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Abstract—Personal finance decisions emerge from a complex
network of human connections, where the nodes or agents —
banks, investors, financial advisors — take their choices on the
basis of a variety of factors. All these agents form a society,
which we modeled as an Agent-Based Model (ABM) on a scale-
free network. In this paper, we will consider: honest agents,
regular agents, insincere agents, stubborn agents and skilled (or
unskilled) agents. Honest agents report truthfully their opinion
while insincere agents state an opinion which is different from
their internal belief. Regular agents are characterized by the
same propensity to listen, contrary to what stubborn agents do
because these agents evaluate the counterpart’s opinion but never
approaches to it. Skilled and unskilled agents are the result
of influence of the competence in the evolution of decisions in
multi-agent systems. We perform a social simulation to show
that, in particular, consensus, polarization, extremism or the
emergence of a disordered regime are possible outcomes, even
without explicit introduction of stubborn agents.

Index Terms—Agent-based modeling, Multi-agent systems,
Opinion dynamics, Scale free networks

I. INTRODUCTION

Personal finance decisions are taken by individuals on the

basis of a variety of factors, emerging from a complex network

of human connections. All of these human connections involve

several agents, many of them clustered into fixed categories:

banks, financial advisors, investors. They form a society.

Investors usually resort to financial advisors to improve their

investment process. The latter are paid by the banks, whose

aim is to steer the investors towards a particular investment

decision and it is the reason why they ask the collaboration

of financial advisors.

When we look at the connections, we realize that: i) the

interaction is not of the any-to-any kind [1], since an agent will

be typically connected with some other agents rather than all

of them (e.g., we assume that investors connect with advisors

but not with banks); ii) some agents have a large number of

connections to other individuals, whereas most of them just

have a handful (e.g., an advisor may have many customers, but

customers usually have only one advisor). Societies satisfying

such rules are the popular “scale-free” networks [2].

The society is modeled as an Agent-Based Model (ABM).

Agent-based simulation is most commonly used to model indi-

vidual decision-making and social-organizational behavior [1],

[3]–[10]. It allows to investigate mutual and causal influences

of the micro-elements on the complex system development

[11], by involving research areas seemingly distant such as

game theory and control theory (see e.g. [12] and [13]).

In this paper, to explain the diverse opinion structures

within that kind of society, we extend the bounded confidence

model of continuous opinion formation introduced in [14], by

introducing Gaussian updating functions [15]. According to

classical bounded confidence models, the agents interact with

each other only when their opinions are close enough. But

in many real world situations, the strength of this interaction

usually depends on the distance between opinions (the lower

the distance, the higher the strength). For this reason we

considered a Gaussian updating function.

We will consider several categories of agents: honest agents,

regular agents, insincere agents, stubborn agents and skilled

(or unskilled) agents. Honest agents truthfully report their

opinion while insincere agents state an opinion that may

be different from their internal belief. Regular agents are

characterized by a common propensity to listen, contrary to

what stubborn agents do because these agents evaluate the

counterpart’s opinion but never approaches it. Skilled and

unskilled agents behave as described in in [4], [5], where the

influence of the competence in the evolution of decisions in

multi-agent systems has been considered.

After describing the model in Section II, in Sections III and

IV we consider some special cases, where the composition

of this artificial society is made of the following classes of

agents:

• honest, regular agents vs one class of stubborn agents;

• honest, regular agents vs two classes of stubborn agents;

• the presence of insincere agents in a population of regular

honest agents;

• skilled regular agents vs unskilled regular ones.

For the sake of simplicity, we will assume that all these subsets

have empty intersections i.e., they form a partition of the set
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of all agents. Moreover, we will focus only on scale free

networks.

In this paper we wish to extend the simulation experiments

performed in [14] by considering different compositions of

the society. Then we perform a social simulation to show

that, in particular, consensus, polarization, extremism or the

emergence of a disordered regime are possible outcomes, even

without explicit introduction of stubborn agents.

II. AGENT-BASED MODEL

We have examined the Bounded Confidence Model studied

in [14] which we are going to describe below.

