of simultaneous embedded systems in

real time.” Its central core consists in the possibility to assem-

ble concurrent components, using well-defined computational

models governing the components interactions. A further

development of the issue is to mix different computational

models for the purpose.

C. Jade

JADE (Java Agent DEvelopment framework), is an Agent-

oriented middleware [9]. It is compliant to FIPA standards,

implementing the Agent Management specification and the

FIPA Agent Communication stack [10]. It allows to realize a

distributed system, whose agents are autonomous and proac-

tive [11]. It supports ontologies and content languages and it

holds an interaction protocols library [10].

Workshop "From Objects to Agents" (WOA 2019)

35

D. Jason

Jason is a framework implementing the AgentSpeak lan-

guage [12]. It is agent-oriented, and it uses a Java-based

platform. As coming from AgentSpeak, it is inspired by the

philosophical belief-desire-intention (BDI) model, that gives

to it a human-like “reasoning”: thus, Agents acquire a kind of

intentionality. They are autonomous, proactive, reactive and

they show a social ability, so that they are able to coordinate

and cooperate. In the framework JaCaMo, the organization

of autonomous BDI agents, programmed in Jason, is defined

by the Moise framework, and the Agents work in a shared

artifact-based environment, programmed in Cartago [13].

E. Akka

Akka is a Java-based framework, containing libraries imple-

mented by the Scala programming language [14], and whose

main entity is an Actor. It presents a robust hierarchical

structure, made by actors linked each other by a parent-sons

strategy. Akka Actors interact by exchanging asynchronous

messages.

III. THE APPROACH

Smart CPS may be applied in many different contexts:

this section will discuss our specific domain of interest, the

reconfiguration of shipboard power systems, and an analysis of

the approach adopted for developing the proposed framework.

A. The context: smart CPS for Shipboard Power Systems

(SPS)

The here-described application context is specifically re-

ferred to the use of a CPS for the reconfiguration of Shipboard

Power Systems (SPS). An SPS is responsible for vessels power

supply, and it governs all the aspects of the electrical system

onboard. About the state of the art of the reconfiguration

methods, a study has been led [15], and it generated a

reflection about the possible use of a smart CPS encountering

the requirements this problem would ask for. The case of SPS

is particularly relevant because it is an enclosed environment

that, in scale, could represent any other application field

where the need to make different technologies cooperate is

compelling and fruitful to improve the efficiency of the entire

system itself. It allows the experimentation on the interaction

between the cyber-physical system and human control, for

its adaptation after one or several changes occurred. Notably,

the implementation and improvement of reconfiguration pro-

cedures acting on both the physical (the electrical one) and the

cybernetic system (the software side of the problem) imply the

challenge to face the occurring faults with a real-time response.

Here a general SPS reconfiguration scenario is depicted. The

Captain sets the ship’s Mission through an Interface, that

communicates with the SPSManager and can lay out a change

of the Mission. So the SPSManager sets the load priorities

(distinguishing vital, semi-vital and non-vital loads in the

specific case) and finds a reconfiguration plan responding

to the electrical failure perceived and communicated by the

sensors through the SensorActor. The solution found has

to be validated by the SPSPlanValidator, and the resources

must be negotiated with other requirements through the SPS

Representative. Now the Captain can decide if approving or

not the solution and, if yes, the SPSManager can apply it

through the enactor, set by the crew and directly acting on the

switches that physically turn off the selected circuits.

By showing this exemplified situation, the smartness is es-

pecially required for the central role that the Manager plays

and for the need to set run-time plans after deciding the load

priorities.

B. The requirements

The general requirements a CPS should fulfill lie in a

wide domain, that in [2] is richly exposed. All of these are

strictly interrelated each other and the underlying need is the

security the system should assure in dealing with trustiness

and reliability of its physical and digital components and with

the run-time interaction with the real world. Looking closer to

the present case, the CPS here developed for a SPS should:

be smart, i.e. the system should show a reasoning aptitude

(agent-oriented paradigm); be adaptive, that means the system

can efficiently adapt to environmental changes; be predictive,

i.e. it can foresee changes in its behavior for possible changes

in the context; be distributed: the system is heterogeneous and

its parts are located in different places so it is able to maintain

the connection; face realtime event, so the system is able to

promptly react to changes; provide feedback loop, thus it can

react to unexpected changes by monitoring itself and adjusting

its behavior.

C. The proposed approach: a multi-paradigm strategy

A cyber-physical system is heterogeneous by definition,

even just for it couples digital elements with physical ones.

