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Abstract—We present a prototype version of an ontology-based
framework, called PROF-ONTO, that integrates IoT devices and
users with domotic environments. PROF-ONTO is based on a
novel OWL 2 ontology, called OASIS (Ontology for Agents,
Systems, and Integration of Services), modelling behaviors of
agents such as IoT devices and users, and other informa-
tion concerning user requests, their executions, restrictions and
authorizations. User requests are performed by automatically
selecting compatible devices: agents expose their behaviors and
are invoked accordingly to what they are able to do on specific
categories of components. OASIS is also used to build semantic
knowledge bases that operate as transparent communication and
information exchange systems among agents.

INTRODUCTION

Automation refers to the capability of devices to act on be-

half of users in specific environments, with a little effort from

their part. Automation is not confined only to factories, farms,

and cities, but also small environments such as homes can take

advantage of it. An ecosystem comprising interrelated devices

capable to transfer data over a network and cooperate without

human control is widely called Internet of Things (IoT). IoT

is massively used in smart environments, especially in home

automation systems. Domotic systems typically connect web-

enabled devices through internet to a central hub or assistant,

which is responsible of managing them.

Currently, many domotic systems are available on the mar-

ket. Often assistants and devices are strictly bound to their

providers and thus users are tied to such providers as well. It

turns out that interchangeability of devices is hardly reachable

without the intervention of third-part applications and, as a

consequence, users may not install devices or assistants de-

ployed by other sellers. Besides specific marketing strategies,

several obstacles prevent the interchangeability of devices.

Among them, the most relevant one concerns connectivity,

networking, and communication protocols whose usage largely

depends on the specific IoT applications deployed, which

are to be regarded as black boxes. Moreover, it is almost

impossible to determine a priori what a device is capable to

do within the environment and how its functionality can be

controlled by users. Such problems could be solved if devices

were selected on the basis of what they are able to do through

open and shared knowledge bases and if they communicated

via a common, transparent protocol.

Semantic web is a vision of the web in which machine-

readable data allows software agents to query and manipulate

information on behalf of human agents. In such a vision, web

information carries explicit meaning, so it can be automatically

processed and integrated by agents, and data can be accessed

and modified at a global level, thus resulting in increased

coherence and dissemination of information. Moreover, with

the aid of reasoners, it is possible to infer and process also

implicit information present in the data, thus gaining a deeper

knowledge of the domain. Automated reasoning systems allow

one to also verify the consistency of the model and query the

data-set. The definition of a specific domain is widely called

ontology [1], [2].

In this paper, we present a prototype version of PROF-

ONTO,1 an ontological framework for the integration of users

and IoT devices with domotic environments, which acts as a

home assistant. PROF-ONTO exploits a novel ontology, called

OASIS (Ontology for Agents, Systems, and Integration of Ser-

vices),2 which models user requests together with restrictions

and scheduling, device behaviors, device authorizations imple-

mented by smart contracts [3], and information concerning the

execution of user requests by devices. With respect to other

Agent System paradigms such as Artifacts&Agents [4], OASIS

adopts a general approach where agents are entities able to

perform actions, whereas components are subjected to actions

carried out by agents.

Transcriptions of user requests are mapped by a BDI rule-

based system, called PROFETA, in OASIS knowledge bases.

In the current version of the assistant, user requests are

satisfied by automatically selecting devices whose behaviors

fulfill such requests. Communication between the assistant and

the devices depends on a specific knowledge base of OASIS,

used as a communication protocol, that specifies the device to

be activated, the action to be performed, and the recipient of

the action.

The paper is structured as follows. Section I provides

an overview of the semantic web, introducing ontologies

and their related modelling languages. Section II deals with

related works. Section III presents our proposed ontological

1https://github.com/dfsantamaria/ProfOnto.git
2http://tiny.cc/OASIS-Ontology
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framework and the way in which it is exploited to extract

meaningful data. Section IV describes a case-study that shows

how our proposed framework can be used in a real application.