Let G = {V, E} be a graph that consists of a finite set

of agents i ∈ V = {1, 2, . . . , n} who are defined as nodes

on a network and connected to each other with a finite set

of links E . Links between the agents indicate the communi-

cation channels through which opinions are exchanged and

the influence is imposed. Communication requires a direct

link between the agents (i, j) ∈ E . In this model two agents

always influence each other mutually, and hence we talk about

a bilateral interaction, i.e. (i, j) ∈ E ⇔ (j, i) ∈ E .

In this paper each agent is characterized by the following

triple: a couple of opinions, threshold level and a set of

connections. Then: i =
{(

xi(t), x
R
i (t)

)

, ǫi,Ni

}

. All the

opinions fall in the range [0, 1] and are related to the decisions

to buy a security rather than a different security or other

financial instruments. At each time t, agent i selects a random

counterpart j from his neighborhood Ni = {j ∈ V|(j, i) ∈ E}
and the two share their opinions xi(t) and xj(t). If xR

i (t) is

the opinion that agent i reports to the selected counterpart,

then we have a first distinction between agents:

• xR
i (t) 6= xi(t) in the case of insincere agents;

• xR
i (t) = xi(t) in the case of honest agents.

Hence, according to the notation introduced in [1], this model

is continuous over a bounded interval because

xi(t) ∈ [0, 1] ∀i ∈ V , t > 0 . (1)

It is also bilateral and pairwise.

Threshold levels are assigned to each agent at t = 0, with

ǫi ∈ [0, 1].
Moreover, agents adjust their opinion upon the principle

of bounded confidence. If xR
j (t) is the opinion that agent j

reports to i, and

∆xi(t) = xi(t+ 1)− xi(t)

∆xj(t) = xj(t+ 1)− xj(t) (2)

are the changes of i and j’ opinions, then

∆xi(t) = µχ(−ǫi,ǫi) (di,j(t))
(

xR
j (t)− xi(t)

)

∆xj(t) = µχ(−ǫj ,ǫj) (dj,i(t))
(

xR
i (t)− xj(t)

)

(3)

where µ ∈ [0, 1] is the adoption rate, representing the propor-

tion of counterpart’s opinion an agent integrates into his prior,

di,j(t) = xi(t) − xR
j (t) and χ(−ǫi,ǫi)(x) is the characteristic

function of the interval (−ǫi, ǫi). Then, according to the

notation in [1], this model adopts a non linear updating

function (because of threshold) and the interaction is in general

non symmetric (because ǫi and ǫj could differ).

At this point two other agents classifications naturally

arise. While the first classification concerns the distinction

between xR
i (t) and xi(t), the second and the third concern the

parameters ǫi and µ. The second classification is as follows:

• A stubborn agent i has parameter values of

ǫi = 0 ∨ µ = 0 ; (4)

• A non-stubborn agent i has parameter values of

ǫi > 0 ∧ µ > 0 . (5)

The third classification concerns the definition of regular

agents. The model studied in [14] assumes that threshold

levels are equal across the population of regular agents, i.e.

ǫ1 = ǫ2 = · · · = ǫn.

Lastly, according to the taxonomy introduced in [1], the

updating frequency of this model is periodic because all the

agents change their opinion at each time step.

The results enclosed in [14] concern the following cases:

• honest, regular agents;

• honest, regular agents vs one class of stubborn agents

(the latter with the same opinion xS = 0);

• honest, regular agents vs two classes of stubborn agents

(xS0 = 0 for the first class, xS1 = 1 for the second);

• honest, regular agents vs insincere, regular agents.

Lastly, the authors of [14] compare the results on different

network topologies: complete network, small world network

and the scale free network.

In this paper we wish to extend the simulation experi-

ments performed in [14] by replacing the updating function

χ(−ǫj ,ǫj) (di,j(t)) with

e−(xi(t)−xR
j (t))

2

χ(−ǫi,ǫi) (di,j(t)) ; (6)

Then we examine different compositions of the society:

• we consider honest, regular agents vs one class of stub-

born agents at varying α (the latter with the same opinion

xS = α ∈ [0, 1]);
• we consider honest, regular agents vs two classes of

stubborn agents at varying α and β (xS0 = α for the

first class, xS1 = β for the second);

• we consider the presence of insincere agents in a popu-

lation of regular honest agents;

• we consider skilled regular agents vs unskilled regular

ones.

