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Abstract—In the era of digital revolution, individual lives
are going to cross and interconnect ubiquitous online domains
and offline reality based on smart technologies—discovering,
storing, processing, learning, analysing, and predicting from huge
amounts of environment-collected data. Sub-symbolic techniques,
such as deep learning, play a key role there, yet they are often
built as black boxes, which are not inspectable, interpretable,
explainable. New research efforts towards explainable artificial
intelligence (XAI) are trying to address those issues, with the final
purpose of building understandable, accountable, and trustable AI
systems—still, seemingly with a long way to go.

Generally speaking, while we fully understand and appreciate
the power of sub-symbolic approaches, we believe that symbolic
approaches to machine intelligence, once properly combined with
sub-symbolic ones, have a critical role to play in order to achieve
key properties of XAI such as observability, interpretability,
explainability, accountability, and trustability. In this paper we
describe an example of integration of symbolic and sub-symbolic
techniques. First, we sketch a general framework where symbolic
and sub-symbolic approaches could fruitfully combine to produce
intelligent behaviour in AI applications. Then, we focus in
particular on the goal of building a narrative explanation for ML
predictors: to this end, we exploit the logical knowledge obtained
translating decision tree predictors into logical programs.

Index Terms—XAI, logic programming, machine learning,
symbolic vs. sub-symbolic

I. INTRODUCTION

Artificial intelligence (AI), machine learning (ML), and

deep learning (DL) are nowadays intertwined with a growing

number of aspects of people’s every day life [1], [2]. In fact,

more and more decisions are delegated by humans to software

agents whose intelligent behaviour is not the result of some

skilled developer endowing it with some clever code, but rather

the consequence the agents’ capability of learning, planning,

or inferring what to do from data—or, roughly speaking, their

artificial intelligence.

For instance, banks and insurance companies have adopted

ML and statistical methods since decades, in order to decide

whether or not to grant a loan to a given customer, or to

estimate the most profitable insurance plan for her. Similarly,

ML has been employed in order to help doctors with their

diagnoses, provided that a set of symptoms has been properly

identified for a given patient; whereas statistical and proba-

bilistic inference have been employed to test drugs, in order

to prove them effective or safe. Furthermore, virtually any

person, as a consumer of services and goods, lets a number

of ML-trained agents decide or suggest what to buy, like, or

read—as any consumer is likely to be profiled by most of the

companies and organisations he/she has interacted.

In spite of the large adoption, intelligent agents whose

behaviour is the result of automatic synthesis / learning proce-

dures are difficult to trust for most people—in particular when

people are not expert in the fields of computer or data sciences,

AI, statistics. This is especially true for agents leveraging on

machine or deep learning based techniques, often producing

models whose internal behaviour is opaque and hard to explain

for their developers too.

There, agents often tend to accumulate their knowledge into

black-box predictive models which are trained through ML or

DL. Broadly speaking, the “black-box” expression is used to

refer to models where knowledge is not explicitly represented

– such as in neural networks, support vector machines, or

Hidden Markov Chains –, and it is therefore difficult, for

humans, to understand what a black-box actually knows, or

what leads to a particular decision.

Such difficulty in understanding black-boxes content and

functioning is what prevents people from fully trusting –

and thus accepting – them. In several contexts, such as the

medical or financial ones, it is not sufficient for intelligent

agents to output bare decisions, since, for instance, ethical

and legal issues may arise. An explanation for each decision

is therefore often desirable, preferable, or even required. For

instance, applications dealing with personal data need to face

the challenges of achieving valid consent for data use and

protecting confidentiality, and addressing threats to privacy,

data protection, and copyright. Those issues are particularly

challenging in critical application scenarios such as health-

care, often involving the use of image (i.e., identifiable) data

from children. While issues of data ownership, data security,

and data access are important, other ethical issues may arise:

since the diagnostic accuracy and value of the result is

determined by the amount and quality of data used in model

training, the first potential concern is to avoid algorithmic

bias, which may lead to social discrimination and result in

inequitable access to healthcare, just related to the provenience

of the collected data [1], [3].