Finally, Section V concludes the paper with some hints for

future work.

I. PRELIMINARIES

Applications that automatically process information, instead

of just presenting it, and exchange information with other

applications need appropriate languages, with formally defined

syntax and semantics. This issue turns out to be particularly

relevant for the web and, in general, for any distributed envi-

ronment. The Word Wide Web Consortium (W3C) recommends

the Web Ontology Language (OWL), a family of knowledge

representation languages relying on Description Logics (DLs)

[5], as a solution to this problem and indicates it as a standard

for representing ontologies. Ontologies are formal descriptions

of the domain of interest, defined by combining three basic

syntactic categories: entities, expressions, and axioms.

OWL, currently in version 2.1, provides users with con-

structs useful for the design of ontologies in real-world

domains that are not available in the basic semantic web

model Resource Description Framework (RDF) and in the

basic semantic web language RDF Schema (RDFS). As RDF,

OWL 2 is grounded on the idea of triples or statements,

each one representing an atomic unit. Triples are ways to

connect two entities or an entity and a data-value, each one

represented by an Internationalized Resource Identifier (IRI),

i.e., a sequence of characters that unambiguously identifies

a resource within a specific context. Entities represent the

primitive terms of an ontology and are identified in a unique

way. They are individuals (actors), object- and data-properties

(actions), and classes (sets of actors with common features). In

order to provide a formal description of the domain, OWL 2

triples can be organized into two main categories: expressions

and axioms. Expressions are obtained by applying OWL 2

constructs to entities to form complex descriptions, whereas

axioms describe what is true in the domain.3

To retrieve and manipulate semantic knowledge, the W3C

recommends the SPARQL query language as the standard

query protocol for RDF. Like SQL, SPARQL is a declarative

query language to perform operations on data represented as

a collection of RDF triples. A SPARQL query has a head

and a body: the head comprises a modifier identifying the

corresponding type of query, whereas the body consists of an

RDF triple pattern. The reader is referred to [7] for a detailed

overview of SPARQL.

II. RELATED WORK

In the last decade, integration of agent systems and ontolo-

gies has been deeply studied in several contexts [8], [9], [10].

Concerning IoT, ontological approaches have been focused

mainly on sensors, with the purpose of collecting data for

generating perceptions and abstractions of the world [11].

3For a detailed explanation of axioms and expressions introduced in OWL
2, the reader is referred to [6].

In [12], a comprehensive ontology for representing IoT

services is presented, together with a discussion on how it

can be used to support tasks such as service discovery, testing,

and dynamic composition, taking into account also parameters

such as Quality of Services (QoS), Quality of Information

(QoI), and IoT service tests.

A unified semantic knowledge base for IoT, capturing the

complete dynamics of IoT entities and where their heterogene-

ity is hidden and semantic searching and querying capabilities

are enabled, is proposed in [13].

Unification of the state-of-the-art architectures, as put for-

ward by the scientific community of the Semantic Web of

Things (SWoT), by means of an architecture based on different

abstraction levels, namely Lower, Middle and Upper Node

(LMU-N), is described in [14]. The LMU-N architecture

provides a reading grid used to classify processes, to which

the SWoT community contributes, and to describe how the

semantic web impacts the IoT.

In [15], an ontology providing an elementary approach to

modelling agents’ behaviors and artifacts is proposed together

with a tool that uses the ontology to generate programming

code for agent-oriented software engineering.

None of the aforementioned work deals in depth with agent

behaviors or tries to formalize the interaction mechanism

among them. As far as we know, this paper represents the first

attempt of applying semantic web technologies as a commu-

nication protocol among IoT devices and as a representation

system for their behaviors and interactions.

III. THE FRAMEWORK PROF-ONTO

In this section, we describe the most important features

of the ontology OASIS, and the software architecture imple-

menting the prototype version of the ontology-based domotic

assistant called PROF-ONTO.