The latter point is inspired by the results obtained in [4], [5],

where the influence of competence in the evolution of deci-

sions in multi-agent systems has been considered. Moreover,

since we are interested in complex societies in which some

individuals have a large number of connections to other people

— whereas most individuals have just a handful — in this

paper we will focus only on scale free network [2].
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Fig. 1: Time evolution of the opinion dynamics in two selected

runs. (Top plot): µ = 0.3; (bottom plot): µ = 0.1. Here ǫ = 0.3
and n = 500 agents.

III. OPINION DYNAMICS

After defining the model and formulating it in an easily

computable way through the paradigm of array programming,

in this section we apply it to examine the resulting dynamics

of agents, i.e. how their opinion changes over time. We

use a simulation approach to examine the impact of the

interaction coefficients. We developed an R code to perform

these calculations, employed on a Windows machine equipped

with a 2.80GHz Intel(R) Core(TM) i7 CPU and 16.0 GB

RAM. For T = 1000 iterations and n = 500 agents, the

simulations run for around 5 minutes.

Let us define the opinion vector as:

x(t) = (x1(t), . . . , xn(t))
T
.

A. Opinion Formation with Regular, Honest Agents

We start with the simplest case, in which only regular agents

are present. The initial opinion vector x(0) has been drawn

from a standard uniform distribution with [0, 1] support. All

agents have the same threshold level ǫi = ǫ, the same adoption

rate and xR
i (t) = xi(t) for every i (i.e., alla agents are honest).

The plots in Figs. 1 and 2 were obtained by considering the

Gaussian updating function defined in (6). They show that the

process of opinion formation within an integrated society (i.e.

a society in which agents integrate opinions of others into their

own) tends to self-organization and that the outcomes depend

upon the parameter values. In this situation, those agents that

have an initial starting opinion below a certain threshold (from

the top plots of Figs. 1 and 2 it seems to be between 0.5

and 0.6) are rapidly drawn to a low central consensus — and

µ speeds up the convergence to the low central consensus.

Moreover, those agents that instead fall outside the attractor

defined by this threshold, quickly settle down to a larger

Fig. 2: Time evolution of the opinion dynamics in two selected

runs. (Top plot): µ = 0.5; (bottom plot): µ = 0.05. Here

ǫ = 0.3 and n = 500 agents.

Fig. 3: Time evolution of the opinion dynamics in two selected

runs. (Top plot): ǫ = 0.7; (bottom plot): ǫ = 0.9. Here µ = 0.3
and n = 500 agents.

number of extreme opinions in which they are isolated from

the low central consensus. In such a way, the model settles

on a steady pattern and, as µ increases, high extreme opinions

become more and more distinguishable (see top plots of Figs. 1

and 2). Actually, µ represents the proportion of counterpart’s

opinion an agent integrates into its own and the greater its

value, the greater the number of opinions emerging after the

transient.

Fig. 3 underlines this effect by fixing µ and considering

increasing, high values of threshold ǫ. As ǫ rises, high extreme

opinions emerge.
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Fig. 4: The effect of insincere agents. Time evolution of the

opinion dynamics in three selected runs: m = 30 (top plot);

m = 150 (central plot); m = 250 (bottom plot). Here µ = 0.1,

ǫ = 0.3 and n = 500 agents.

B. Opinion Formation with Insincere Agents

In previous section we considered the case xR
i (t) = xi(t),

an assumption that has been relaxed by a number of authors in

the last years (see, among others, [12], [16] in addition to the

aforementioned [14]). In the following we assume that the i-th

insincere agent states an opinion xR
i (t) drawn from a standard

uniform distribution with [0, 1] support, regardless the value

of “true” or “internal” opinion xi(t).

With the inclusion of the insincere agents, the society V
can be subdivided into two subsets, H (honest agents) and

I (insincere agents), such that V = H ∪ I and H ∩ I = ∅.

Anyway all the agents are regular, i.e. ǫ1 = ǫ2 = · · · = ǫn.

We assume a society V of n = 500 agents and that m

of them are insincere. In Fig. 4 we examined the impact

of the total number of insincere agents, m, on the opinion

dynamics. As we can see, the low central consensus of Figs.

1 and 2 disappeared, and a disordered regime emerged in

which opinions are in a constant state of change around a

central opinion. Besides, increasing the willingness to listen

(by increasing µ e.g.) does not seem to improve the picture

(see Fig. 5): indeed, in the presence of insincere agents,

a greater proportion of counterpart’s opinion that an agent

is willing to accept leads to a more pronounced disordered

regime.

