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Abstract—Traffic monitoring and control, as well as traffic
simulation, are still significant and open challenges despite the
significant researches that have been carried out, especially on
artificial intelligence approaches to tackle these problems. This
paper presents a Reinforcement Learning approach to traffic
lights control, coupled with a microscopic agent-based simulator
(Simulation of Urban MObility - SUMO) providing a synthetic
but realistic environment in which the exploration of the outcome
of potential regulation actions can be carried out. The paper
presents the approach, within the current research landscape,
then the specific experimental setting and achieved results are
described.

Index Terms—reinforcement learning, traffic lights control,
traffic management, agent-based simulation

I. INTRODUCTION

Traffic monitoring and control and, in general, approaches

supporting the reduction of congestion still represent hot topics

for research of different disciplines, despite the substantial

researches that have been devoted to these topics. The global

phenomenon of urbanization (half of the world’s population

was living in cities at the end of 2008 and it is predicted

that by 2050 about 64% of the developing world and 86% of

the developed world will be urbanized1) is in fact constantly

changing the situation and making it actually harder to manage

such a concentration of population and transportation de-

mand. Technological developments among which autonomous

driving represents just the most futuristic one (at least from

a popular culture perspective), represent at the same time

attempts to tackle these issues and further challenges, in terms

of potential developments whose introduction requires further

study and analysis of the potential impact and implications.

Artificial Intelligence plays an important role within this

framework; even not considering the obvious relevance to the

autonomous driving initiative, we focus here on two aspects:

(i) the regulation of traffic patterns, especially based on (ii) the

analysis of situations by means of agent-based simulations, in

which the behaviour of drivers and other relevant entities is

modeled and computer within a synthetic environment. The

latter, in particular, have reached a level of sufficient complex-

ity, flexibility, and they have proven their capability to support

decision makers in the exploration of alternative ways to

manage traffic within urban settings. On the side of regulation

of traffic patterns, the availability of these simulators, coupled

1https://population.un.org/wup/

with advances in machine learning, represents an opportunity

for a scientific investigation of the possibility to employ

these virtual environments as tools to explore the outcome of

potential regulation actions within specific situations, within a

Reinforcement Learning [1] framework.

This paper represents a contribution within this line of

research and, in particular, we focus on a simple yet still

studied situation: a single four way intersection regulated by

traffic lights, that we want to manage through an autonomous

agent perceiving the current traffic conditions, and exploiting

the experience carried out in simulated situations, possibly

representing plausibile traffic conditions. The simulations are

actually also agent-based, and in particular, for this study,

they have been carried out in a tool for Simulation of Urban

MObility (SUMO) [2] providing a synthetic but realistic envi-

ronment in which the exploration of the outcome of potential

regulation actions can be carried out. An important aspect is

the fact that SUMO provides an Application Programming

Interface for interfacing with external programs, therefore we

were able to define a plausible set of observable aspects of

the environment, control the traffic lights according to the

decisions of the learning agent, as well as also to exploit some

stastics gathered by SUMO to describe the overall traffic flow

and therefore to define the reward to the actions carried out

by the traffic lights control agent.

The paper breaks down as follows: we first provide a

compact description of the relevant portion of the state of

the art in traffic lights management with RL approaches, then

we introduce the experimental setting we adopted for this

study. The RL approach we defined and adopted will be given

in Section IV, then the achieved results will be described.

Conclusions and future developments will end the paper.

II. RELATED WORKS

A. Reinforcement Learning

One of the acceptations of the goals of AI is to develop

machines that resemble the intelligent behavior of a human

being. In order to achieve this goal, an AI system should

be able to interact with the environment and learn how

to correctly act inside it. An established area of AI that

has been proved capable of experience-driven autonomous

learning is reinforcement learning [1]. Several complex tasks

were successfully completed using reinforcement learning in

multiple fields, such as games [3], robotics [4], and traffic

signal control.
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In a Reinforcement Learning (RL) problem, an autonomous

agent observes the environment and perceives a state st,

which is the state of the environment at time t. Then the

agent chooses an action at which leads to a transition of the

environment to the state st+1. After the environment transition,

the agent obtains a reward rt+1 which tells the agent how good

at was with respect to a performance measure. The goal of the

agent is to learn the policy π∗ that maximizes the cumulative

expected reward obtained as a result of actions taken while

following π∗. The standard cycle of reinforcement learning is

shown in Figure 1.