A. The ontology OASIS

OASIS is an OWL 2 ontology consisting of about 120

classes, more than 100 object-properties, 2 data-properties, and

more than 900 axioms. Among other information, it currently

models: a) behaviors of agents (i.e., users and devices) in

terms of the operations that they are able to perform; b) agent

configurations; c) agent requests; d) executions of operations

and their related status.

Goal
Description

Task
DescriptionconsistsOfTaskDescriptionconsistsOfGoalDescription

TaskPart

dependsOn

subclass of

GoalPart

subclass of

TaskObject TaskOperator Task
Parameter

hasTaskObject hasTaskOperator hasTaskParameter

dependsOn

Device Behavior
hasBehavior

Agent

subclass of

Figure 1. Ontology schema of device behaviors
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Figure 2. A representation of a smart bulb device in OASIS

Despite the fact that OASIS is able to represent behaviors

of generic agents, the ontology is mainly focused on devices

entrusted by users to perform certain operations within a

domotic context. Behaviors of such agents are described by

the schema in Figure 1.

The main classes of OASIS and their characteristics for

describing behaviors of agents are summarized next.

- Agent: comprises all the individuals capable of executing

actions on the associated components. This class includes,

among others, the classes HumanAgent, SoftwareAgent,

and Device, mapping physical people, software or pro-

grams, and physical devices, respectively. The class Hu-

manAgent contains, in its turn, the class User, represent-

ing users that usually access the system.

- TaskDescription: describes atomic operations (e.g., turn

on, turn off, wipe, and so on) that an agent performs

as a result of some requests made by other agents. An

atomic operation O may depend on other atomic opera-

tions, whose execution is mandatory in order to perform

the operation O. Dependencies of atomic operations are

modelled through the object-property dependsOn, which

relates instances of the class TaskDescription.

- GoalDescription: models a set of atomic operations (rep-

resented by the class TaskDescription), whose execu-

tions are subject to no order. Execution dependencies of

goals (non-atomic operations) are modelled through the

object-property dependsOn, relating instances of the class

GoalDescription. Instances of the class GoalDescription

are linked to the related task descriptions by means of

the object-property consistsOfTaskDescription.

- Behavior: represents the behavior of a single agent in

terms of what the agent is able to do. It comprises a

set of non-atomic operations (described by instances of

the class GoalDescription) whose execution is subject to

no order. Instances of the class Behavior are linked to

the related goal descriptions through the object-property

consistsOfGoalDescription.

The core of OASIS revolves around the description of

atomic operations introduced by the instances of the class

TaskDescription. Atomic operations are the most simple ac-

tions that agents are able to perform and that they expose to

other agents. Hence, atomic operations represent what agents

can do and what they can ask other agents to do by means

of request submissions. Instances of the class TaskDescrip-

tion are related with three elements that uniquely identify

the operation. The first element is an instance of the class

TaskOperator, characterizing the action to perform. Instances

of TaskDescription are related with instances of TaskOperator

by means of the object-property hasTaskOperator. The second

element is an instance of the class TaskObject, representing

the object recipient of the actions (described by the instances

the class TaskOperator) performed by devices. Instances of

TaskDescription are related with instances of TaskObject by

means of the object-property hasTaskObject. The third element

is an instance of the class TaskParameter. It is conceived for

complex actions requiring a specific input parameter in order

to accomplish the requested operation, such as the temperature

of air conditioners or the light intensity of bulbs. Instances of

TaskDescription are related with instances of TaskParameter

by means of the object-property hasTaskParameter.

Objects and parameters are related by means of the object-

property hasType with instances of the class Type. The latter

class comprises a set of categories that specialize the type

of elements introduced in OASIS. For example, floors of

buildings are of type “floor” while bulbs are of type “light

object”.

Figure 2 describes a smart bulb device through its behavior.