Furthermore, it may happen that black-boxes silently learn

something wrong (e.g., Google image recognition software

that classified black people as gorillas [4], [5]), or something

right, but in a biased way (like the “background bias” problem,

causing for instance husky images to be recognised only
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because of their snowy background [6]). In such situations,

explanations are expected to provide useful insights for black-

box developers.

To tackle such trust issues, the eXplainable Artificial In-

telligence (XAI) research field has recently emerged, and

a comprehensive research road map has been proposed by

DARPA [7], targeting the themes of explainability and in-

terpretability in AI – and in particular ML – as a challenge

of paramount importance in a world where AI is becoming

more and more pervasively adopted. There, DARPA reviews

the main approaches to make AI either more interpretable or a

posteriori explainable, it categorise the many currently avail-

able techniques aimed at building meaningful interpretations

or explanations for black-box models, it summarises the open

problems and challenges, and it provides a successful reference

framework for the researchers interested in the field.

The main idea behind XAI is to employ explanators [8]

to provide easy to understand insights for a given black-box

and its particular decisions. An explanator is any procedure

producing a meaningful explanation for some human observer,

by leveraging on any combination of (i) the black-box, (ii) its

input data, or (iii) its decisions or predictions. To this end,

we believe that symbolic approaches to machine intelligence

– properly integrated with sub-symbolic approaches – may

have a role to play in order to achieve key properties such

as interpretability, observability, explainability, accountability,

and trustability.

In this paper we focus on the specific problem of building a

narrative explanation of ML techniques—thus positioning our

contribution into the specific Narrative Generation DARPA

category [7]. In particular, we first show a general framework

where symbolic and sub-symbolic techniques are fruitfully

combined to produce intelligent behaviour in AI applications.

Then, we focus on the translation of ML predictors into logical

knowledge with the aim to (i) infer new knowledge, (ii) reason

and act accordingly, and (iii) build the narrative explanation

of a decision output (or prediction).

To this end, we propose an automatic procedure aimed at

translating a ML predictor – here in particular we consider the

case of decision trees (DT) – into logical knowledge. We argue

that, when the source DT has been trained over a set of real

data in order to produce a predictor, the corresponding logic

program may be employed to produce a narrative explanation

for any given prediction.

Despite being mostly focused on DT, our proposal represent

a first step towards a more general approach. In fact, DT have

been proposed as a general means for explaining the behaviour

of virtually any black-box model [9], [10].

Accordingly, the reminder of this paper is organised as

follows. Section II briefly recalls the ML concepts and termi-

nology used in the paper as well as the main research efforts in

the field. Then Section III introduces our vision of a framework

for the integration of symbolic and sub-symbolic techniques.

Finally, Section IV discusses early experiments alongside the

prototype implementation.

II. CONTEXT

Machine learning often produces black-box predictors based

on opaque models, thus hiding their internal logic to the user.

This hinders explainability, and represents both a practical and

an ethical issue for ML. As a result, many research approaches

in the XAI field aim at overcoming that crucial weakness,

sometimes at the cost of trading off accuracy against inter-

pretability. So, we first (Subsection II-B) summarise the state

of the art as well as the goal of XAI, then (Subsection II-A)

introduce some background notions to define the terminology

adopted.

A. Background

Since several practical AI problems – such as image recog-

nition, financial and medical decision support systems – can

be reduced to supervised ML – which can be further grouped

in terms of either classification or regression problems [11],

[12] –, in the reminder of this paper we focus on this set of

ML problems.

In those cases, a learning algorithm is commonly exploited

to estimate the specific nature and shape of an unknown

prediction function (or predictor) p∗ : X → Y , mapping

each input vector x from a given input space X into a

prediction from a given output space Y . To do so, the learning

algorithm takes into account a number N of examples in the

form (xi,yi) such that xi ∈ X ⊂ X , yi ∈ Y ⊂ Y , and

|X| ≡ |Y | ≡ N . There, each xi represents an instance of the

input data for which the expected output value yi is known

or has already been estimated. Such sorts of ML problems

are said to be “supervised” because the expected targets

Y are available, whereas they are said to be “regression”

problems if Y consists of continuous or numerable values, or

“classification” problems if Y consists of categorical values.