Fig. 1. The reinforcement learning cycle.

B. Learning in Traffic Signal Control

Traffic signal control is a well suited application context for

RL techniques: in this framework, one or more autonomous

agents have the goal of maximizing the efficiency of traffic

flow that drives through one or more intersection controlled

by traffic lights. The use of RL for traffic signal control is

motivated by several reasons [5]: (i) if trained properly, RL

agents can adapt to different situations (e.g. road accidents,

bad weather conditions); (ii) RL agents can self-learn without

supervision or prior knowledge of the environment; (iii) the

agent only needs a simplified model of the environment

(essentially related to the state representation), since the agent

learns using the system performance metric (i.e. the reward).

RL techniques applied to traffic signal control address the

following challenges: [5]

• Inappropriate traffic light sequence. Traffic lights usu-

ally choose the phases in a static, predefined policy. This

method could cause the activation of an inappropriate

traffic light phase in a situation that could cause an

increase in travel times.

• Inappropriate traffic light durations. Every traffic light

phase has a predefined duration which does not depend on

the current traffic conditions. This behavior could cause

unnecessary waitings for the green phase.

Although the above are potential advantages of the RL

approach to traffic signal control, not all of them have already

been achieved, and (as we will show in the remander of the

paper) the present approach only represents an initial step in

this overall line of work.

In order to apply a RL algorithm, it is necessary to define

the state representation, the available actions and the reward

functions; in the following, we will describe the most widely

adopted approaches for the design of these elements within

the context of Traffic Signal Control.

1) State representation: The state is the agent’s perception

of the environment in an arbitrary step. In literature, state space

representations particularly differ in information density.

In low information density representations, usually the inter-

section’s lanes are discretized in cells along the length of the

lane. Lane cells are then mapped to cells of a vector, which

marks 1 if a vehicle is inside the lane cell, 0 otherwise [6].

Some approaches include additional information, adopting

such a vector of car presence with the addition of a vector

encoding the relative velocity of vehicles [7]. The current

traffic light phase could also be added as a third vector [8].

Regarding state representations with high information den-

sity, usually the agent receives an image of the current situation

of the whole intersection, i.e. a snapshot of the simulator being

used; multiple successive snapshots will be stacked together

to give the agent a sense of the vehicle motion [9].

2) Actions representation: In the context of traffic signal

control, the agent’s actions are implemented with different

degrees of flexibility and they are described below.

Among the category of action set with low flexibility, the

agent can choose among a defined set of light combinations.

When an action is selected, a fixed amount of time will

lasts before the agent can select a new configuration [7].

Some works gave the agent more flexibility by defining phase

duration with variable length [10]. An agent with a higher

flexibility chooses an action at every step of the simulation

from a fixed set of light combinations. However, the selected

action is not activated if the minimum amount of time required

to release at least a vehicle, has not passed [8], [9]. A slightly

different approach would be to have a defined cycle of light

combinations activated into the intersection. The agent action

is represented by the choice of when it is time to switch to

the next light combination, and the decision is made at every

step [11].

3) Reward representation: The reward is used by the agent

to understand the effects of the latest action taken in the latest

state; it is usually defined as a function of some performance

indicator of the intersection efficiently, such as vehicles’

delays, queue lengths, waiting times or overall throughput.

Most of the works include the calculation of the change

between cumulative vehicle delay between actions, where the

vehicle delay is defined as the number of seconds the vehicles

is steady [8], [9]. Similarly, the cumulative vehicle staying

time can be used, which is the number of seconds the vehicle

has been steady since his entrance in the environment [7].

Moreover, some works combine multiples indicators in a

weighted sum [11].

C. Adopted models and learning algorithms

The most recent reinforcement learning research has pro-

posed multiple possible solutions to address the traffic signal

control problem, in which it emerges that different algorithms

and neural networks structure can be used, although some

common techniques are necessary but not sufficient in order

to ensure a good performance.