In particular, the device shows two behaviors, each one con-

sisting of a single goal that, in its turn, consists of a single task.

The device is able to perform the actions of turning on and

off (i.e., the task operators) the connected bulb (i.e., the task

object). The latter component is represented by the individual
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bulb.

Devices are configured in order to fit the needs of some

agents such as users. A device configuration comprises a

set of optional features that users associate with a single

component (recipient of some device operations) or with a

single device. There are many features that can be associated

with objects or devices such as virtual collocation, physical

position, nickname, and so on. A specific configuration pro-

viding information about how devices communicate can be

assigned to devices when they are automatically detected by

the system.

Configurations are represented in OASIS according to the

schema in Figure 3, and make use of the following classes:

- Configuration: models configurations admitted in OA-

SIS.

- ComponentConfiguration: is a subclass of the class Con-

figuration and models configurations associated with the

components of the environment involved as objects in

some operations (i.e., instances of the class TaskObject).

- DeviceConfiguration: models configurations associated

with devices.

- Connection: specifies how to physically communicate

with a device, e.g., the protocol used and the commu-

nication address associated with the device.

Device

Connection

hasConnection

Device
Configuration

hasConfiguration

Agent

configurationProvidedBy

connectsTo

Component
Configuration

Component

setsUp

setUpFrom

Configuration

hasConfiguration

subclass ofsubclass of

subclass of

Figure 3. Ontology schema of device configurations

Instances of the class Device are associated with instances

of the class DeviceConfiguration by means of the object-

property hasConfiguration. Instances of DeviceConfiguration

are related with instances of the class Connection by means of

the object-property hasConnection. As stated above, instances

of the latter class are exploited for creatiing an entry-point

that puts devices in communication. In such a case, the object-

property connectsTo is used to link instances of DeviceCon-

figuration with instances of Connection.

The object-property hasConfiguration is also used to link

instances of the class Component with instances of the class

ComponentConfiguration. Once a component has been con-

figured, the instance of ComponentConfiguration is related by

means of the object-property setsUp with a fresh individual

representing the configured component. The latter individual,

in its turn, is related with the non-configured component

defined by the device in its behavior description by means

of the object-property setUpFrom.

An example of a component configuration is shown in

Figure 4. The example extends the smart bulb device illustrated

in Figure 2 by providing a configuration, introduced by the

user Alan, of the single bulb controlled by a device. Alan

specifies the kitchen as physical position of the bulb; in this

case, the object-property hasSpaceSpan is used to link the

configured object to an instance of the class Space representing

Alan’s kitchen. In this specific smart bulb example, the device

is physically indistinguishable from the controlled bulb. In

such a case, the user configuration should be provided for the

bulb as shown in Figure 4, leaving to the device configuration

only the management of the connection information.

Agents that create the configuration of a device or of a

component are specified by the object-property configura-

tionProvidedBy, linking an instance of the class Configuration

to an instance of the class Agent.

As stated above, OASIS models user requests consisting in

entrusting some devices to do something within the domotic

environment, in accordance with the restrictions imposed by

their configurations. User requests are introduced by exploiting

classes and properties used to model device behaviors, except

that the desired sets of user goals to be accomplished are

related with a user plan. The ontology schema for user requests

is depicted in Figure 5.

Goal
Description

Plan
Description

Task
DescriptionconsistsOfTaskDescriptionconsistsOfGoalDescription

TaskPart

dependsOn

subclass of

GoalPart

subclass of

TaskObject TaskOperator Task
Parameter

hasTaskObject hasTaskOperator hasTaskParameter

User

requests

dependsOn

Figure 5. Ontology schema of user requests

User requests are introduced by instances of the class Plan-

Description related to instances of the class GoalDescription.

The user requesting the action is modelled by instances of

the class User that are linked to the plan through the object-

property requests. Descriptions of goals from user requests are

modelled analogously to the descriptions of goals from device

behaviors.

