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Abstract—Geographical positions are widely employed in many
applications, such as recommendation systems. The wide-spread
use of mobile devices and location-based Internet services (e.g.,
Google Maps) gives the opportunity to collect user locations.
Taking advantage of a multi-agent system, this work proposes an
approach providing users with personalised recommendations of
places of interests, such as libraries, museum, restaurants, etc.
The approach offers a better experience by giving additional
dynamic data (e.g. popularity, as number of users) to a list
of Points Of Interest (POIs), and by exploring their temporal
relations. Indeed, for POIs, which we determine using a DBSCAN
algorithm, we take into account the time slots when the users
visited them, to offer a more advanced service. Finally, the
approach was designed to preserve the privacy of users, i.e. it
does not reveal the position of users.

Index Terms—GPS data, Points Of Interest, Stay Points, Data
analysis, DBSCAN, Privacy

I. INTRODUCTION

Given the extraordinary use of mobile devices and various

technologies tracing one’s geographical position, it becomes

increasingly easier to acquire information relating to users’

GPS in real time. This availability has triggered several studies

based on user positioning, such as the analysis of the flows

of people in the cities [27], or the prediction of people

movements [11]. This has also led to the improvement of

services that identify the points of interest for a city to offer

benefits to users who want to reach a place but they do

not have enough knowledge for an immediate choice. Points

of Interest, commonly abbreviated POIs, are a well-known

concept in literature [2], [15], [31]. A POI is defined as an

object associated with a latitude and a longitude which at least

one person would reasonably be expected to have an interest or

an utility. POI recommendation is one of the services available,

suggesting places for users to visit [17].

This paper proposes an approach for POI recommendation

using collaborating agents and a centralised server. The server

dynamically acquires information coming from agents, which

are held on the users’ mobile device, creating new suggestions

about the next place to visit. Common knowledge is important

because, by definition, each agent can independently infer

information and share it with the group. In our context, an

agent is an application that improves user navigation in a city.

An agent communicates with a centralised server to learn new

information about POIs. Moreover, an agent gives to the server

information about GPS locations for the most visited POIs, and

their most frequent time slots.

POIs are taken from an automatic analysis of a real dataset

offered by the Geolife experiment [33]. The points found by

our analysis were verified by matching the results with Google

maps data. It was confirmed that they correspond to real POIs,

i.e. parks, restaurants, etc., hence validating our approach.

GeoLife GPS trajectories were collected in the framework of

(Microsoft Research Asia) Geolife project by 182 users in a

period of over three years (from April 2007 to August 2012).

A GPS trajectory in such a dataset is represented by a sequence

of time-stamped points, each of which contains the information

of latitude, longitude and altitude [27], [32]–[34].

Thanks to the collaborating agents in our architecture, the

proposed approach provides users with: (i) a list of POIs, and

for each point, (ii) further information based on real time data

gathered from other users, which helps her choose the next

destination with greater awareness. A key objective is to have

this information as close as possible to real time data, and

rank places according to feedback from other users, the most

frequent time slots and the time spent visiting a place by other

users.

The remainder of the paper is as follows. Next section

discusses the related work. Section III describes the proposed

multi-agent system. Section IV details the methodology used

to find POIs and gives the corresponding results. Section V

draws our conclusions.

II. RELATED WORK

This study lies at an intersection of multiple disciplines,

including multi-agent systems, POI recommendation systems,

collaborative filtering and privacy preserving systems.

Multi-agent: several studies have proposed the use of

multi-agent systems (MAS) [8] to a wide range of different

domains. In 1998, a study described a supporting system for

suggesting possible purchases during shopping based on the

GPS position with the use of agents [10]. In general, there

are two main approaches to MAS developments: centralised

policies (CMAS) and decentralised policies (DMAS) [29].

• A centralised approach consists of taking all of the

decisions in one place. In a typical CMAS, a central

server collects all the relevant data that come from

the different actors (that is, agents) and identifies the

decisions for each agent according to the global system
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state. The centralised view of the system can be described

by a multi-agent Markov decision process model, a good

example is presented in [3].