The most widely used algorithm to address the problem is

Q-learning. The optimal behavior of the agent is achieved with
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the use of neural networks to approximate Q-values given a

state. Often, this approach includes a Convolutional Neural

Network (CNN) to compute the environment state and learn

features from an image [9] or a spatial representation [8], [7].

Genders and Ravi [8] and Gao et al. [7] make use of a

Convolutional Neural Network to learn features from their

spatial representation of the environment. The output of this

network with the current phase is passed to two fully con-

nected layers that connect to the outputs represented by Q-

values. This method showed good results in [7] work against

different traffic lights policies, such as long-queue-first and

fixed-times, while in [8] it is compared to a shallow neural

network, in which (although it shows a good performance) an

evaluation against real-world traffic lights would lead to more

significant results.

Mousavi et al. [9] analyzed a double approach to address

the traffic signal control problem. The first approach is value-

based, while the second is policy-based. In the first approach,

action values are predicted by minimizing the mean-squared

error of Q-values with the stochastic gradient-descent method.

In the alternative approach, the policy is learned by updating

the policy parameters in such a way that the probability of

taking good actions increases. A CNN is used as a func-

tion approximator to extract features from the image of the

intersection, wherein the value-based approach the output is

the value of actions, and in the policy-based approach it is a

probability distribution over actions. Results show that both

the approaches achieve good performance against a defined

baseline and do not suffer from instability issues.

In [10], a deep stacked autoencoders (SAE) neural network

is used to learn Q-values. This approach uses autoencoders

to minimize the error between the encoder neural network Q-

value prediction and the target Q-value by using a specific

loss function. It is shown that achieves better performance

than traditional RL methods.

III. EXPERIMENTAL SETTING

The traffic microsimulator used for this research is Simu-

lation of Urban MObility (SUMO) [12]. SUMO provides a

software package which includes an infrastructure editor, a

simulator interface and an application programming interface

(API). These elements enable the user to design and implement

custom configurations and functionalities of a road infrastruc-

ture and exchange data during the traffic simulation.

In this research, the chance of improvement in traffic flow

that drives through an intersection controlled by traffic lights

will be investigated using artificial intelligence techniques. The

agent is represented by the traffic light system that interacts

with the environment in order to maximize a certain measure

of traffic efficiency. Given this general premise, the problem

tackled in this paper is defined as follows: given the state of

the intersection, what is the traffic light phase that the agent

should choose, selected from a fixed set of predefined actions,

in order to maximize the reward and consequently optimize

the traffic efficiency of the intersection.

The typical workflow of the agent is shown in Figure 2.

It should be underlined that in this application with SUMO,

the passage of time is represented in simulation steps. But the

agent only operates at certain steps, after the environment has

evolved enough. Therefore, in this paper every step dedicated

to the agent’s workflow is called agentstep, while the steps

dedicated to the simulation are simply called ”steps”. Hence,

after a certain amount of simulation steps, the agent starts

its sequence of operations by gathering the current state

of the environment. Also, the agent calculates the reward

of the previous selected action, using some measure of the

current traffic situation. The sample of data containing every

information about the latest simulation steps is saved to a

memory and later extracted for a training session. Now the

agent is ready to select a new action based on the current

state of the environment, which will resume the simulation

until the next agent interaction.

Fig. 2. The agent’s workflow.

The environment where the agent acts is represented in

Figure 3. It is a 4-way intersection where 4 lanes per arm

approach the intersection from the compass directions, leading

to 4 lanes per arm leaving the intersection. Each arm is 750

meters long. On every arm, each lane defines the possible

directions that a vehicle can follow: the right-most lane enable

vehicles to turn right or going straight, the two central lanes

bound the driver to go straight while on the left-most lane

the left turn is the only direction allowed. In the center of

the intersection, a traffic light system, controlled by the agent,

manages the approaching traffic. In particular, on every arm the

left-most lane has a dedicated traffic light, while the other three

lanes share a traffic light. Every traffic light in the environment

operates according to the common european regulations, with

the only exception being the absence of time between the end

of a yellow phase and the start of the next green phase. In this

environment pedestrians, sidewalks and pedestrian crossings

are not included.