In Figure 6, we show an example of a user request consisting

of turning off a light, performed by the user Alan.

Finally, a user request is associated with an attempt of

finding a device that is able to execute it. OASIS uses the class

TaskExecution for representing the attempt of executing an

agent request. Instances of the class TaskDescription defined

by the user requests are related with instances of the class

TaskExecution through the object-property hasTaskExecution.

An instance of Device, representing the device responsible

Workshop "From Objects to Agents" (WOA 2019)

122



Y

SwitchOnTask Bulb
hasTaskObject

SwitchOffTask
hasTaskObject

Task
Description

TaskObject

light_object_
type

hasType

Enviromental
Component Type

Class 

Instance

Legenda

Alan-Light-
Configuration

Component
Configuration

hasConfiguration

Alan-Light
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Component

setUpFrom

User-Alan

User

configurationProvidedBy

Main_Kitchen

Space

kitchen
hasType

Type

hasSpaceSpan

Figure 4. Example of configuration in OASIS

of satisfying the request, is related with the instance of

TaskExecution by means of the object-property performs. Once

the selected device attempts to fulfill a user request, the status

of the execution task is updated by linking the instance of

TaskExecution to an instance of the class ActionStatus. The

most important instances of ActionStatus are the individuals

succeeded status, representing the correct execution of the

action, and the individual failed status, representing the status

of those actions that have not been accomplished. The mod-

elling of the attempt of fulfilling agent requests in OASIS is

summarized in Figure 7.

hasTaskObject hasTaskOperator

Class 

Instance

Legenda

light-object-type alan-task-object
hasType

turn_off

alan-task-1-1-1

alan-goal-1-1alan-plan1User-Alan

User

performs

Plan
Description

Goal
Description

Task
Description

Task
Operator

Task
Object

Type

consistsOfTaskDescription

consistsOfGoalDescription

Figure 6. Example of modelling of user requests

Device Task
Execution hasTaskExecutionperforms

TaskObject TaskOperator
Task

Parameter

hasTaskObject hasTaskOperator hasTaskParameter

Task
Description ActionStatus

hasStatus

Figure 7. Ontology schema of execution of user requests

In Figure 8, we show an example concerning the execution

of Alan’s request depicted in Figure 6. In the example, Alan’s

request of turning off the light, described in Figure 6, is

accomplished by the smart bulb (represented in Figure 2) that

sets to succeeded the execution status of the action.

hasTaskObject hasTaskOperator

Class 

Instance

Legenda

Alan-Light turn_off

Task
Description

Task
Execution

Task
Operator

Task
Object

alan-task-
1-1-1-exec

alan-task-
1-1-1

hasTaskExecution

Light-Agent
performs

Device

succeeded_
status

hasStatus

ActionStatus

Figure 8. Ontology schema of a task execution

B. Software Architecture

In this section, we briefly summarize the main features of

the architecture of PROF-ONTO, illustrated in Figure 9.

KBBehavior

KBBelief

<imports> PROFETA
 

<reads/writes>

<requests>

<connects>

HERMIT DL
REASONER

  OASIS 
ONTOLOGY

Figure 9. Architecture of PROF-ONTO

The core of PROF-ONTO comprises by OASIS (the ontolo-

gies illustrated in Figures 1, 3, 5, and 7), the dataset KBBe-
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havior collecting behaviors and user defined configurations of

devices (RDF graphs of the types depicted in Figures 2 and

4), and the data-set KBBelief containing user requests together

with their execution information (RDF graphs of the types

reported in Figures 6 and 8).

PROF-ONTO knowledge bases are implemented in JAVA by

exploiting the OWL API [16] and Apache Jena [17], both

used to manipulate the ontological information and to perform

SPARQL queries. Consistency of PROF-ONTO knowledge

bases is checked by means of the HermiT DL reasoner [18].