• A decentralised approach consists of making each entity

responsible for its own decision. In a typical DMAS,

an agent cannot see other agents local states and local

actions, and has to decide the next local action on its own.

Thus, each agent has only a partial view of the systems

global state, and different agents have different partial

views. A good example is in [30] whose authors propose

a decentralised multi-agent decision process framework

that provides the basis for a decision-theoretic study of

decentralised policies.

The decentralized architecture has advantages in synchroni-

sation, reusability, scalability, and modularity [12], [14]. How-

ever, the complexity of decentralised systems is greater than

that of centralised ones. Although decentralisation shows ob-

vious advantages, decentralisation also has its own drawbacks,

including that agents cannot predict the group behavior based

only on the available local information, possible instability,

and sub-optimal decisions.

Due to the importance of total knowledge, our choice fell

into the first category. Moreover, the centralised server is able

to filter information offering advices to users without sending

their sensitive data; this preserves the user’s privacy.

POI: Researchers have ventured into several studies con-

cerning the analysis of user trajectories. This interest is driven

by the possibilities it offers for marketing and the many

services that can be offered to users. Since 2005 researchers

have faced the problem of analysing trajectories according to

space-time. The first studies on the analysis of trajectories offer

an overview on how it is possible to analyse the trajectories

starting from a set of POIs [15]. Over the years, these

analyses have fed other different studies on trajectories, such as

calculating the probability of moving from one POI to another,

using, for example, the Markov chains [11], [18] and then

creating methods that predict the next movements of individual

users from the analysis of their POIs.

Collaborative Filtering: Collaborative filtering (CF) tech-

niques are widely adopted for recommendation systems and

many CF recommendation methods have been proposed, as

e.g. in [19]. The CF approach is one of the approaches

for creating recommendation systems. It creates suggestions

using a similarity metric among users. The assumption is

that similar users probably have similar tastes. The concept

of CF was introduced in 1992 by the Xerox research staff

within the Tapestry project, a system that allowed users

to trace documents based on comments left by other users

[13]. Later, several ratings-based automated recommendation

systems were developed, e.g. the GroupLens research system

[24] provides a pseudonymous CF solution for Usenet news

and movies. Other technologies have also been applied to

recommendation systems as Bayesian networks [4], [20], [25]

and clustering [7], [28].

Privacy Preserving: CF techniques have been very success-

ful in e-commerce and in direct recommendation applications.

Fig. 1. Schematic of Centralised Server. Each device identifies an agent.

They are widely used and very useful but they often fail to

protect users privacy, hence they have some disadvantages. In

[5], [6] the privacy breaches are tackled with cryptographic

systems, which can reduce the risk for the user. In other

research works, e.g. in [22], each user first disguises her private

data, and then sends it to the data collector. Therefore, a

Randomised Perturbation (RP) technique is used to disguise

private data [1]. Moreover, anonymisation techniques can be

used, however these introduce some attack problem, making

datasets not very useful [23], [26].

Unlike other approaches, our proposal includes a solution

to identify POIs through the use of the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) algo-

rithm. Then, collaboration filtering is used with the dynamic

calculation of ratings based on user experiences. For such a

rating we use spatio-temporal variables offering a dynamic and

realistic outcomes. This is done by safeguarding the privacy of

users because the centralised server only tracks the movements

near the POIs. Furthermore, it is important to offer a service

that makes the user and her privacy more secure. To do this we

have users sharing their position only if they are close enough

to a POI and this information is manipulated to ensure user

safety. E.g. the position of a user within the radius of a POI

will be saved in our central server with an error rate of about

300 meters in order to preserve the user’s privacy. This does

not corrupt our system data and better protects users.

III. PROPOSED MULTI-AGENT SYSTEM

In our software architecture, a centralised server gathers and

analyses the data coming from several agents, with the aim to

offer users suggestions and some real time data on POIs to

visit. Moreover, each user (with reference to an application)

has been modeled as an independent agent that communicates

with the centralised server. Therefore, POIs recommendation

is based on a multi-agent system performing the following

steps (see Figure 1).
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Step 1: the server sends to agents the list of known POIs for

a city. Each POI has been previously determined by

the DBSCAN algorithm [9] discussed in section IV.