The purpose here exposed is to develop a smart cyber-physical

system respecting some requirements especially involving

the information exchange among heterogeneous systems, an

ability we can refer to as interoperability [2]. Therefore,

interoperability could determine a sort of translation among

elements, languages, frameworks originally independent, act-

ing on the communication-side of a CPS. A smart CPS uses

specific frameworks involving some reasoning, and the need

for communication has to include a social aspect along with

an aptitude to adaptation. These elements explicitly belong to

agent-oriented languages, while the necessity of scaling and

feedback loop requires to adopt an actor-based language. Thus,

at first a selection and a comparison of three agent and actor-

based frameworks was done, trying to understand which of

them could be more suitable to the purpose. Dealing with the

above-mentioned SPS scenario, with the constraint of using

different available technologies (the CPS challenge), meant

having a multi-paradigm approach.

The term multi-paradigm refers to a domain dealing with com-

plex heterogeneity of models [16]. The Multi-Paradigm Mod-

eling, MPM, comes to solve the contemporary use of different

paradigms characterized for not sharing the same language.

The more heterogeneous is the relationship the harder is the

Workshop "From Objects to Agents" (WOA 2019)

36

issue to address. The problem here exposed couples different

paradigms with different underlying languages. Jade, Jason

and Akka have been taken into account [11], highlighting

their common points and their peculiarities. Although they are

all Java-based, their differences are several, and they descend

from the concepts behind their main entity, the Agent for

Jade and Jason, the Actor for Akka. Moreover, Jade’s Agents

respect FIPA standards, whereas Jason’s are based on a BDI

model. In the following lines, their distinguishing traits will

be summarized.

• Jason’s reasoning

Basing on a BDI (belief-desire-intention) model, Jason’s

Agent shows a decision-making ability that can be called

reasoning [12]. Human-like, it expresses by a sequence

of tasks making a plan that is acted to pursue a goal,

with the qualities of autonomy, reactivity, proactivity and

social ability. With special regards to the last one, the

communication among Agents is an actual action [12],

that has a Propositional Content and a Performative (e.

g. a request).

• Jade’s communication protocols

In Jade the interaction between distributed Agents is

particularly stressed. As fully adhering to FIPA, the

Agent is proactive, so it can react to a state change

and decide to pursue a goal [11]. Developing with Jade

means using the object-oriented paradigm with specific

aptitude to finite state-machine and interoperability due

to protocols-oriented communications, to ontologies and

to full support for FIPA specifications.

• Akka’s hierarchy

The peculiar structure of Akka lies in the father-sons

hierarchy of the entities. [14]. Developing a reactive

system on Akka means reasoning in terms of parallel,

asynchronously communicating processing (the actors),

and enfatizing aspects such as efficiency, distribution,

scalability and failures control. Unlike Jason and Jade,

Akka features allow a safe approach for implementing

highly scalable and performant functions; moreover Akka

Stream provides a capability of internal coordination to

implement pre-defined workflows.

For the above-mentioned aim, it resulted that none of them

can be substituted without losing something, so instead of

settle with just one, the new objective was to choose all of

them, basically using each strength points, i.e.: Jason’s reason-

ing, Akka’s hierarchy and scalability, Jade’s communication

protocols.

IV. THE PROPOSED FRAMEWORK

Since it is a compact representation, the use of a meta-

model is useful to have an overall view of all the components

of the proposal: the more the parts are, the more useful

the construction of the meta-model is. Building it up means

to clear up the hierarchies and especially the relationships

keeping otherwise separated and, most of all, to finally see

possible links and how to develop them [17].

In the following section the H-Entity will be introduced. Right

after we will have a look at the represented meta-model (Fig.

1). There, a top-down and a bottom-up perspective to deal

with it are provided. This means that one could read the meta-

model in terms of composition of elements (top-down) or by

analyzing the single parts which it is made of (bottom-up).

A. The H-Entity

The so-defined H-Entity, where ‘H’ stands for heteroge-

neous, holds the entire philosophy here proposed. It can be

considered as a polyhedral organism composed of frameworks

that cooperate by exploiting their best qualities and winning

skills. The H-Entity allows them to share their knowledge

among each other if they use different languages, and between

them and the external world, making into communication other

possible H-Entities. It is conceived as a flexible and versatile

structure, defined by Roles played by the most suitable specific

Entity (composing the H-Entity).