PROF-ONTO also exploits PROFETA [19], a Belief-Desire-

Intention (BDI) rule-based system able to trigger rules rep-

resenting computations to be performed, in order to parse,

interpret, and manage user requests and device connections.

BDI rules are passed to the PROF-ONTO core as OASIS

knowledge bases.

Since most interaction among common users and IoT do-

mains occur through a natural spoken language, PROF-ONTO

manages user utterances via the PROFETA interface. Given

a domotic command either by Speech-To-Text (STT) services

or Chatbots, PROFETA processes the string representing the

transcription of the user intention in natural language by

implementing a robust dependency parser able to deal very

satisfactorily with imperative verbs (without raising the issues

treated in [20]), within a so-called Translation Service (TS). A

domotic command usually has the form of an imperative verbal

phrase; consequently, the relations generated by the depen-

dency parser and providing information about user intentions

have the form dobj(arg1, arg2), namely a direct object, where

arg1 and arg2 are verb and object related to the intention,

respectively. For example, given the sentence wipe the floor,

PROFETA produces the relation dobj(wipe, floor).

Additionally, PROFETA supports other types of relation

such as pobj (preposition object), which provides additional

information about the physical location of an object, and

compound/prt (compound/particle), which provides the com-

positionality of phrasal verbs such as “turn off” or of nouns

such as “living room”. The reader can refer to [21] for further

details concerning the process of extraction of intentions from

natural spoken language.

The result of the TS module consists of a set of beliefs

representing user intentions together with related parameters.

Such beliefs are processed by the PROFETA engine through

the use of rules of the form:

+Int(Verb,Obj,Loc) ≫ generate request(Verb,Obj,Loc),

which produce the desired plan from the set of beliefs obtained

from previous steps. The plan generate request consists in

sending user requests to the ontological core of PROF-ONTO

through an appropriate wrapper that maps plans in OASIS

knowledge bases of the forms described in Section III-A. For

the sake of conciseness, details about the syntax of PROFETA

are omitted and can be found in [19].

PROF-ONTO takes care of the following two activities:

- Device connection and configuration. When a device

tries to connect to PROF-ONTO, PROFETA receives

the request and generates the corresponding knowledge

base of OASIS. This is passed to the ontological core

of PROF-ONTO, which in turn updates KBBehavior ac-

cordingly and executes the HermiT reasoner to check its

consistency.

- User requests. When a user requests an action, PROFETA

analyzes the command and produces the corresponding

RDF graph, which is submitted to the ontological core

of PROF-ONTO. PROF-ONTO builds and performs the

related SPARQL queries. The result is then sent to

PROFETA, which activates the selected device. If the

request can be accomplished, the data-set KBBelief is

updated accordingly. Once the device has performed the

action, it updates PROFETA by sending the execution

status. Then, PROFETA, in its turn, sends a request to

the ontological core of PROF-ONTO, which updates the

data-set KBBelief. Finally, the HermiT reasoner is called

by PROF-ONTO to check the consistency of KBBelief.

IV. CASE-STUDY

We describe a simple case-study illustrating the working

basics of the framework PROF-ONTO. In our example, the

environment consists of (a) a smart bulb, called light-device,

(b) a user, called Alan, and (c) a domotic assistant running

PROF-ONTO.

As a first step, light-device is connected to the assistant

and suitably configured by the user. The device exposes its

behavior by submitting the RDF graph illustrated in Figure

10 to the assistant, which integrates it with the PROF-ONTO

knowledge base as described in Section III. We denote with

prof the prefix of OASIS and with dev the prefix of the smart

bulb ontology.

Before fully connecting the smart bulb to the assistant

and integrating it with the domotic environment, the user is

summoned to configure the device. In the particular case of

the light-device specification, the user may provide a friendly

name and indicate the physical collocation of the device. In

our example, the user Alan sets the name of the device to

main kitchen light and collocates it in the main kitchen. Once

such information is provided, the configuration manager maps

Alan’s request into an RDF graph (see Figure 11) and transmits

it to the assistant.