Each POI has the following information:

• the most visited time slots;

• the number of agents present on the site (POI) in

real time;

• a set of site feedbacks, created by a sentiment

analysis algorithm that analyses the comments

released by users;

• a rating estimated from previous information that

recommends (or dismiss) the POI to the user.

Step 2: thanks to the rating, the agent chooses a place of

interest which the user can visit. As soon as the GPS

coordinates are in a range of less than one kilometer

from the coordinates of a POI, then the position will

be sent to the centralised server, which can determine

the number of users present. The GPS coordinates are

only sent when in controlled areas in order to preserve

user privacy.

Step 3: once the visit is over, the user can use the agent to

issue comments on the place visited. This information

will be sent to the server, and there it will be analysed

using sentiment analysis algorithms [16], which in

turn lets the server determine a score that identifies

whether the POI was satisfactory for the user.

Step 4: the agent will again receive the list of POIs by adding

information for a specific POI related to the site

already visited based on the experiences of previous

users.

Such a cooperation can generate a benefit for groups of

people who share the same interests (tourists, students, etc.).

Thanks to the exchange of information between agents and

servers, it is possible to define the rules for our recommenda-

tion system based on POIs (see Figure 2).

In short, the approach presented in this article finds POIs

(starting from a set of user trajectories) and uses information

exchange with a centralised server to improve city services

and user knowledge by creating a content filtering software

that creates customised recommendations specific to the user

to help him in his choices.

Figure 3 shows a list of POIs nearby to the user. Then, for

each POI the user can access the ratings gathered from to other

people comments, as well as give her comments. As mentioned

in Step 1, POIs are found by the implemented algorithm

discussed in the next section. We can see, in Figure 3, four

nearby points labeled as POIs:

• Chaofan Weiye Kejiao Bookstore with coordinates:

39.98405510061326, 116.3204636235443;

• Haidian Stadium with coordinates: 39.987213527969644,

116.30248430595732;

• Beijing Rural Commercial Bank Zhongguancun

Branchcon with coordinates: 39.980016801082485,

116.30856309688643;

Fig. 2. Schematic of POI recommendation. Each device sends its own
information to a centralised server which processes them and suggests a new
POI for agents. Using the experiences of users based on time, duration, their
personal feedback and the next goal, the rating is calculated that suggests a
next goal to the leading agent.

Fig. 3. User is presented with a list of POIs and associated dynamic data.

• Beihang University with coordinates:

39.98011363182701, 116.34218061609567.

Another nearby POI has been associated with a parking area

(however, it is not listed in Figure 3):

• Satellite Building Parking Lot with coordinates:

39.97673497237701, 116.33137904408086.

For validating the results of our algorithm finding POIs,

each discovered site was checked against Google Maps.

Hence, the above list consists of actual sites, being POIs

according to Google Maps, which are within a radius of 100

meters from the POIs found by our algorithm.

IV. METHODOLOGY FOR DETERMINING POIS

We have acquired the data from the database Geolife of

Microsoft Research Asia, that contains the routes of 182 users

and it reports, at regular intervals of time, each point in GPS

coordinates: longitude, latitude, altitude with corresponding
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Fig. 4. Plot of clean trajectories in the selected Beijing metropolitan area.
Axis: X=longitude, Y=latitude.

date and time. This GPS trajectory dataset contains about

18 thousand trajectories with a total distance of 1,292,951

kilometers and a total duration of 50,176 hours. Most of the

trajectories were logged in a dense representation, e.g. every

1∼5 seconds or every 5∼10 meters per point.

The distance d(pi, pj) between point pi and point pj , when

their coordinates are given by latitude (lt) and longitude (lg),
is defined as follows by the Haversine formula. Such a formula

provides the distance between two points laying on a sphere

surface given their latitude and longitude.

d(pi, pj) =

2R arcsin

√

sin2
lti − ltj

2
+ cos lti cos ltj sin

2
lgi − lgj

2
(1)

The first step in our analysis was the data cleaning of the

trajectories, based on the speed of their GPS points, with the

goal to remove inconsistent data. Considering a trajectory, a

sequence of GPS points ordered by the time of recording,

we computed the velocity of a point as the ratio of the

distance from it and its consecutive (applying the Haversine

formula, Equation 1) and the difference of time recording

them. If this velocity exceeds 100 m/s, the second point was

deleted. Another case is when the velocity appeared in the

form 0/0, this noise was caused by the GPS device that did

not run properly. For our research we have chosen the range of

longitude and latitude of [116.1, 39.7]×[116.7, 40.13] (Beijing

metropolitan area of 51 kilometers per 48 kilometers, see

Figure 4).