B. Top-down meta-model perspective

Let’s now observe the meta-model. The principle of all lies

in the Cyber-Physical World, which is made up of a CPS

Organization and of an Environment; they are the organiza-

tional side, corresponding to the Moise framework, and the

environmental side, belonging to Cartago. The so-called H-

Entities also belong to the CPS world: they play the CPS roles,

which are Moise roles and make a CPS organization. They

constitute the link among the left and right areas. On their turn,

the H-Entities are entities (Agents and/or Actors) playing both

H-Roles, defined as Manager, Worker, Diplomat and Interface,

and Entity Roles, which are Moise roles. This is the Moise

Organization, that allows the Entity to pursue a goal by playing

a role that determines the behavior of a Group of Entities. The

same kind of organization is adopted inside a single H-Entity

among its own Entities constituting it, or among different H-

Entities, that happen to interact in the Cyber-Physical World.

Then, the H-Roles define the distribution of responsibilities

in a single H-Entity; the CPS Roles describe the macro-

functionalities in the whole external system of CPS, among

different H-Entities. The Roles define the structural definition

of the organization and allow the Entities to pursue a goal by

following a behavioral constraint; the Goal is collective and

to be achieved by accomplishing Missions, that are the link

between roles and Social Scheme, i.e. between the structural

and the functional part of the organization. On the left side, the

CPS world has an Environment, both physical and cybernetic.

Here the artifacts compose the workspace: the artifacts are

made by a Manual, that holds the information about their state,

and by some Operations. The latter ones update Observable

Properties, that are the states of the artifacts, and generate

Observable Events (e. g., in the lower meta-model level, the

messages).

C. Bottom-up meta-model perspective

Let’s put one aside the other the three frameworks we

analyzed. Each of them has its own entity: Jade and Jason

Agents and Akka Actor.

Workshop "From Objects to Agents" (WOA 2019)

37

Fig. 1. The H-Entity Meta-Model

a) Jade side: Jade’s Agent has an AgentState, performs

a behavior through a Scheduler and it sends and receives an

ACLMessage, which is FIPA compliant: thus, it contains a

Content, a Content Language, an Ontology, a Protocol and a

Performative, and it is expressed by an Agent-Communication

Language (ACL).

b) Jason side: The Jason Agent lives following a BDI

model. In pursuing some Goals, it reacts to the Events oc-

curring in the context which trigger some Plans. The Plans

have to satisfy these goals. In the meanwhile, Jason Agent

communicates through messages, defined as Jason Messages,

made by a content (Proposition) and a Performative.

c) Akka side: Finally, in Akka the actor shows a parental

hierarchy [14] that enacts a Supervision Strategy. The actor

performs a Behavior which influences a State. The Behaviour

triggers the so-called Akka Message that in turns generates a

behaviour.

D. The linking entities

Something is immediately evident: at the bottom of the

figure, the message level shows a gradual implementation from

the Actor to Jade Agent framework: the Message, containing

just a Content in Akka, acquires a Performative in Jason, and

then also a Protocol, a Language and an Ontology in Jade

(that, it is known, has its strength point in the communication

side). Here it comes the key of the interaction among the

three frameworks, originally not conceived to communicate

at all. The other elements placed outside the known meta-

models are those related to the concepts of entities: the upper

entities, called H-Entities, are all of those elements who can

interact among each other in the CPS world through an

upper Moise Organization, that replicates in the lower meta-

model level among the Roles of a single entity. Thus, the

Workshop "From Objects to Agents" (WOA 2019)

38

Goal can be a Social Goal, when pursued at the upper level,

while at the bottom it is the single Goal pursued by Agents.

There are still two elements to be analyzed, the so-defined

Jade-Jason Message Wrapper and the Jade-Akka Message

Wrapper, highlighted in green in the picture. These constitute

the practical key for the realization of the inter-communication

among the three frameworks. What they do is establishing

a translation using the Jade Communication Protocol as a

channel: whenever an agent or an actor sends a message,

Jade intercepts it to re-send it to its recipient, using a wrapper

with Jason, by sharing the content and the performative, and

a wrapper with Akka, sharing only the content.

V. THE SOLUTION

The meta-model allowed to understand how and at what

level to realize the merging among all frameworks. The

following subsections will provide details about the wrappers

developed to allow their interactions and the solution to the

scenario introduced before.