The learning algorithm usually assumes p∗ ∈ P , for a given

family P of predictors—meaning that the unknown prediction

function exists, and it is from P . The algorithm then trains a

predictor p̂ ∈ P such that the value of a given loss function

λ : Y×Y → R – computing the discrepancy among predicted

and expected outputs – is minimal or reasonably low—i.e.:

p̂ = argmin
p∈P

{

∑N

i=1
λ(yi, p(xi))

}

.

Depending on the predictor family P of choice, the nature

of the learning algorithm and the admissible shapes of p̂ may

vary dramatically, as well as the their interpretability. Even if

the interpretability of predictor families is not a well-defined

feature, most authors agree on the fact that some predictor

families are more interpretable than others [13]—in the sense

that it is easier for humans to understand the functioning and

the predictions of the former ones. For instance, it is widely

acknowledged that generalized linear models (GLM) are more

interpretable than neural networks (NN), whereas decision

trees (DT) [14] are among the most interpretable families

[8]. DT can be considered more interpretable due to their

construction: that is, recursively partitioning the input space

X through a number of splits or decisions based on the input

data X , in such a way that the prediction in each partition
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is constant, and the loss w.r.t. Y is low, while keeping the

amount of partitions low as well. Without affecting generality,

we focus on the case of mono-dimensional classification –

thus we write y instead of y –, since other cases can be easily

reduced to this one. We further assume the input space X is

N -dimensional, and let nj be the meta-variable representing

the name of the jth dimension of X .

Under such hypotheses, a DT predictor pT ∈ Pdt assumes

a binary tree T exists such that each node is either

• a leaf, carrying and representing a prediction, i.e. and

assignment for y,

• an internal node, carrying and representing a decision, i.e.

a formula in the form (nj ≤ c)—where c is a constant

threshold chosen by the learning algorithm.

Each node ν inherits a partition Xν ⊆ X of the original input

data, from its parent. Since the root node ν0 has no parent, it

is assigned to the whole set of input data—i.e. Xν0
≡ X . The

decision carried by each internal node splits its Xν into two

disjoint parts – XL
ν and XR

ν – along the jth dimension of X .

In particular, XL
ν contains all the residual xi ∈ Xν such that

(xj
i ≤ cν) – which are inherited by ν left child –, whereas XR

ν

contains all the residual xi ∈ Xν such that x
j
i > cν—which

are inherited by by ν right child. A leaf node l is created

whenever a sequence of splits (i.e., a path from the tree root

to the leaf parent) leads to a partition Xl which is (almost)

pure—roughly, meaning that Xl (mostly) contains input data

xi for which the expected output is the same yl. In this case,

we say that the prediction carried by l is yl. Assuming such a

tree T exists, in order to classify some input data x ∈ X , the

predictor pT simply navigates the path P = (ν0, ν1, ν2, . . . , l)
of T such that all decisions νk are matched by x, then it

outputs yl.

B. XAI: The need for explanation and interpretable models

Since the adoption of interpretable predictors usually comes

at cost of a lower potential in terms of predictive performance,

explanations are the newly preferred way for providing under-

standable predictions without necessarily sacrificing accuracy.

The idea, and the main goal of XAI is to create intelligible

and understandable explanations for uninterpretable predictors

without replacing or modifying them. Thus explanations are

built through a number of heterogeneous techniques, broadly

referred to as explanators [8]—just to cite some, decision rules

[15], feature importance [16], saliency masks [17], sensitivity

analysis [18], etc.

The state of the art for explainability currently recognises

two main sorts of explanators, namely, either local or global.

While local explanators attempt to provide an explanation for

each particular prediction of a given predictor p, the global

ones attempt to provide an explanation for the predictor p as

a whole. In other words, local explanators provide an answer

to the question “why does p predict y for the input x?” –

such as the LIME technique presented in [6] –, whereas global

explanators provide an answer to the question “how does p

build its predictions?”—such as decision rules.

In spite of the many approaches proposed to explain black

boxes, some important scientific questions still remain unan-

swered. One of the most important open problems is that,

until now, there is no agreement on what an explanation is.