Subsequently, information provided by the smart bulb be-

havior and the user configuration is merged with the KBBe-

havior knowledge base. Such task is carried out by adding the

triples to the KBBehavior knowledge base and by executing

the HermiT reasoner for consistency checking.

Once a device is connected to the system, namely once RDF

triples describing its behavior and configuration are integrated

in the KBBehavior knowledge base, the system is ready to

accept user requests, which are formalized as RDF graphs as

well. Request RDF graphs are then merged with the KBBelief

knowledge base and the HermiT reasoner is executed. In the

smart bulb example, Alan sends the command “turn off the
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light in the kitchen” to the assistant which generates the RDF

graph illustrated in Figure 12.

dev:light-devicedev:LD-turnoff-
behavior

dev:LD-turnon-
behavior

dev:LD-turnoff-
goalDes

dev:LD-turnon-
goalDes

dev:LD-turnoff-
taskDes

dev:LD-turnon-
taskDes

prof:turn_off

dev:ld-light1

prof:turn_on

prof:hasBehaviorprof:hasBehavior

prof:hasTaskOperator

prof:hasTaskObject

prof:hasTaskOperator

prof:consistsOfTaskDescription

prof:consistsOfGoalDescription prof:consistsOfGoalDescription

prof:consistsOfTaskDescription

Figure 10. The RDF graph mapping the smart bulb behavior

base:alan-ld1-
config base:alan

base:
main_kitchen

_light
base:alan-
kitchen prof:kitchen

base:ld1-light1

prof:hasConfiguration prof:configurationProvidedBy

prof:setsUp

prof:setUpFrom
prof:hasTypeprof:hasSpaceSpan

Figure 11. The RDF graph representing the configuration of the smart bulb

base:alan-plan1 base:alan-goal1-1

base:alan-task1-1-1

base:
alan-task1-1-1-obj

base:
alan-task1-1-1-

kitchen

prof:turn_off

prof:light_object_type

prof:kitchen

prof:hasSpaceSpan

prof:hasType

prof:hasType

hasTaskOperator

prof:hasTaskObject

prof:consistsOfGoalDescription
prof:consistsOfTaskDescription

Figure 12. The RDF graph of the request of turning off the kitchen light

The RDF graph representing Alan’s request is analyzed by

PROF-ONTO in order to produce a SPARQL CONSTRUCT

query to be executed over the knowledge base KBBehavior and

over Alan’s request graph. The CONSTRUCT query produces

an RDF graph that associates Alan’s request with a specific

device able to fulfill his request. The SPARQL query obtained

from Alan’s command, consisting in turning off the kitchen

light, is illustrated in Figure 13. The body of the query consists

of three parts. The first one is taken from the specifications of

Alan’s request. The second part, obtained from the ontology

reported in Figure 3, explores all the user configurations in

order to discover the type of the device and the place the

device has been installed in. The last part, constructed from

the ontology in Figure 1, selects an available device fulfilling

the conditions specified in the first two parts.

The graph returned by the CONSTRUCT query in Figure

13 is illustrated in Figure 14.

CONSTRUCT {
?selected agent prof:performs :alan-task1-1-exec .

:alan-task1-1 prof:hasTaskExecution :alan-task1-1-exec .

:alan-task1-1-1-exec prof:hasTaskOperator ?operation .

:alan-task1-1-1-exec prof:hasTaskObject ?user object .

?user object prof:setUpFrom ?device object . }

WHERE {
:alan-task1-1-1 prof:hasTaskOperator ?operation .

:alan-task1-1-1 prof:hasTaskObject ?object .

?object prof:hasSpaceSpan ?space .

?object prof:hasType ?obtype .

?space prof:hasType ?spacetype .

?config rdf:type prof:ComponentConfiguration .

?config prof:configurationProvidedBy :user .

?config prof:setsUp ?user object .