A. Training setup and traffic generation

The entire training is divided in multiple episodes .The total

number of episodes is 300. By default, SUMO provides a time

frequency of 1 second per step, and the period of each episode

is set at 1 hour and 30 minutes, therefore the total number of

steps per episode is equal to 5400. 300 episodes of 1.30 hours

each are equivalent to almost 19 days of continuous traffic, and

the entire training takes about 6 hours on a high-end laptop.

Workshop "From Objects to Agents" (WOA 2019)

44



Fig. 3. The environment.

In a simulated intersection, the traffic generation is a crucial

part that can have a big impact on the agents performance. In

order to maintain a high degree of reality, in each episode the

traffic will be generated according to a Weibull distribution

with a shape equal to 2. An example is shown in Figure 4.

The distribution is presented in the form of a histogram, where

the steps of one simulation episode are defined on the x-axis

and the number of vehicles generated in that step window is

defined on the y-axis. The Weibull distribution approximates

specific traffic situations, where during the early stage the

number of cars is rising, representing a peak hour. Then,

the number of incoming cars slowly decreases describing the

gradual mitigation of traffic congestion. Also, every vehicles

generated has the same physical dimensions and performance.

Fig. 4. Traffic generation distribution over a single episode.

The traffic distribution described provides the exact step

of the episode when a vehicle will be generated. For every

vehicle scheduled, its source arm and destination arm are

determined using a random number generator which have a

different seed in every episode, so it is not possible to have two

equivalent episodes. In order to obtain a true adaptive agent,

the simulation should include a significant variety of traffic

flows and patterns [13]. Therefore, four different scenarios are

defined and they are the following.

• High-traffic scenario. 4000 cars approach the intersection

from every arm evenly distributed. Then, 75 % of gener-

ated cars will go straight and 25 % of cars will turn left

or right at the intersection.

• Low-traffic scenario. 600 cars approach the intersection

from every arm evenly distributed. Then, 75 % of gener-

ated cars will go straight and 25 % of cars will turn left

or right at the intersection.

• NS-traffic scenario. 2000 cars approach the intersection,

with 90 % of them coming from the North or South arm.

Then, 75 % of generated cars will go straight and 25 %

of cars will turn left or right at the intersection.

• EW-traffic scenario. 2000 cars approach the intersection,

with 90 % of them coming from the East or West arm.

Then, 75 % of generated cars will go straight and 25 %

of cars will turn left or right at the intersection.

Each scenario corresponds to one single episode and they

cycle during the training always in the same order.

IV. DESCRIPTION OF THE REINFORCEMENT LEARNING

APPROACH

In order to design a system based on the reinforcement

learning framework, it is necessary to define the state rep-

resentation, the action set, the reward function and the agent

learning techniques involved. It should be noted that the such

agent’s elements in this paper are easily replaceable with a

traffic monitoring system in a real world appliance, compared

to others relevant studies in this topic which have higher

requirements in terms of technical feasibility.

A. State representation

The state of the agent describes a representation of the

situation of the environment in a given agentstep t and it

is usually denoted with st. To allow the agent to effectively

learn to optimize the traffic, the state should provide sufficient

information about the distribution of cars on each road.

The objective of the chosen representation is to let the

agent knows the position of vehicles inside the environment

at agentstep t. For this purpose the approach proposed in this

paper is inspired to the DTSE [8], with the difference that less

information is encoded in this state. In particular, this state

design includes only spatial information about the vehicles

hosted inside the environment, and the cells used to discretize

the continuous environment are not regular. The chosen design

for the state representation is focused on realism: recent works

on traffic signal controller proposed information-rich states,

but in reality they hard to implement since the information

used in that kind of representations is difficult to gather.

Therefore, in this paper will be investigated the chance of

obtaining good results with a simple and easy-to-apply state

representation.

Technically, in each arm of the intersection incoming lanes

are discretized in cells that can identify the presence or absence

of a vehicle inside them. In Figure 5 is showed the state

representation for the west arm of the intersection. Between

the beginning of the road and the intersection’s stop line, there

are 20 cells. 10 of them are located along the left-only lane

while the others 10 cover the others three lanes. Therefore, in
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Fig. 5. Design of the state representation in the west arm of the intersection,
with cells length.

the whole intersection there are 80 cells. Not every cell has the

same size: the further the cell is from the stop line, the longer

it is, so more lane length is covered. The choice of the length

of every cell is not trivial: if cells were too long, some cars

approaching the crossing line may not be detected; if cells

were too short, the number of states required to cover the

length of the lane increases, bringing to higher computational

complexity. In this paper, the length of the shortest cells, which

are also the closest to the stop line, is exactly 2 meters longer

than the length of a car.