Indeed, some approaches adopt as explanation a set of rules,

others a decision tree, others rely on visualisation techniques

[8]. Moreover, recent works highlight the importance for an

explanation to guarantee some properties, e.g., soundness,

completeness, and compactness [8].

This is why our proposal aims at integrating sub-symbolic

approaches with symbolic ones. To this end, DT can be

exploited as an effective bridge between the symbolic and

sub-symbolic realms. In fact, DT can be easily (i) built from

an existing sub-symbolic predictor, and (ii) translated into

symbolic knowledge – as it is shown in the reminder of this

paper – thanks to their rule-based nature.

Decision trees are an interpretable family of predictors that

have been proposed as a global means for explaining other,

less interpretable, sorts of black-box predictors [9], [10]—

such as neural networks [19]. The main idea behind such an

approach is to build a DT approximating the behaviour of a

given predictor, possibly, by only considering its inputs and its

outputs. Such approximation essentially trades off predictive

performance with interpretability. In fact, the structure of such

a DT would then be used to provide useful insights concerning

the original predictor inner functioning.

Describing the particular means for extracting DT from

black-boxes is outside the scope of this paper. Given the vast

literature on the topic – e.g., consider reading [8], [20] for

an overview or [19], [21], [22] for a practical examples – we

simply assume an extracted DT is available and it has an high

fidelity—meaning that the loss in terms of predictive perfor-

mance is low, w.r.t. the original black-box. In fact, whereas

there exist several works focussing on how to synthesise DT

out of black-box predictors, no attention is paid to merging

them with symbolic approaches, which can play a key role in

enhancing the interpretability and explainability of the system.

In this paper we focus on such a matter.

We believe that a logical representation of DT may be

interesting and enabling for further research directions. For

instance, as far as explainability is concerned, we show how

logic-translated DT can be used to both navigate the knowl-

edge stored within the corresponding predictors – thus acting

as global explanators –, and produce narrative explanations

for their predictions—thus acting as local explanators. Note

that the restriction on the DT representation makes it easy to

map DT onto logical clauses, since DT are finite and with a

limited expressivity (if / else conditions).

III. VISION

Many approaches to ML nowadays are increasingly fo-

cussing on sub-symbolic approaches – such as deep learning

with neural networks [23] – and on how to make them

work on the large scale. As promising as this may look –

with the premise of potentially minimizing the engineering

efforts needed – it is increasingly acknowledged that those
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Fig. 1. ML to LP and back: framework architecture.

approaches do not cope well with the socio-technical nature of

the systems they are exploited in, which often demand a degree

of interpretability, observability, explainability, accountability,

and trustability they just cannot deliver.

To this end, since logic-based approaches already have

a well-understood role in building intelligent (multi-agent)

systems [24], declarative, logic-based approaches have the

potential to represent an alternative way of delivering sym-

bolic intelligence, complementary to the one pursued by

sub-symbolic approaches. In fact, declarative and logic-based

technologies much better address the aforementioned socio-

technical issues, in particular when exploiting their inferential

capabilities—e.g., [25].

The potential of logic-based models and their extensions is

first of all related to their declarativeness as well as to explicit

knowledge representation, enabling knowledge sharing at the

most adequate level of abstraction, while supporting modu-

larity and separation of concerns [26]—which are especially

valuable in open and dynamic distributed systems. As a further

element, LP sound and complete semantics straightforwardly

enables intelligent agents to reason and infer new information

in a sound and complete way.

Another relevant point is that LP has been already proven to

work well both as a knowledge representation language and as

an inference platform for rational agents [27], [28]. The latter

usually may interact with an external environment by means

of a suitably defined observe–think–act cycle.

Accordingly to this vision, here we propose an integrated

framework of hybrid reasoning – where symbolic and sub-

symbolic techniques fruitfully combine to produce intelligent

behaviour.

