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Abstract—In this paper we present a cognitive model to
support reasoning and decision making on socially adaptive task
delegation and adoption. The designed model allows a robot to
dynamically modulate to dynamically modulate its own level of
collaborative autonomy, by restricting or expanding a received
task delegation, on the basis of several context factors as the needs
of other users involved in the interaction. We exploit principles
underlying theory of delegation, theory of mind and BDI agent
modelling, in order to build a decision making system for real-
world teaming between autonomous agents.

The model has been developed by using JaCaMo framework,
which provides support for implementing multi-agent systems
and integrates different multi-agent programming dimensions.

We tested our model in a specific domain on the humanoid
robot Nao, widely adopted in human-robot interaction applica-
tions. The support study has established that the model provides
the robot with the ability to modify its social autonomy and to
handle possible collaborative conflicts due to the initiative to help
the user beyond her/his request.

I. INTRODUCTION

In every-day life, humans cooperate with other humans, in

order to gain knowledge, achieve and share goals, following

social norms. These are sometimes encoded as laws, some-

times as expectations. A primary research topic in cognitive

human-robot interaction is the design of autonomous systems

that can interact and cooperate proficiently with humans.

Indeed, social robots are becoming part of daily life and are

present in a variety of environments, including hospitals [1],

offices [2], schools [3], tourist facilities [4] and so on. In these

contexts, robots have to coexist and collaborate with a wide

spectrum of users not necessarily able (or willing) to adapt

their interaction level to the kind requested by a machine: the

users need to deal with artificial systems whose behavior must

be understandable and effective. To be effective, the interaction

between humans and robots should consider not only the

ability of the robots but also the human preferences [5]. Robots

have to maintain as much as possible a natural and intelligent

interaction with humans: they should modulate their level of

support interpreting both the contextual situations and the

needs of the other agents involved in the cooperation [6], just

like humans typically do when they interact with each other.

The integration of these kinds of social skills in autonomous

robots would naturally lead to a deeper relationship of trust

between them and humans. Several cognitive architectures

have been proposed [7], [8], [9], everyone with the goal of sim-

ulating human’s cognitive and behavioral features at different

levels of cognition: perception, learning, reasoning, planning,

memory and so on. Along with the ability to autonomously

elaborate the context information, react to the changes in

the environment, make decisions about the task they are

expected to carry out by showing some level of proactiveness,

robots should integrate the conceptual instruments necessary

to transform their autonomy into social autonomy [10].

A. Problem and contribution

As claimed in [11], cooperation implies the definition of

the two complementary mental attitudes of task delegation

and task adoption linking collaborating agents. Delegation and

adoption are two basic cognitive ingredients of any collabora-

tion and organization. The notion of autonomy in artificial

agents, should integrate different levels of task adoption.

Indeed, after receiving a task delegated from the outside,

artificial agents should exploit their knowledge about the

environment, including other agents are interacting with them,

to adjust their own decision, for example by going beyond

the delegated task, or (partially or completely) changing it, or

again, adopting just a sub-part of it, because the context does

not allow a complete task achievement. Theory of delegation,

should guide the design of the decision making process of

every robot that has to collaborate with humans in daily life.

In summary, the contribution of this research includes:

• the development of a declarative, knowledge-oriented,

plan-based computational model that relies on the prin-

ciples defined in the theory of delegation. The proposed

approach provides a robot with an internal representation

of itself and the actor involved in the interaction, every

one with their own beliefs, goals, plans. In particular, the

model is a decision making system where the interaction

between the robot and the user is reproduced. Once a

user delegates a task to the robot, it can take its decision
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about the level of task adoption, on the basis of the

environmental context and of the mental states attributed

to the human it is interacting with. The presence, in the

robot’s mind of a self-representation, allows it to have a

detailed description of its internal status, its technological

limits and consider them in the decision process.

• A support study where the computational model has

been tested on a well known robotic platform. The study

has shown that the robot was able to adapt its level of

collaborative autonomy in adopting a task delegated from

the outside. The model has conferred to the robot the

capability to go beyond the simple task acceptance and to

handle possible collaborative conflicts due to the initiative

to help the user beyond its request.

The paper is organized as follows: section 2 describes the

theoretical models underlying our approach and the software

framework used for its implementation. Section 3 focus on the

description of the computational model; section 4 illustrates a

support study where a real robot cooperated with humans in

a specific domain; section 5 is dedicated to conclusions and

future works.