In summary, whenever the agent observe the state of the

environment, he will obtain the set of cells that describe the

presence or absence of vehicles in every area of the incoming

roads.

B. Action set

The action set identifies the possible actions that the agent

can take. The agent is the traffic light system, so doing an

action translates to activate a green phase for a set of lanes

for a fixed amount of time, choosing from a predefined set of

green phases. In this paper, the green time is set at 10 seconds

and the yellow time is set at 4 seconds. Formally, the action

space is defined in the set (1). The set includes every possible

action that the agent can take.

A = {NSA,NSLA,EWA,EWLA} (1)

Every action of set (1) is described below.

• North-South Advance (NSA): the green phase is active

for vehicles that are in the north and south arm and wants

to proceed straight or turn right.

• North-South Left Advance (NSLA): the green phase is

active for vehicles that are in the north and south arm

and wants to turn left.

• East-West Advance (EWA): the green phase is active for

vehicles that are in the east and west arm and wants to

proceed straight or turn right.

• East-West Left Advance (EWLA): the green phase is

active for vehicles that are in the east and west arm and

wants to turn left.

Figure 6 shows a graphical representation of the four

possible actions.

If the action chosen in agentstep t is the same as the

action taken in the last agentstep t − 1 (i.e. the traffic light

combination is the same), there is no yellow phase and

therefore the current green phase persists. On the contrary,

if the action chosen in agentstep t is not equal to the previous

Fig. 6. Graphical representation of the four possible actions.

action, a 4 seconds yellow phase is initiated between the

two actions. This means that the number of simulation steps

between two same actions is 10, since 1 simulation step is

equal to 1 second in SUMO. When the two consecutive actions

are different, the yellow phase counts as 4 extra simulation

steps and therefore the total number of simulation steps in

between actions is 14. Figure 7 shows a brief scheme of this

process.

Fig. 7. Possible differences of simulation steps between actions.

C. Reward function

In reinforcement learning, the reward represents the feed-

back from the environment after the agent has chosen an

action. The agent uses the reward to understand the result

of the taken action and improve the model for future action

choices. Therefore, the reward is a crucial aspect of the

learning process. The reward usually has two possible values:

positive or negative. A positive reward is generated as a

consequence of good actions, a negative reward is generated

from bad actions. In this application, the objective is to

maximize the traffic flow through the intersection over time. In

order to achieve this goal, the reward should be derived from

some performance measure of traffic efficiency, so the agent

is able to understand if the taken action reduce or increase the

intersection efficiency. In traffic analysis, several measures are

used [14], such as throughput, mean delay and travel time. In

this paper, two reward functions are presented which use two

slightly different traffic measures, and they are the following.

1) Literature reward function: The first reward function is

called literature because it is inspired to similar studies in this

topic. The literature reward function uses as a metric the total

waiting time, defined as in equation (2).

twtt =

n∑

veh=1

wt(veh,t) (2)

Where wt(veh,t) is the amount of time in seconds a vehicle veh

has a speed of less than 0.1 m/s at agentstep t. n represents

the total number of vehicles in the environment in agentstep t.
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Therefore, twtt is the total waiting time at agentstep t. From

this metric, the literature reward function can be defined as a

function of twtt and is shown in (3)

rt = 0.9 · twtt−1 − twtt (3)

Where rt represents the reward at agentstep t. twtt and

twtt−1 represent the total waiting time of all the cars in the

intersection captured respectively at agentstep t and t−1. The

parameter 0.9 helps with the stability of the training process.

In a reinforcement learning application, the reward usually

can be positive or negative, and this implementation is no

exception. The equation 3 is designed in such a way that

when the agent chooses a bad action it returns a negative

value and when it chooses a good action it returns a positive

value. A bad action can be represented as an action that, in the

current agentstep t, adds more vehicles in queues compared

to the situation in the previous agentstep t − 1, resulting in

higher waiting times compared to the previous agentstep. This

behavior increases the twt for the current agentstep t and

consequently the equation 3 assumes a negative value. The

more vehicles were added in queues for the agentstep t, the

more negative rt will be and therefore the worst the action

will be evaluated by the agent. The same concept is applied

for good actions.