By plotting the trajectories we can see a second problem:

some paths appear broken (not continuous) probably due to the

presence of buildings or tunnels that disturb the GPS signal (in

some areas the recording is lost). The filtered data, formed by

18,021,911 GPS points, were then grouped into 6 time slots

of 4 hours each: Slot1 [00:00:00, 03:59:59], Slot2 [04:00:00,

07:59:59] and so on, in order to analyse the traffic in Beijing

during different time slots. Information about these slots are

TABLE I
INFORMATION ABOUT DIFFERENT TIME SLOTS

Time Total number of
Slot GPS Points Trajectories Users

1 3978234 5878 156

2 3729429 4302 150

3 4976744 6613 166

4 3107232 4702 168

5 889076 1505 114

6 1341196 2537 129

Fig. 5. Map with the trajectories of Slot 3.

shown in Table I. For time Slot 3’s trajectory data we have

drawn the GPS data on the map to get a rough idea of the

users’ activity in this period of time in this area (see Figure 5).

For every slot of time, after grouping trajectories by users,

the second step of our work was the StayPoints (SPs) detection

[21]. When we find a region in which a user has spent a con-

siderable time on its surroundings, the centroid (the mean of

coordinates of the points belong to it) of this cluster represents

an SP. The algorithm that we implemented for the SP detection

needs as input a TimeThreshold and a DistanceThreshold. If

an individual stays over 20 minutes (TimeThreshold) within a

distance of 200 meters (DistanceThreshold), a SP is detected.

The execution time of the SPs detection algorithm (see 1 for

its psuedo-code) for 100 trajectories is about 16 minutes.

We obtained many SPs for every time slot, as shown in

Table II. For the Slot 3’s trajectories the plot of their SPs is

in Figure 6. Then, we focused on POIs that cluster together

SPs of different users (at least 10), and checked if, in different

time slots, the users that previously had a common POI move

together to another one. We applied DBSCAN to the SPs

obtained as it works well with large geographical dataset and

likewise can be adapted for any distance functions. DBSCAN

(Density-Based Spatial Clustering of Applications with Noise)

is a popular unsupervised learning method, proposed in 1996

[9], has been used in model building and machine learning

algorithms.

The advantages of DBSCAN are as follows.

• It is very good for separating clusters of high density
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Data: A trajectory T={p i,p i+1,. . .}, a distance

threshold (DistThr) and time span threshold

(TimeThr)

Result: A set of stay points SP ={}
i=0, cardinality traj= |T |
while i < cardinality traj do

j = i+ 1;

while j < cardinality traj do

dist=distance ( p i, p j );
if dist > DistThr then

δtime=time p j−time p i;

if δtime >TimeThr then

S.coords=MeanCoords({p k|i < k < j});
S.arrive time=time p i;

S.left time=time p j;

SP.append(S);

break;

end

end

j = j + 1;

end

i = j;

end

return SP

Algorithm 1: Pseudocode for SPs detection

Fig. 6. StayPoints of the trajectories on Slot3.

versus clusters of low density within a given dataset;

• unlike K-means, DBSCAN does not require the user to

specify the number of clusters to be generated;

• DBSCAN can find any shape of clusters, i.e. the cluster

doesnt have to be circular;

• DBSCAN can identify outliers.

The goal of this algorithm is to identify dense regions,

which can be measured by the number of objects close to

a given point. Two important parameters are required for

DBSCAN: Epsilon (“Eps”) and minimum points (“MinPts”).

The parameter Eps defines the radius of neighbourhood around

Fig. 7. POIs obtained for the trajectories on time Slot 3.

a point x. It is called the EPS-neighbourhood of x. The

parameter MinPts is the minimum number of neighbours

within “Eps” radius.