Indeed, looking in depth at pervasive socio-technical sys-

tems, it turns out that agents (either human or software)

effortlessly undertake a complex decision making process in

almost all situations, which seamlessly integrates perceptions

(and actions) at two different scales—the macro and the micro:

• at the macro scale, by considering the knowledge of the

global system, rules of general validity and concerning

the most likely situation;

• at the micro scale, we modulate such decision by con-

sidering all the contingencies arising during the precise

situation – such as, for instance, a last minute inconve-

nient, etc. As a consequence, we adapt the original plan

to the local perceptions we gather while enacting it.

In order to better illustrate the above remarks, one may

consider as a concrete example the case of a disease diagnosis

in a hospital, where the notions of micro and macro scale w.r.t.

to the nature of algorithms and techniques can be declined as

follows:

• at the macro level, the main concerns regard a mid/long

term horizon and focus the issue of analysis of high-

dimensional and multimodal biomedical data train algo-

rithms to recognize cancerous tissue at a level comparable

to trained physicians—there including, for instance, rep-

resentation and recognition of patterns and sequences in

the input data. With such a sort of goals to pursue, it

is not surprising that most IT tools supporting decision

making are based on sub-symbolic approaches such as

deep learning, Bayesian networks, machine vision, latent

Dirichlet analysis, and in general any kind of statistical

approach to ML [29], [30], [31]

• at the micro level, the main concerns regard instead the

short term horizon, and mostly focus on the specific

problem of the patient, there including a few highly-

intertwined sub-problems—e.g. specific symptom or sit-

uation, ongoing epidemic in that hospital or place that

carries the same symptoms. Although sub-symbolic ap-

proaches can still be used, symbolic ones such as fuzzy

logic, specialized level (white box) learning instead of

higher-level learning, symbolic time series are most com-

mon [29], [32], [33]

Generally speaking, we believe the computational intelligence

accounts for this two kind of rules: general rules whose

validity is essentially unconstrained (speed limits, right of way,
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etc.) which represent the commonsense knowledge necessary

to inhabit the environment and specific rules, with a validity

bound in space and time (school hours and days, open-air

market hours and days, unpredictable events such as incoming

emergency vehicles the need to gather at an evacuation assem-

bly point), which represent the contextual or expert knowledge

necessary to deal with transient, unforeseen, and unpredictable

situations.

That is why in the framework envisioned here we plan to

combine sub-symbolic techniques with symbolic ones (LP in

particular): sub-symbolic techniques are exploited for training

the system and learn new rules (commonsense knowledge),

rules are translated into logical knowledge (contextual / expert

knowledge), and the two approaches interact and interleave

to share knowledge and learn from each other in a coherent

framework.

The framework architecture, depicted in Fig. 1, shows the

embodiment of the vision discussed above: sensor data and

dataset are translated into the logic knowledge base. In partic-

ular the Machine Learning Interface allows for the interaction

of different kinds of ML algorithms with the framework: a

standard interface is proposed in order to combine the specific

features of each algorithm in a coherent manner. ML to Prolog

is the core of the translation into logical knowledge, while the

Prolog to ML returns insights of the logical KB to the ML

predictor—for instance, new inferred rules, or rules learned

by a specific situation. The blocks on the left (Knowledge

Base, Demonstration) reflect the standard architecture of a

Prolog engine. Overall, the framework looks general enough

to account for the variety of ML techniques and algorithms,

and also to ensure the consistency between symbolic and

sub-symbolic approaches. Finally, the block Prolog to ML

currently expresses our vision, and is obviously subject of

future research.

IV. EARLY EXPERIMENTS

The first prototype we design and implement enables the

construction of a narrative explanation of the prediction gener-

ated exploiting the ML technique, thus achieving interpretabil-

ity and making a step towards explainability.

With respect to Fig. 1, we experiment the predictor trans-

lation into logical rules, provided by the ML to Prolog. The

experimental results refer to the case in which the predictor

corresponds to a decision tree or to the corresponding crisp

rules [34]. The conversion generates a Prolog predicate for

each decision taken by the predictor: inside the predicate, a

term for each input/output attribute is instantiated with the

values of the leaf of the decision tree. A rule is generated

for each leaf in the tree: between the other advantages, this

allows for a very compact representation, easy to handle and

interoperate with.