The problem with this reward function lays inside the

choiche of the metric, and happens when the following situa-

tion arise. During the High-traffic scenario, very long queues

appears. When the agent activate the green phase for a long

queue, the departure of cars creates a wave of movement

that traverse the entire queue. The reward associated to this

phase activation is received not only in the next agentstep,

as it should, but also in very next ones. That is because the

movement wave persists longer compared to the delta step

between actionstep, and the wave triggers the waiting times

of cars in the queue, misleading the agent about the reward

received.

2) Alternative reward function: The alternative reward

function uses a metric that is slightly different from the former

metric, which is the accumulated total waiting time, defined

in equation (4).

atwtt =

n∑

veh=1

awt(veh,t) (4)

Where awt(veh,t) is the amount of time in seconds a vehicle

veh has a speed of less than 0.1 m/s at agentstep t, since the

spawn into the environment. n represents the total number of

vehicles in the environment in agentstep t. Therefore, atwtt
is the accumulated total waiting time at agentstep t. With

this metric, when the vehicle departs but it does not manage

to cross the intersection, the value of atwtt does not resets

(unlike the value of twtt), avoiding the misleading reward

associated with the literature reward function, when a long

queue build up at the intersection. Once the metric is set, the

alternative reward function is defined such as in equation (5)

rt = atwtt−1 − atwtt (5)

Where rt represents the reward at agentstep t. atwtt and

atwtt−1 represent the accumulated total waiting time of all

the cars in the intersection captured respectively at agentstep

t and t− 1.

D. Deep Q-Learning

The learning mechanism involved in this paper is called

Deep Q-Learning, which is a combination of two aspects

widely adopted in the field of reinforcement learning: deep

neural networks and Q-Learning. Q-Learning [15] is a form of

model-free reinforcement learning [16]. It consists of assigning

a value, called the Q-value, to an action taken from a precise

state of the environment. Formally, in literature, a Q-value is

defined as in equation (6).

Q(st, at) = Q(st, at)+α(rt+1+γ·maxAQ(st+1, at)−Q(st, at))
(6)

where Q(st, at) is the value of the action at taken from state

st. The equation consists on updating the current Q-value

with a quantity discounted by the learning rate α. Inside the

parenthesis, the term rt+1 represents the reward associated to

taking action at from state st. The subscript t+ 1 is used to

emphasize the temporal relationship between taking the action

at and receiving the consequent reward. The term Q(st+1, at)
represents the immediate future’s Q-value, where st+1 is next

state in which the environment has evolved after taking action

at in state st. The expression maxA means that, among the

possible actions at in state st+1, the most valuable is selected.

The term γ is the discount factor that assumes a value between

0 and 1, lowering the importance of future reward compared

to the immediate reward.

In this paper, a slightly different version of the equation (6)

is used and it is presented in equation (7). This will be called

the Q-learning function from this point.

Q(st, at) = rt+1 + γ ·maxAQ
′(st+1, at+1) (7)

Where the reward rt+1 is the reward received after taking

action at in state st. The term Q′(st+1, at+1) is the Q-value

associated with taking action at+1 in state st+1, i.e. the next

state after taking action at in state st. As seen in equation (6),

the discount factor γ denote a small penalization of the future

reward compared to the immediate reward. Once the agent

is trained, the best action at taken from state st will be the

one that maximize the function Q(st, at). In other words,

maximizing the Q-learning function means following the best

strategy that the agent have learned.

In a reinforcement learning application, often the state space

is so large that is impractical to discover and save every state-

action pair. Therefore, the Q-learning function is approximated

using a neural network. In this paper, a fully connected deep

neural network is used, which is composed of an input layer of

80 neurons, 5 hidden layers of 400 neurons each with rectified

linear unit (ReLU) [17] and the output layer with 4 neurons

with linear activation function, each one representing the value

of an action given a state. A graphical representation of the

deep neural network is showed in Figure 8

E. The training process

Experience replay [18] is a technique adopted during the

training phase in order to improve the performance of the
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Fig. 8. Scheme of the deep neural network.

agent and the learning efficiency. It consists of submitting

to the agent the information needed for learning in the form

of a randomized group of samples called batch, instead of

immediately submitting the information that the agent gather

during the simulation (commonly called Online Learning). The

batch is taken from a data structure intuitively called memory,

which stores every sample collected during the training phase.