II. BACKGROUND

We briefly introduce the theory beyond our computational

model and the software framework used for its implementa-

tion.

A. BDI Agents

BDI agents [12] are one of the most popular models in

agent theory [13]. Originally inspired by the theory of human

practical reasoning developed by Michael Bratman [14], BDI

model focuses on the role of intentions in reasoning and

allows to characterize agents using a human-like point of

view. Very briefly, in the BDI model the agent has beliefs,

information representing what it perceives in the environment

and communicates with other agents, and desires, mean states

of the world that the agent might to accomplish. The agent

deliberates on its desires and decides to commit to one of them:

committed desires become intentions. To satisfy its intentions,

it executes plans in the form of a course of actions or sub-

goals to achieve. The behaviour of the agent is thus described

or predicted by what it committed to carry out. An important

feature of BDI agents is the property to react to changes in

their environment as soon as possible while keeping their pro-

active behaviour.

B. Levels of adoption about the delegated task

As mentioned above, delegation and adoption are two basic

ingredients of any collaboration and organization. Typically

cooperation works through the allocation of some task τ
(or sub-task), by a given agent A, the client, to another

agent B, the contractor, via some ”request” (offer, proposal,

announcement, etc.) meeting some ”commitment” - bid, help,

contract, adoption and so on [11]. The task τ , the object of

delegation, can be referred to an action α or to its resulting

goal state g. By means τ we will refer to the action/goal

pair τ = (α,g). For a complete theoretical overview of the

delegation theory we refer to [11]. Let’s focus on a deep

level of cooperation, where the contractor can adopt a task

delegated by the client, at different levels of effective help. In

the theory of delegation, various levels of contractor’s adoption

are individuated:

• Sub help: The contractor satisfies just a sub-goal of the

delegated task,

• Literal help: the contractor adopts exactly what has been

delegated by the client,

• Over help: the contractor goes beyond what has been

delegated by the client without changing the clients plan,

• Critical help: the contractor satisfies the relevant results

of the requested plan/action, but modifies that plan/action,

• Critical-Over help: the contractor realizes an over help

and in addition modifies the plan/action,

• Critical-Sub help: the contractor realizes a sub help and

in addition modifies the plan/action,

• Hyper-critical help: the contractor adopts goals or in-

terests of the client that the client itself did not take into

account (at least, in that specific interaction with the con-

tractor): by doing so, the contractor neither performs the

action/plan nor satisfies the results that were delegated.

It is important to underline that we are considering collabora-

tive robots, i.e. robots that have as their main goal the positive

collaboration with the user (client).

C. JaCaMo Framework

JaCaMo [15] is a framework for multi-agent programming

that integrates three different multi-agent programming lev-

els: agent-oriented (AOP), environment-oriented (EOP) and

organization-oriented programming (OOP). Every mentioned

level is associated to three well-known existing platforms that

have been developed for years, separately:

• Jason [16], a powerful AgentSpeak(L) [17] interpreter for

BDI agents programming,

• CArtAgO [18] for programming shared environment

artifacts,

• M oise [19] for programming multi-agent organizations.

JaCaMo framework provides a powerful tool for implementing

our computational model, in terms of:(i) the capability to

represent the mental states of the real actors involved in

the interaction as BDI agents;(ii) the possibility for agents

of the computational model to exchange information;(iii) the

possibility to implement a shared environment where can be

mapped the skills of the real robot. Each of these features

allowed us to reproduce the real interaction in the decision-

making system of the robot. The development of our computa-

tional model has been based mainly on the first two platforms,

Jason and CArtAgO. We do not exclude, in the future, to

exploit M oise in order to introduce organizational rules or

constraints among the agents that populate the computational

model.
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Fig. 1. Computational model overview

III. DESCRIPTION OF THE COMPUTATIONAL

MODEL

In this section we illustrate the conceptual ingredients of

the implemented computational model. The main goal is to

make an artificial agent able to autonomously adapt its level of

collaborative autonomy, when it adopts a task delegated from a

human client. We refer to the real artificial agent as a robot that

is interacting with humans. We exploit the formalism provided

by JaCaMo, in particular by Jason for the agent programming

and CArtAgO for the environment programming.