A. Examples of code: the Wrappers

As introduced in the previous section, the entities are linked

together at the message level. This layer is implemented

with the wrappers: in source code 1 and source code 2,

the wrappers connect the Jason agent (Manager), with the

Akka Actor (root). The communications from the Jason Agent

to the Akka Actors are managed through a bridge. This is

implemented with a Jade agent named JadeAkkaActorSystem

(source code 1).

1 public class JadeAkkaActorSystem extends Agent {

2 ...

3 protected void setup() {

4 Akka2Jade bridge =new Akka2Jade(this);

5 root = system.actorOf(Root.props(bridge), "root-

worker");

6 addBehaviour(new ForwardIncomingMessages());

7 }

8

9 private class ForwardIncomingMessages extends

CyclicBehaviour {

10 @Override

11 public void action() {

12 ACLMessage msg = myAgent.receive();

13 if (msg != null) {

14 String content = msg.getContent();

15 root.tell(content, null);

16 }

17 }

18 }

19 }

Source code 1. Jason to Akka wrapper def

1 public class Akka2Jade {

2 ...

3 public void sendJason(String msg) {

4 if (myAgent != null)

5 myAgent.addBehaviour(new SendToJason(msg));

6 }

7

8 private class SendToJason extends OneShotBehaviour {

9 ...

10 public SendToJason (String content) {

11 this.content = content;

12 }

13 @Override

14 public void action() {

15 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

16 msg.addReceiver(new AID("manager",AID.ISLOCALNAME))

;

17 msg.setLanguage("h-language");

18 msg.setContent(content);

19 myAgent.send(msg);

20 }

21 }

22 }

Source code 2. Akka to Jason wrapper def

The use of a Jade Agent as a bridge is very useful because,

through the extension of the CyclicBehaviour class, a type

of Behaviour that execute the action() method cyclically and

never ends, the agent waits for messages from Jason agent,

then the Jade Agent sends them to the root actor. With the

source code 1, in the setup() method (line 5), a root actor

is instantiated: this actor has the task of initializing all the

possible sub-actors useful to the system, and it allows the sub-

actors to connect with the Jason Agent. When the Manager

(Jason Agent) would like to send a message to an actor, the

JadeAkkaActorSystem intercepts the message (line 12) and

sends it to the root actor (line 15), which has the task to send

the message to the specified sub-actor. When an actor would

send a message to a Jason Agent, uses the class Akka2Jade

(source code 2). These bridges also exploit a native class

named JadeAgArch that allows instantiating a Jason Agent into

a Jade Agent, sending messages from Jason to Akka Actor

through Jade Agent and vice versa. With the source code 2,

the actor uses the sendJason(msg) method (line 3-21) to send

a message to the Manager (Jason Agent).

B. The SPS scenario

In Fig. 2 it is explained the CPS solution for the SPS

scenario, with the adoption of the proposed meta-model.

The Captain sets the Mission by using the Interface which

is made by a Cartago Artifact; so the Mission is changed and

this is communicated to the SPSManager, whose role is played

by a Jason Agent. It sets the load priorities with an exchange

with the MissionManager, which after detecting the electric

failure (by sensors communicating with Akka Actors, through

the CircuitMonitor, finds a possible Reconfiguration with the

SPS Plan Generator, which is an Actor. This is sent to the

Manager which needs to validate the Solution by sending it

to a Validator, an Akka Actor, exchanging information with a

MatLab platform. So the available resources are negotiated

with a “talk” between the Jason Agent Manager and the

SPSRepresentative which is a Jade Agent. The solution is

finally approved by the Captain who allows the Manager to

apply it by enabling the Crew to interact with the Enactor,

a Cartago Artifact, passing through a Reconfigurator Enactor,

an Akka Actor. It physically switches off the non-vital loads

to efficiently deal with the fault. Thanks to the proposed

approach, the solution takes advantage of the most relevant

features of the three composing frameworks: it shows the

capability to adhere to standards, from Jade; it implements

a strategy in high levels rules, through Jason, and it is very

efficient, due to the Akka contribution.