A sample m is formally defined as the quadruple (8).

m = {st, at, rt+1, st+1} (8)

Where rt+1 is the reward received after taking the action at
from state st, which evolves the environment into the next state

st+1. This technique is implemented to remove correlations in

the observation sequence, since the state of the environment

st+1 is a direct evolution of the state st and the correlation

can decrease the training capability of the agent. In Figure 9

is shown a representation of the data collection task.

Fig. 9. Scheme of the data collection.

As stated earlier, the experience replay technique needs

a memory, which is characterized by a memory size and a

batch size. The memory size represents how many samples

the memory can store and is set at 50000 samples. The batch

size is defined as the number of samples that are retrieved

from the memory in one training instance and is set at 100. If

at a certain agentstep the memory is filled, the oldest sample

is removed to make space for the new sample.

A training istance consists of learning the Q-value function

iteratively using the information contained in the batch of

samples extracted. Every sample in the batch is used for train-

ing. From the standpoint of a single sample, which contains

the elements {st, at, rt+1, st+1}, the following operations are

executed:

1) Prediction of the Q-values Q(st), which is the current

knowledge that the agent has about the action values from

st.

2) Prediction of the Q-values Q′(st+1). These represents the

knowledge of the agent about the action values starting

from the state st+1.

3) Update of Q(st, at) which represents the value of the par-

ticular action at selected by the agent during the simula-

tion. This value is overwritten using the Q-learning func-

tion described in equation (7). The element rt+1 is the

reward associated to the action at, maxAQ
′(st+1, at+1)

is obtained using the prediction of Q′(st+1) and repre-

sents the maximum expected future reward i.e. the higher

action value expected by the agent, starting from state

st+1. It will be discounted by a factor γ that gives more

importance to the immediate reward.

4) Training of the neural network. The input is the state st,

while the desired output is the updated Q-values Q(st, at)
that now includes the maximum expected future reward

thanks to the Q-value update.

Once the deep neural network has sufficiently approximated

the Q-learning function, the best traffic efficiency is achieved

by selecting the action with the highest value given the

current state. A major problem in any reinforcement learning

task is the action-selection policy while learning; whether

to take exploratory action and potentially learn more, or to

take exploitative action and attempt to optimize the current

knowledge about the environment evolution. In this paper the

ǫ-greedy exploration policy is chosen, and it is represented

by the equation (9). It defines a probability ǫ for the current

episode h to choose an explorative action, and consequently a

probability 1− ǫ to choose an exploitative action.

ǫh = 1−
h

H
(9)

where h is the current episode of training and E is the

total number of episodes. Initially, ǫ = 1, meaning that the

agent exclusively explores. However, as training progresses,

the agent increasingly exploits what it has learned, until it

exclusively exploits.

V. SIMULATION RESULTS

The performance of the agents is assessed in two parts:

initially, the reward trend during the training is analyzed. Then,

a comparison between the agents and a static traffic light is

discussed, with respect to common traffic metrics, such as

cumulative wait time and average wait time per vehicle.

One agent is trained using the literature reward function,

while the other one adopts the alternative reward function.

Figure 10 shows the learning improvement during the training

in the Low-traffic scenario of both agents, in term of cumu-

lative negative reward i.e the magnitude of actions’ negative

outcomes during each episode. As it can be seen, each agent

has learned a sufficiently correct policy in the Low-traffic

scenario. As the training proceeded, both agents efficiently

explore the environment and learn an adequate approximation

of the Q-values; then, towards the end of the training, they
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try to optimize the Q-values by exploiting the knowledge

learnined so far. The fact that the agent with the alternative

reward function has a better reward curve overall is not a

strong evidence of a better performance, since haveing two

different reward functions means that different reward values

are produced. The performance difference will be discussed

later during the static traffic light benchmark.

Fig. 10. Cumulative negative reward of both agents per episode during the
training in the Low-traffic scenario.