When a user delegates a task τi to the robot, the task τ f that

the robot decides to achieve, can match with the delegated one

or not. The level of τi adoption depends on the robot’s ability

to map in its decision making system:

• an high-level description of the perceived current state of

the environment,

• a self-representation in terms of intentional system,

• the mental states of the other real agent involved in the

interaction.

The capability of an autonomous agent to meta-represent itself

and other agents and reason about their beliefs, goals, plans,

intentions is known as Theory of Mind [20].

A. Conceptual ingredients of the model

The computational model (Figure 1) can be considered a

multi-agent system which provides the robot with a theory of

mind.

In particular, the model is populated by two categories of

agent:

• the Contractor,

• the Client.

Agents belonging to the first category define a self-

representation of the robot, with their own mental attitudes,

while agents belonging to the second one, define a represen-

tation of the human clients, involved in the interaction with

Fig. 2. composed plan example

the robot, with their mental states. Please note that when we

refer to Client and Contractor, we always indicate the mental

representations, in the model, of the interacting real agents.

Notice that the system can potentially be equipped by several

versions of the robot itself, with different mental states. These

versions could correspond to different contractor agents in the

robot’s decision making system. We could define, for example,

a ”lazy” robot version, or a really proactive version, by giving

the different descriptions of their set of cognitive ingredients.

At this stage of the work we have considered just one self-

representation of the robot, choosing a version in which it has

the goal to provide more help than delegated every time that

the contextual factors allow it.

Generally speaking, an agent’s cognitive state can be de-

scribed as a set of beliefs, goals and plans. A belief β is a

grounded first-order logic formula encoding the information

perceived from the environment, attributed to other agents,

or provided by the communication with other agents. Further

knowledge can be generated, in term of new beliefs, reasoning

on simple beliefs through complex rules. A goal g is the state

of affairs that an agent wants to achieve. An agent achieves

a goal, matching to the intention it commits to pursue, by

implementing a plan π , defined as part of its own plan library

Π, which establishes the know-how of the agent. According

to practical reasoning principles, plans are courses of actions

or sub-goals the agent has to carry out before achieving the

”top-level goal”.

Formally, the plan library belonging to an agent in the

computational model

∏ =
d

∏
⋃ a

∏ (1)

is a collection of Πd composed plans and Πa abstract plans.

Composed plans (Figure 2) represent complex hierarchical

goals that decompose into other complex sub-goals gi or

actions αi. This results in a graph representation in which

edges denote plan decomposition and root nodes in the graph

correspond to goals or complex actions. Typically the lowest

decomposition level is formed by elementary actions, which,

in the case of a robot, match with its elementary perception

and action capabilities, for example object detection, face

recognition, object grasping, moving toward a point in the
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Fig. 3. Jason agent reasoning cycle [16]

space and so on. Instead, abstract plans are plans which can

be specialized.

A plan for achieving gi , can be written according to the

Jason formalism:

+!gi : ci←− bi (2)

An agent operates by means of its own reasoning cycle (Figure

3); through that, it can update its beliefs base, achieve goals

by selecting plans whose context ci are matching with the

current state of the interaction, described through the beliefs.

The agent acts with respect to the body bi of the selected

plan, which is the course of actions/sub-goals needed for

achieving the goal gi. The reasoning cycle can be extended

and customized, for implementing a specific reasoning logic.

Notice that is possible to write several relevant plans with

the same goal to achieve, but different contexts or bodies.

Relevant plans become applicable plans, if their context is a

logical consequence of the agent’s belief base.

In addition to the plans for achieving goals, an agent can

trigger plans for reacting to every change in its belief base,

corresponding to a change in the current state of the world. The

Jason’s formalism for plans used for reacting to environment

changes is:

+!β j : c j←− b j (3)

In this way an agent implements the two fundamental aspects

of reactiveness and proactiveness: the agent has goals which it

tries to achieve in the long term, while it can react to changes

in the current state of the world. Finally, an important feature

of Jason platform is the capability to integrate a speech-act

based communication [21], which enables knowledge transfer

between agents.

The Client and the Contractor in the computational model

can exploit a shared environment, programmed in CArtAgo,

which is a collection of artifacts. Artifacts are entities mod-

elling services and resources for supporting agents activities.

Artifacts have the main property to link the low-level control

part of the robot with its high-level decision making system.