For our data, the clustering algorithm DBSCAN has de-

termined clusters for all SPs. We set MinPts equal to 10 or

15 and Eps from a minimum of 200 meters to a maximum of

400 meters. We obtained on average 20 clusters for every time

slot (see Table II) that represent significant places for users,

i.e. the centroids of these clusters are POIs. E.g. when we

considered time Slot 3 and we set that the minimum number

of SPs necessary to make a cluster as 15 and the Eps equal

to 200 meters, we obtained 29 clusters, hence 29 POIs (see

Figure 7).

The last step of our work was to filter the POIs detected

according to popularity. We considered only POIs with a

number of users greater than 10 (called Popular POIs), in

order to understand users interaction and similarity. E.g., for

time Slot 3 we obtained 9 POIs shared by a minimum of 11

individuals to a maximum of 80 individuals (see Figure 8).

Our experiments have shown that in different time slots a

set of different individuals move together to the same POIs,

like parks, departments of Universities, shopping centres,

hostels, parking spaces, libraries, stadiums, banks, Metro and

bus stops. This suggests us a similarity between users. For

detected POIs we can further say that our experiments show a

correlation of people moving from one POI to another: users

remain in these areas in certain common time slots.

In our experiments the execution time of DBSCAN on the 6

time slots ranges from a minimum of 240 ms to a maximum of

1.44 s. Our implementation uses Python 3, and the experiments

were run in a host having an Intel Xeon CPU E5-2620 v3

2.40GHz, with RAM 32, 0 GB.

V. DISCUSSION

Thanks to the discussed algorithm, it is possible to find a

set of POIs based on gathered trajectories. In our experiments,

such data were gathered by Geolife experiments, and the set
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Fig. 8. POIs with a number of users greater than 10 for the trajectories of
time Slot 3.

TABLE II
RESULTS ABOUT SPS AND POIS OBTAINED

Time Total number of DBSCAN

Slot SPs Users POIs Popular POIs Eps(km) MinPts

1 2966 122 18 8 0.3 15

2 3772 124 27 8 0.25 15

3 4146 145 29 9 0.2 15

4 1899 130 24 6 0.2 15

5 751 84 13 4 0.4 10

6 545 84 9 1 0.4 10

of POIs were used as a knowledge base for our recommen-

dation system. The large amount of data was instrumental for

validating our approach.

For the above proposed multi-agent system, a setting in our

agent application on the smartphone allows collecting GPS

coordinates. This is useful for a geographical location were

there are no previously gathered trajectories. Then, we can

continually extract the trajectories of users and updating both

suggestions for users and POIs recommendation.

Using such a setting, each agent releases to the server the

GPS coordinates and its identity periodically, however to take

into account privacy concerns, the user identity is masked,

and the GPS location is randomly moved by at maximum 100

meters. Then, we obtain a trajectory which is not very precise,

however still useful.

As trajectories are dynamically gathered, also POIs are

determined dynamically, as data arrive to the server. This is

possible since our DBSCAN implementation performs well.

VI. CONCLUSIONS

Nowadays, thousands of users use their mobile device to

gain access to new information in relation to their geographical

location. This innovation has given rise to new services, such

as reading GPS coordinates in order to receive information on

nearby Points Of Interest (POIs). In this paper we used a multi-

agent system for creating recommendations for POIs. The

POIs were created from a dataset supplied to us by the Geolife

project. From our results we can conclude the following.

• It is possible to find the POIs from a set of trajectories.

We have identified about 36 POIs by analysing 182

trajectories. In addition, the Popular POIs, related to more

than 10 users, correspond to 30% of the POIs previously

found;

• it has been verified that the POIs correspond to well-

known places, e.g. restaurants, parks, etc;

• the visiting hours of the POIs are uniform, therefore each

POI has a time slot preferred by users. In general, the

most frequent time slot is between 08:00 and 12:00;

• it has been shown that there is a correlation of people

moving from one POI to another in the city.

Thanks to the points listed above, the proposed multi-agent

system, exchanging information with the centralised server,

has been used for the creation of a recommendation tool for

POIs.
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