For a concrete example, let us consider the “Acute in-

flammations data set”1 [35] supplying data to perform the

presumptive diagnosis of two diseases of urinary system: the

1http://archive.ics.uci.edu/ml/datasets/acute+inflammations

TABLE I
ACUTE INFLAMMATIONS DATA SET ATTRIBUTES

Attribute Short name Values

Temperature of patient temp 35
◦C ÷ 42

◦C

Occurrence of nausea nausea {yes, no}
Lumbar pain lumbar {yes, no}

Urine pushing urine {yes, no}
Micturition pains micturition {yes, no}

Burning of urethra urethra {yes, no}

Output attributes

Inflammation of
urinary bladder

inflammation {yes, no}

Nephritis of
renal pelvis origin

nephritis {yes, no}

Alternative output

Diagnosis diagnosis
{healty, inflammation

nephritis, both}

TABLE II
ACUTE INFLAMMATIONS DATA SET DESCRIPTION

Dataset size 120

Num. of input attributes 6

Num. of output attributes 2

Num. of output classes 4

Num. of healthy patients 30 (25%)

Num. of patients with
inflammation of urinary bladder

59 (49.17%)

Num. of patients with
nephritis of renal pelvis origin

50 (41.67%)

Num. of patients with
both diseases

19 (15.83%)

acute inflammations of urinary bladder and acute nephritises.

Input parameters collect all the patient symptoms, each in-

stance represents a potential patient. The data was created by

a medical expert as a data set to test the expert system, which

performs the presumptive diagnosis of two diseases of urinary

system. The dataset considered is summarised in TABLE I and

TABLE II.

Starting from the general form Head ← Body for a logical

clause, a predicate in the Head is generated for the decision

of the predictor—in the example, the diagnosis predicate.

Inside the predicate, a term for each input/output attribute is

instantiated with the value of the decision tree (leaf).

In our example, the following predicate is generated:
✞
diagnosis(temperatureOfPatient(T), occurrenceOfNausea(N),

lumbarPain(L), urinePushing(U), micturitionPains(M),

burningOfUrethra(BU), nephritisOfRenalPelvisOrigin(

Decision), confidence(C)) :- Body.

✡✝ ✆

where the Body body consists of check and computation on

the variables of the Head terms. For instance, considering the

above tree of Fig. 2, the first generated rule is
✞
diagnosis(temperatureOfPatient(T), occurrenceOfNausea(N),

lumbarPain(L), urinePushing(U), micturitionPains(M),

burningOfUrethra(BU), nephritis(no), confidence(1.00))

:- T =< 37.95.

✡✝ ✆
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representing the fact that if the temperature of patient is lesser

or equal of 37.9, it is unlikely the patient presents nephritis

of renal pelvis; the answer contains a degree of confidence

based on the case of the dataset that confirm the rule—in the

case 1.00 stands that all the patients in the dataset that have

a temperature lower that 37.9 do not present the disease.

To improve readability, the rule above could be written as
✞
diagnosis(temperatureOfPatient(T), _, _, _, _, _, nephritis

(no), confidence(1.00)) :- T =< 37.95.

✡✝ ✆

by omitting the undefined variables, i.e., highlighting the input

attribute that are effectively to be considered as influencer.

Fig. 2 (left) depicts the whole picture: the decision trees

generated as output of the example dataset when we run

the basic classification tree algorithm2 and the corresponding

translation into LP rules. With respect to Fig. 1, the decision

trees are the output of the Machine Learning Interface block

and become the input for the ML to Prolog block.