?user object prof:hasType ?obtype .

?user object prof:hasSpaceSpan ?space user .

?space user prof:hasType ?spacetype .

?user object prof:setUpFrom ?device object .

?selected agent prof:hasBehavior ?behav .

?behav prof:consistsOfGoalDescription ?goal .

?goal prof:consistsOfTaskDescription ?task .

?task prof:hasTaskOperator ?operation .

?task prof:hasTaskObject ?agent subject .

?agent subject prof:hasType ?obtype . }

Figure 13. The SPARQL CONSTRUCT query for Alan’s request

base:alan-task1-1-1

base:alan-task1-
1-1-exec prof:turn_offdev:light-device

base:
alan-task1-1-1-obj dev:ld-light1

prof:hasTaskOperatorprof:performs

prof:hasTaskObject

prof:setUpFrom

prof:hasTaskExecution

Figure 14. The RDF graph obtained by executing the query of Figure 13

By means of the graph in Figure 14, the smart bulb can

execute the requested action, thus turning off the light. In fact,

the agent committed to execute the action (dev:light-device),

the operation (prof:turn off ), and the object of the action

(dev:ld-light1) have been correctly spotted and the device can

be activated by sending to it the requested information.

Subsequently, the device updates the status of the execution

task by sending to the assistant the triple:

:alan-task-1-1-1-exec prof:hasStatus prof:succeeded status .

if the task has been successfully accomplished, or by sending

the triple

:alan-task-1-1-1-exec prof:hasStatus prof:failed status .

if the task has not been performed for some reason. The

assistant updates its belief knowledge base by adding the

information relative to the execution status, as provided by

the device. Afterwards, the assistant is ready to accept new

requests, configurations, or to connect new devices.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented PROF-ONTO, a prototype frame-

work that integrates users and IoT devices within domotic
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environments. PROF-ONTO is based on a novel ontology

called OASIS, modelling device behaviors, user requests, and

their executions. PROF-ONTO acts in two phases. The first

phase consists in connecting devices to the domotic assistant.

Devices share their behaviors by means of knowledge bases

of OASIS, which are automatically integrated with PROF-

ONTO and whose consistency is checked by the HermiT DL

reasoner. In the second phase, users send their requests to

a BDI rule-based system, called PROFETA, that maps the

transcriptions of user requests in OASIS knowledge bases.

In the last phase, PROF-ONTO automatically selects devices

compatible with user requests by means of SPARQL queries

specifically constructed. Then, the resulting action is sent to

the selected device in order to perform the required action. In

this phase, a suitable knowledge base of OASIS is used as a

communication and information exchange system between the

assistant and the selected device.

We plan to integrate with PROF-ONTO temporal modifiers,

action restrictions, conditionals already modelled by OASIS,

and with user requests directly entrusting specific devices with

the execution of actions.

We also intend to study how OASIS can be exploited by

OntologyBeanGenerator 5.0 [22] inside the JADE framework

[23] to generate code for agents and artifacts and how it can

exploited by CArtAgO [24], a framework for building shared

computational worlds.

We shall integrate OASIS with the ontology for IoT ser-

vices defined in [12] and the Sensor Ontology in [25]. In

addition, we shall extend the set of actions and parameters

provided by OASIS with the synset introduced by WordNet

[26], in order to make the whole infrastructure multi-language

and meaning-oriented as in the case of [21].

In addition, we intend to define a set-theoretic representation

of OASIS in the flavour of [27]. However, since OASIS

contains existential restrictions, we also need to modify the

underlying set-theoretic fragment in such a way as to allow

a restricted form of the composition operator. The related

reasoning procedure will then be adapted to the new set-

theoretic fragments exploiting the techniques introduced in

[28], [29] in the area of relational dual tableaux. Finally,

we intend to replace the HermiT reasoner in PROF-ONTO

with a suitably extended version of the set-theoretic reasoner

described in [30].
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