Workshop "From Objects to Agents" (WOA 2019)

39

Captain

1. Set mission

<<interface>>

CaptainInterface

[Cartago]

<<manager>>

SPSManager

[Jason]

<<worker>>

CircuitMonitor

[Akka]

2. Electric failure

<<worker>>

Reconfiguration

Enactor

[Akka]

<<worker>>

SPSPlanGenerator

[Akka]

<<worker>>

SPSPlanValidator

[Akka]

3. Find
Reconfiguration

4. Validate Solution

5. Feasible Solution

6. Negotiate Resources

<<diplomat>>

SPSRepresentative

[JADE]

<<diplomat>>

Emergency

Representative

[JADE]

9. Apply Solution

Crew

Switchers

Current

Sensors

MatLab

Simulink

8.
Approve
Solution 7.

Propose
Solution

<<worker>>

SensorArrayMonitor

[Akka]

<<worker>>

SensorMonitor

[Akka]

<<worker>>

SensorMonitor

[Akka]

Current

Sensors

SwitchArtifact

[Cartago]

Switchers

SwitchArtifact

[Cartago]

<<interface>>

CrewInterface

[Cartago]

Fig. 2. The solution for a SPS reconfiguration

VI. CONCLUSIONS AND FUTURE WORKS

The need to work with smart CPS implies the necessity to

make different frameworks and paradigms interact with each

other. This issue by nature leads to a multi-paradigm approach,

with the theme of communication among not-overlapping

languages. The solution we developed is here presented by

means of a meta-model including the considered agent and

actor-based frameworks (here Jade, Jason and Akka), linked by

the so-called H-Entity, a polyhedral structure that allows taking

advantage of each framework winner skills to be exploited at

best according to the needed roles to be played. The solution

adopted for an SPS reconfiguration revealed a possible way

to make the different entities interact at the message level, by

the use of wrappers.

The SPS reconfiguration system prototype is now under test.

The evaluation of the system will be performed by measuring

the response time and the interactions among the different

parts of the platform. The future advancement will be to extend

the use of CPS to all the other ship’s facilities: the final purpose

is to give form to a Smart Ship solution, as already provided

by vendors such as Hyundai 1.

REFERENCES

[1] J. Shi, J. Wan, H. Yan, and H. Suo, “A survey of cyber-physical
systems,” in Wireless Communications and Signal Processing (WCSP),

2011 International Conference on. IEEE, 2011, pp. 1–6.
[2] V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts, ap-

plications, and challenges in cyber-physical systems.” KSII Transactions

on Internet & Information Systems, vol. 8, no. 12, 2014.
[3] H. Li, L. Lai, and H. V. Poor, “Multicast routing for decentralized

control of cyber physical systems with an application in smart grid,”
IEEE Journal on Selected Areas in Communications, vol. 30, no. 6, pp.
1097–1107, 2012.

[4] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype implementa-
tions and challenges,” Computers in Industry, vol. 81, pp. 11–25, 2016.

1IntegrICT, http://www.hyundai-electric.com/elec/en/integrict/integrict1.jsp

[5] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing

Letters, vol. 3, pp. 18–23, 2015.

[6] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber–physical system
security for the electric power grid,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 210–224, 2012.

[7] P. J. Mosterman and J. Zander, “Cyber-physical systems challenges: a
needs analysis for collaborating embedded software systems,” Software

& Systems Modeling, vol. 15, no. 1, pp. 5–16, 2016.

[8] [Online]. Available: https://ptolemy.berkeley.edu

[9] F. Bellifemine, A. Poggi, and G. Rimassa, “Jade: a fipa2000 compliant
agent development environment,” in Proceedings of the fifth interna-

tional conference on Autonomous agents. ACM, 2001, pp. 216–217.

[10] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent

systems with JADE. John Wiley & Sons, 2007, vol. 7.

[11] M. Cossentino, S. Lopes, A. Nuzzo, G. Renda, and L. Sabatucci, “A
comparison of the basic principles and behavioural aspects of Akka,
JaCaMo and Jade development frameworks.” 19th Workshop From
Objects to Agents (WOA 2018), Palermo, 28-29 June 2018.

[12] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-

agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007,
vol. 8.

[13] J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci, “Instrumenting
multi-agent organisations with organisational artifacts and agents,” Au-

tonomous agents and multi-agent systems, vol. 20, no. 3, pp. 369–400,
2010.

[14] M. Gupta, Akka Essentials. Packt Publishing, Birmingham, 2012.

[15] L. Agnello, M. Cossentino, G. De Simone, and L. Sabatucci, “Shipboard
power systems reconfiguration: a compared analysis of state-of-the-art
approaches,” Smart Ships Technology, pp. 1–9, 2017.

[16] C. Hardebolle and F. Boulanger, “Exploring multi-paradigm modeling
techniques,” Simulation, vol. 85, no. 11-12, pp. 688–708, 2009.

[17] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Modeling,
vol. 5, no. 4, pp. 369–385, 2006.