Fig. 2 represents experiments of running the ML algorithm

with no manipulation of the dataset: so, since the ML algo-

rithm allows only one decision output to be considered for

producing the corresponding decision tree, the information and

the related knowledge is fragmented into two different trees –

the first obtained running the algorithm with decision output

nephritis and the second with decision output inflammation of

urinary bladder. By running the ML to Prolog block of Fig. 1

we translate the two DT in LP rules as depicted in Fig. 2

(right).

a) Interpretabilty: The LP program provides an inter-

pretable explanation of virtually any predictor. At a glance,

the user can identify which attributes are meaningful and con-

sidered for response and which are not. In case of nephritis, the

only significant input attributes are the temperature of patient

and the presence or absence of lumbar pain. The same is for

inflammation of urinary bladder, where the only discriminative

attributes are presence of urine pushing, micturition pains and

lumbar pain.

b) Interoperability: The adoption of a standard AI lan-

guage (LP), in spite of the plethora of different specific ML

toolkits, paves the way towards an interoperable explanation

where LP is exploited as sort of lingua franca that goes beyond

the technical implementation of each ML framework.

c) Relations between outputs: As emphasised by Fig. 2,

relations between outputs are lost, and possible links between

the diseases are not clearly highlighted having two different

decision trees. Instead, once obtained a LP representation, it

is easy to run simple queries on it in order to get much more

information with respect to the two different decision tree.

For instance, we can learn that in case of fever (temperature

of patient > 37.95) not presenting nephritis (i.e. no lumbar

pain detected), the only case in which inflammation of uri-

nary bladder is present is when urine pushing is detected in

absence of symptoms of micturition pains. With the logical

representation, relations between output can be recovered by

2We exploit two different implementations: C45 [36] weka J48 for the Java
translator and SciKit-Learn CART [14] for the Phyton one

inferring hidden knowledge in the rules. It is worth noticing

that similar results (emphasising the relations between decision

output) can be obtained manipulating the dataset a priori—

i.e. before the ML algorithm training (a common operation

but not always applicable). The manipulation of the above

dataset, for instance, can build a unique decision output

Result that combines the two different diseases and their

symptoms. In such a case the dataset is enriched with the

Result attribute containing the complete diagnosis, i.e., it can

assume the values Healthy, Inflammation, Nephritis, Both. The

corresponding decision tree and LP knowledge is depicted in

Fig. 3.

d) Interpretable narrative explanation: LP makes it pos-

sible to generate a narration for each answer of the predictor.

The inference Prolog tree becomes inspectable, tracking the

path for obtaining the answer. For instance, w.r.t. the KB of

Fig. 3 – including all diseases –, the diagnosis in the case of

the following symptoms:
✞
diagnosis(

temperatureOfPatient(36.5), occurrenceOfNausea(yes),

lumbarPain(yes), urinePushing(no),

micturitionPains(yes), burningOfUrethra(yes), _, _).

✡✝ ✆

would produce the corresponding narration:
✞
The diagnosis is healthy, with a full confidence because

the patient has no fever.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

In particular the solution has been built across the

following path:

Solution: result(healthy) with confidence(1.00).

For the proof, the following clauses are considered:

[1] diagnosis(temperatureOfPatient(T), _, _, urinePushing(

no), _, _, result(healthy), confidence(1.00)) :- T =< 3

7.95.

[2] X =< Y that is verified if ’

expression_less_or_equal_than’(X, Y)

In the query the temperature T is of 36.5.

because of rule [1] 36.5 =< 36.9 has to be verified

and because of [2] ’expression_less_or_equal_than’(36.5,

36.9) has to be verified

so rules [1] and [2] are verified.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

✡✝ ✆

Despite its simplicity, the narration allows for a reconstruc-

tion of the decision track, showing the path to the decision.

With a large amount of nested rules this could result very

effective.

e) Exploitation of LP extension / abduction on the KB:

Moreover, we believe that exploiting abduction techniques we

could pave the way to hypothetical reasoning with incomplete

knowledge, i.e., learning new possible hypotheses that can

be assumed to hold, provided that they are consistent with

the given knowledge base. The idea, to be explored in future

research, is to provide the most likely solution given a set of

evidence. The conclusion would leave a degree of uncertainty

while highlighting a plausible answer based on the collected

information. In the healthcare field, for instance, it could be

represented by having the collection of symptoms (although

incomplete) and finding the most likely disease for them.
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✞
Output Decision:

Nephritis of renal pelvis origin {yes, no}

✡✝ ✆
✞
diagnosis(temperatureOfPatient(T), _, _, _, _, _,

nephritis(no), confidence(1.00)) :- T =< 37.95.

diagnosis(temperatureOfPatient(T), _, lumbarPain(yes), _, _, _,

nephritis(yes), confidence(1.00)) :- T > 37.95.

diagnosis(temperatureOfPatient(T), _, lumbarPain(no), _, _,

_, nephritis(no), confidence(1.00)) :- T > 37.95.