Fig. 5: The effect of insincere agents. Time evolution of the

opinion dynamics for µ = 0.5, ǫ = 0.3, m = 250 and n =
500.

C. Opinion Formation with Regular and Stubborn Agents

We now relax the assumption on the regularity of agents.

We assume that the set of agents V is divided into two distinct

groups, R (regular agents) and S (stubborn agents), such that

V = S ∪ R and S ∩ R = ∅.

As defined in Section II, an agent i is called stubborn

if at least one of the two parameter values ǫi, µ is zero.

Stubborn agents can be described as individuals that are biased

towards their initial opinions. They have the ability to exert

their influence onto others but cannot be influenced by the rest

of society.

We assume a society V of n = 500 agents and that m of

them are stubborn. Stubborn agents are assigned same initial

opinion xS = α ∈ [0, 1]. In the following we assume that

stubborn agents cannot be distinguished from other regular

agents. Hence they fall in the neighborhood of regular agents,

which cannot identify and avoid them. In this way stubborn

and regular agents usually interact.

In Fig. 6 we examined the impact of the total number of

stubborn agents, m, on the opinion dynamics for α = 0. In the

plots we can spot the presence of the xi = 0 extreme opinion

of the stubborn agents and, with respect to Figs. 1 and 2, we

notice also that the low central consensus is vanished. More

precisely, when m is not too big (m = 30), the low central

consensus deviates toward the position of stubborn agents but

it disappears when the number of stubborn agents increases.

In Fig. 7, we examined the impact of α on the time evolution

of opinion dynamics, by considering α = 0.3. In this case

we can spot the presence of a consensus on the position of

the stubborn agents that persists with increasing number of

stubborn agents. Then we can argue that a consensus can be

stimulated by stubborn agents, but it resists to their excessive

proliferation if α is sufficiently distant from 0. A similar

consideration can be done for the opposite position, as we

can see in Fig. 8. If α is sufficiently near to 1, the consensus

cannot be reached.

D. Opinion Formation with Two Groups of Stubborn Agents

We now extend the previous section by introducing another

group of stubborn agents. We assume a society V of n =
1000 agents and that 2m of them are stubborn. Two classes

of stubborn agents are assigned to the initial opinions xS1 =
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Fig. 6: The effect of stubborn agents (α = 0). Time evolution

of the opinion dynamics in three selected runs: m = 30 (top

plot); m = 150 (central plot); m = 250 (bottom plot). Here

µ = 0.1, ǫ = 0.3 and n = 500 agents.

α ∈ [0, 1] and xS2 = β ∈ [0, 1], with α 6= β. We assume that

the groups of stubborn agents are equally sized, consisting of

m = 150 stubborn agents each.

In Fig. 9 we fixed β = 1 while α varies from 0 to 0.5.

When α = 0 the extremism prevails and the society ends

in a complete polarisation of the opinion space; see top plot

of Fig. 9, where it is also possible to identify the isolated

position of S2 class of stubborn agents with xS2 = 1. When

α reaches 0.5 (bottom plot of Fig. 9) the majority of regular

agents concentrate in the center, forming a large single opinion

class. If we denote this class by C, we have that for T → +∞,

xi(T ) → 0.5 ∀i ∈ C.

In Fig. 10, we examined the impact of ǫ on the opinion

formation process with regular agents and two groups of

stubborn agents, for which we assumed xS1 = 0 and xS2 = 1.

When ǫ < 0.3 the agents whose opinion is approximately

in the range [0, 0.6] move towards either a central consensus

or the position of S1 (however there is room for alternative

opinions at the upper bound of opinion range). Anyway, as ǫ

rises, the central consensus vanishes and only xS1 = 0 remains

in addition to the high extreme opinions.

IV. SKILLED REGULAR, HONEST AGENTS

Although it is not a strict rule, we have a tendency to

think that more well-educated and competent people are also

Fig. 7: The effect of stubborn agents (α = 0.3). Time evolution

of the opinion dynamics in three selected runs: m = 30 (top

plot); m = 150 (central plot); m = 250 (bottom plot). Here

µ = 0.1, ǫ = 0.3 and n = 500 agents.