[18] A. Ricci, M. Viroli, and A. Omicini, “Cartago: A framework for proto-
typing artifact-based environments in MAS,” in International Workshop

on Environments for Multi-Agent Systems. Springer, 2006, pp. 67–86.

[19] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with JaCaMo,” Science of Computer

Programming, vol. 78, no. 6, pp. 747–761, 2013.

[20] C. Hahn, C. Madrigal-Mora, and K. Fischer, “Interoperability through a
platform-independent model for agents,” in Enterprise Interoperability

II. Springer, 2007, pp. 195–206.

[21] M. Cossentino, A. Chella, C. Lodato, S. Lopes, P. Ribino, and V. Seidita,
“A notation for modeling Jason-like BDI agents,” in 2012 Sixth In-

Workshop "From Objects to Agents" (WOA 2019)

40

ternational Conference on Complex, Intelligent, and Software Intensive

Systems. IEEE, 2012, pp. 12–19.

VII. APPENDIX: DEFINITION OF META-MODEL ELEMENTS

CARTAGO [18] [19]

Artifact: it is the basic element of the environment and it

provides organizational operations as they are used by Agents.

Environment: it consists in the field of work for the agents’

activities.

Manual: it contains the information about the functional

description and the observable states of the artifact.

Workspace: it is defined as an open set of artifacts and agents.

The agent must exist in a workspace.

Operation: It determines the update of the artifact state or it

generates observable events.

Observable Property: it determines the functional behavior of

the artifact.

Observable Event: it is an event generated by an operation

and sensed and registered by the agent sensors.

MOISE [13] [19]

Group: responsible for one or more Social Schemes that the

Agents adhere to.

Social Scheme: it contains several missions.

Mission: contained in the Schemes, it is defined by a set of

goals to achieve.

Role: it is a behavioral constraint for an Agent to play in a

Group.

Norm: the collecting element between the Role and the

Mission so the Group to Role.

Social Goal: the Goal the organization has to achieve.

H-ENTITY

H-Entity: it is the core element of the meta-model. It gathers

all the possible heterogeneous entities.

Entity: one of the infinite possible members of the H-Entities.

It can be an Agent or an Actor.

H-Role: H-Roles are internal roles played by the Entities.

CPS Role: CPS Roles are played among different H-Entities

interacting in the CPS World.

Entity Role: the external roles played by Entities following

the Moise Organization.

JADE [10] [20]

Jade Agent: it shows quality of autonomy and proactivity.

Behaviour: It implements the tasks that the Agents can

pursue.

ACLMessage: it is based on an asynchronous communication

paradigm. It makes the interaction among Agents.

Protocol: as part of the structure of the ACLMessage, it is

defined to the purpose of interaction among messages by the

specification of sequences.

Content: it defines the information carried by a message. It

follows FIPA indications about its expression generally using

SL (semantic language).

Content language: it is expressed in SL and it is made up of
expressions or propositions.

Ontology: it is a knowledge base the messages refer to.

Performative: it is a type of communication expressed by a

message, it is the communicative act.

JASON [12] [21]

Jason Agent: autonomous, reactive, proactive and social entity

based on a BDI (belief, desire, intention) model.

Plan: a set of actions to be performed to pursue and satisfy a

goal.

Trigger Event: it is the circumstance that activates a plan

rather than another.

Action: each task which a plan is made of. It is performed by

the agent and can change the environment so becoming an

Event.

Event: a change in agent’s initial knowledge or goal.

Context: it is a set of conditions determining the execution of

a Plan.

Belief : a predicate representing the starting knowledge of the

environment the agent has.

Rule: a logic expression made by predicates.

Goal: the final state that the agent wants to achieve by

performing a plan.

Jason Message: it has a performative and a content. It allows

the Agents to communicate each other and it updates the

believes.

Jason Performative: it is of the kind of request, information,

etc

Propositional Content: it is expressed by arguments and it

could be true or false.

AKKA [14] [11]

Akka Actor: a reactive entity encapsulating a state and a

behavior.

State: it is encapsulated by the Actor.

Behaviour: an encoding of reactions.

Supervision Strategy: the feature based on the hierarchical

structure of Akka made of fathers and son. Each father is

responsible for its sons.

Akka Message: the interaction key among Actors. It stimulates

a reactive action of the Actor. Received messages are stored

in a mailbox. It has just a content.

Workshop "From Objects to Agents" (WOA 2019)

41