✡✝ ✆

✞
Output Decision:

Inflammation of urinary bladder {yes, no}

✡✝ ✆

✞
diagnosis(_, _, _, urinePushing(no), _, _, inflammation(no),

confidence(1.00)).

diagnosis(_, _, lumbarPain(yes), urinePushing(yes),

micturitionPains(no), _, inflammation(no), confidence(1.00)).

diagnosis(_, _, lumbarPain(no), urinePushing(yes), micturitionPains

(no), _, inflammation(yes), confidence(1.00)).

diagnosis(_, _, _, urinePushing(yes), micturitionPains(yes), _,

inflammation, confidence(1.00).

✡✝ ✆

Fig. 2. Experimental results obtained running the framework on the Acute Inflammations dataset [35]: on the left side are represented the decision trees
generated by the supervised ML algorithm (Weka J48 – SciKit-Learn CART), while on the right the corresponding LP rules output of the ML to Prolog

block. In order to deal with two different overlapped outputs, two DT are generated: information are not connected as the knowledge.

✞
Output Decision:

Result {Healthy, Inflammation, Nephritis, Both}

✡✝ ✆

✞
diagnosis(temperatureOfPatient(T), _, _, urinePushing(no), _,

_, result(healthy), confidence(1.00)) :-

T =< 37.95.

diagnosis(temperatureOfPatient(T), _, _, urinePushing(yes), _

, _, result(inflammation), confidence(1.00)) :-

T =< 37.95.

diagnosis(temperatureOfPatient(T), _, lumbarPain(no), _,

_, _, result(healthy), confidence(1.00)) :- T > 37.95.

diagnosis(temperatureOfPatient(T), _, lumbarPain(yes), _,

micturitionPains(no), _, result(nephritis),

confidence(1.00)) :- T > 37.95.

diagnosis(temperatureOfPatient(T), _, lumbarPain(yes), _,

micturitionPains(yes), _, result(both),

confidence(0.66)) :- T > 37.95.

✡✝ ✆

Fig. 3. Decision Tree (left) and corresponding “ML to Prolog core” output (right) after the previous manipulation of the dataset. In particular the two different
output decisions (nephritis and inflammation of urinary bladder) have been combined in order to generate a comprehensive output decision: the new diagnosis
consider that case of a healthy patient (none of the previous diseases), the case in which only one of the two diseases is present (inflammation or nephritis),
and finally the case in which are both present.

V. CONCLUSION

AI systems nowadays synthesise large amounts of data,

learning from experience and making predictions with the

goal of taking autonomous decisions—applications range from

clinical decision support to autonomous driving and predic-

tive policing. Nevertheless, concerns about the intentional

and unintentional negative consequences of AI systems are

legitimate, as well as ethical and legal concerns, mostly related

to darkness and opaqueness of AI decision algorithm. For that

reason, recent work on interpretability in machine learning and
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AI has focused on simplified models that approximate the true

criteria used to make decisions.

In this paper we focus on building a narrative explanation

of the machine learning techniques: we first translate a ML

predictor into logical knowledge, then inspect the proof tree

leading to a solution. The narration is built tracking the path

(i.e., the rules) that leads from the query to the answer.

Along this line, we foresee a broader vision that involves

the design of a consistent framework where symbolic and

sub-symbolic techniques are fruitfully combined to produce

intelligent behaviour in AI applications while exploiting the

benefits of each approach—like, in the case of symbolic ones,

interpretability, observability, explainability, and accountabil-

ity.

The results presented here represent just a preliminary

exploration of the potential benefits of merging symbolic and

sub-symbolic approaches—where, of course, many critical

issues are still unexplored and will be subject of future work.

However, despite its simplicity, the case study already allows

us to point out the feasibility and the potential benefits of the

exploitation of symbolic techniques towards XAI.
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