Fig. 8: The effect of stubborn agents (α = 0.75). Number

of stubborn agents: m = 150. Here µ = 0.1, ǫ = 0.3 and

n = 500 agents.

those best disposed to dialogue. According to this view of

competence-opinion relation, an agent with an attitude to listen

other people is characterized by a high competence, while an

individual unwilling to listen and dialogue is usually marked

by a lower level of the described trait. Hence we postulate that

the threshold of Gaussian bounded confidence model depends

on the degree of competence, e.g. replacing Eq. (6) with:

e−(xi(t)−xj(t))
2

χ(−ǫi,j ,ǫi,j) (di,j(t)) , (7)

where

ǫi,j =
ǫ

1 + ec(yj−yi)
, c ≫ 1 (8)
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Fig. 9: The effect of two classes of stubborn agents (fixed β =
1). Time evolution of the opinion dynamics in two selected

runs: α = 0 (top plot); α = 0.5 (bottom plot). Here µ = 0.1,

ǫ = 0.3.

and

y = (y1, . . . , yn)
T

is the competence vector, which is supposed to be constant

in time. In this way we are assuming that each agent i is

characterized by two variables, (xi(t), yi). Eq. (8) has been

considered in [5] in order to model the so-called equality bias

effect (see also [4]).

The competence vector y has been drawn from a standard

uniform distribution with: [0, 1] support for the first m agents,

[10, 15] support for the remaining ones. For simplicity, initial

opinion vector x(0) has been arranged in such a way its

elements are in ascending order, i.e. x1(0) < x2(0) < · · · <
xn(0).

In Fig. 11 the system evolves toward two clusters, charac-

terizing two subpopulations with different decisions driven by

the most competent agents (upper part of the plot) and the

less skilled ones (lower part). We can spot the presence of

a region in which regular skilled agents continuously change

their opinions, in the upper part of the plot, and the presence

of a lower consensus for the unskilled people.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

We have built and simulated an Agent-Based Model (ABM)

for opinion dynamics in personal finance decisions. We em-

ployed a Gaussian bounded confidence with pairwise random

meetings to examine the role of different categories of agents

in opinion formation. The model was simulated on a scale free

network. Our findings can be summarized as follows.

• When only regular, honest agents are present those agents

with an initial starting opinion that is below a certain

threshold are rapidly drawn to a low central consensus;

µ speeds up the convergence to the low central consensus.

Moreover, as ǫ rises, high extreme opinions emerge.

Fig. 10: Opinion dynamics with regular agents and two groups

of stubborn agents (α = 0 and β = 1). Selected single runs

for the given parameter values are displayed. From the top to

the bottom, respectively: ǫ = 0.2, ǫ = 0.45, ǫ = 0.55 and

ǫ = 0.7. Parameter µ = 0.3.

• With the inclusion of the insincere agents, the low central

consensus disappeared, and a disordered regime in which

opinions are in a constant state of change around a central

opinion, emerged by varying the number of insincere

agents. Anyway, a greater proportion of counterpart’s

opinion, that an agent integrates into his prior, leads to a

more pronounced disordered regime.

• When we relax the assumption on the regularity of agents,

in presence of stubborn agents, if the number of these

agents is not too big, the low central consensus deviates

toward the position of stubborn agents but it disappears

with the increase of this number.

• When another population of stubborn agents is added, the

extremism prevails and the society ends in a complete

polarisation of the opinion space.
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Fig. 11: Skilled regular agents vs unskilled ones. Time evolu-

tion of the opinion dynamics in three selected runs: m = 50
(top plot); m = 100 (central plot); m = 500 (bottom plot).

Here µ = 0.2, ǫ = 0.4 and n = 1000 agents.

• The system of skilled and unskilled agents evolves toward

two clusters; regular skilled agents continuously change

their opinions, while the presence of a lower consensus

is due to the unskilled people.

Since our ultimate goal is to achieve a better understanding of

human decisions in personal finance in a real world context,

we expect to validate our results concerning a stylized model

of a real society. Future work therefore includes the collection

of large amount of user interaction information from online

social networks, e.g. Twitter, and the analysis of the dynamic

sentiments of users to investigate realistic opinion evolution,

as proposed in [17].
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