Figure 11 shows the same training data as Figure 10, but

referred to the High-traffic scenario. In this scenario, the agent

with the literature reward shows a significantly unstable reward

curve, while the other agent’s trend is stable. This behavior is

caused by the choiche of using the waiting time of vehicles as a

metric for the reward function, which in situations with long

queues causes the aquisition of misleading rewards. In fact,

by using the accumulated waiting time like in the alternative

reward function, vehicles does not resets their waiting times

by simply advancing through the queue. As Figure 11 shows,

the alternative reward function produces a more stable policy.

In the NS-traffic and EW-traffic scenarios, both agents perform

well since it is a simpler task to exploit.

Fig. 11. Cumulative negative reward of both agents per episode during the
training in the High-traffic scenario.

In order to truly analyze which agent achieve better perfor-

mance, a comparison between the agents and a Static Traffic

Light (STL) is presented. The STL has the same layout of

the agents and it cycle through the 4 phases always in the

following order: [NSA−NSLA−EWA−EWLA]. Moreover,

every phase has a fixed duration and they are inspired by those

on real-world static traffic lights [19]. In particular, the phases

NSA and EWA lasts 30 seconds, the phases NSLA and EWLA

lasts 15 seconds and the yellow phase is the same as the agent,

which is 4 seconds.

In Table I are shown the performance of the two agents,

compared to the STL. The metric used to measure the per-

formance difference are the cumulative wait time and the

average wait time per vehicle. The cumulative wait time is

defined as the sum of all waiting times of every car during

the episode, while the average waiting time per vehicle is

defined as the average amount of seconds spent by a vehicle

in a steady position during the episode. These measures are

gathered across 5 episodes and then averaged.

Literature reward

agent

Alternative reward

agent

Low-traffic scenario

cwt -30 -47

awt/v -29 -45

High-traffic scenario

cwt +145 +26

awt/v +136 +25

NS-traffic scenario

cwt -50 -62

awt/v -47 -56

EW-traffic scenario

cwt -65 -65

awt/v -59 -58

TABLE I
AGENTS PERFORMANCE OVERVIEW, PERCENTAGE VARIATIONS

COMPARED TO STL (LOWER IS BETTER).

In general, the alternative reward agent achieves a better

traffic efficiency compared to the literature agent: this is a

consequence of the adoption of a reward function (accumu-

lated waiting time) that more properly discounts waiting times

exceeding a single traffic light cycle. Considering just the

waiting time starting from the last stop of the vehicles, leads

to not sufficiently emphasize the usefulness of keeping longer

light cycles, introducing too many yellow lights situations

and changes, that are effective in low or medium traffic

situations. The fact that the agent is more effectine in low

to medium traffic situations, leads to think that an easy and

almost immediate opportunity would be to separately develop

agents devoted to different traffic situations, having a sort of

controller that monitors the traffic flow and that selects the

most appropriate agent configuration. This experimentation

also leads to consider that, however, additional improvements

would be possible by (i) improving the learning approach

to achieve a more stable and faster convergence, (ii) further

improving the reward fuction to better describe the desired

behaviour and to influence the average cycle lengths, that is

more fruitfully short in low traffic situation and long whenever

the traffic condition worsens.
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VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This work has presented a believable exploration of the

plausibility of a RL approach to the problem of traffic lights

adaptation and management. The work has employed a real-

istic and validated traffic simulator to provide an environment

in which training and evaluating a RL agent. Two metrics for

the reward of agent’ actions have been investigated, clarifying

that a proper decription of the application context is just

as important as the competence in the proper application of

machine learning approaches for achieving proper results.

Future works are aimed at further improving achieved

results, but also, within a longer term, at investigating what

would be the implications of introducing mutiple RL agents

within a road network and what would be the possiblity to

coordinate their efforts for achieving global improvements

over local ones, and also the implications on the vehicle

population, that could perceive the change in the infrastructure

and adapt in turn to exploit additional opportunities and poten-

tially negating the achieved improvements due to an additional

traffic demand on the improved intersections. It is important

to perform analyses along this line of work to understand the

plausibility, potential advantages or even unintended negative

implications of the introduction in the real world of this form

ofself-adaptive system.
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