Indeed, the robot is provided with its own APIs, for collecting

data from sensors, and acting in the real world. APIs can be

Fig. 4. Goal recognition strategy

wrapped in specific artifact’s functionalities, which become an

abstraction of the elementary actions the robot can perform in

the real world. The contractor agent representing the robot,

can exploit elementary actions to update its beliefs base or to

carry out complex goals or actions. The possibility to equip

the robot with a self-representation and a model of other agent

involved in the interaction, is really powerful and introduces a

further important feature which can lead its decision process:

a human-like description of itself.

B. Decision making strategy

As analyzed above, the contractor represents a bridge be-

tween the real world and the computational model and allows

the latter to have an high-level description of the perceived en-

vironment. Instead, the client has the main function to support

the decision about τi adoption level. The client is profiled by

exploiting a classical approach to User Modelling [22] which

can be applied to its cognitive ingredients: beliefs, goals and

plans are mapped with respect to the domain in which the

robot is operating. While beliefs and goals of a client represent

the mental state attributed to the user, its reasoning cycle

implements a logic that makes the robot able to reason about

goals of the current interlocutor. In practice, modifying the

reasoning cycle means to adapt the architectural components

shown in figure 3. For τ f computation, we implemented a

context-dependent plan recognition [23] strategy relying on:

• representing real agents of the interaction, in the robot’s

mind, included the robot itself,

• the capability of the agents in the computational model

to share their mental states between them by speech-act

communication functionalities,

• the possibility to abstract real actions in a shared simu-

lated environment available to the agents.

Figure 4 shows the activity diagram of the strategy used by the

robot to adapt its level of task adoption. Once the interaction

starts and the user delegates τi to the robot, the first step of τ f

calculation is to activate the contractor into the computational
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model. This agent, with its own initial beliefs, triggers a plan

for adopting the initial task τi

+!adoptTask(τi,U) : true←− send(U,τi,Rbb). (4)

The contractor has the intention to adopt the task τi delegated

by the user U . The plan’s body allows the contractor to send

to the agent U , τi and the beliefs stored in its belief base

Rbb. At this point, the decision process is temporarily moved

into the client U . The task τi could be completely specified

by the user or the user could delegate to the robot a task in

which some entity is not declared. For example he/she could

delegate the goal ”put the red object on the table” or ”put

an object on the table”. In this case the robot has to reason

about the task specification, on the basis of the user profile

represented by the client’s beliefs, goals and plans. Already at

this stage, the robot shows the capability to provide more help

than delegated, requested by the task specification. Once τi is

completely specified, the client agent exploits its reasoning

cycle to explore the plan library in order to find at least a

plan of which τi represents a top-level goal or a sub-goal

to achieve before accomplishing a complex one. Once found,

plans related to τi are selected. Their context is checked with

respect to the current state of the world (remember that the

client agent can reason about beliefs sent by the contractor

agent too) and the belief attributed to the client representation.

Once found an applicable plan among them, the client sends

to the contractor the task τ f , associated to the selected plan.

τ f can match with τi or not. This strategy allows the real robot

to potentially extend its proactivity realizing an over-help, or

at least a literal help. Notice that the ”action” that the client

performs in the model is to send to the contractor the message

carrying in τ f . The plan for sending τ f is:

+! f inalTask(τ f ) : true←− send(Contractor,τ f ) (5)

The final decision about τ f the implementation is up to the

contractor again, which tries to execute a plan. On the basis

of the current state of its belief base, the contractor chooses,

among the relevant plans, the one applicable to the context.

The context of every plan in the contractor’s library takes

into account the beliefs describing the capabilities of the robot

itself and its internal status. If an applicable plan exits, then τ f

becomes the final task to pursue: the selected plan can match

or not with the one attributed to the client and the robot can

satisfy τ f modifying or not the plan of the user: in the first

case it will implement a literal or an over help; in the second

one it will implement critical or over-critical help. If the robot

does not have the resources to execute the task calculated,

it will execute a sub-task of τ f , implementing a sub-help or

critical sub-help. If a plan for achieving τ f does not exist, the

robot starts an interaction with the user.

In conclusion, by exploiting the plan recognition technique

already described, the robot can identify possible goals/plans

of the user, which do not necessarily match with the delegated

task. They can be goals outstanding the delegated task, because

the real agent decided it can adopt the task at a different

level of help. However, there is a trade-off between pros and

Fig. 5. Interactive map

cons in extending the level of task adoption; possible conflicts

can emerge when the robot provides less or more help than

delegated. Conflicts can arise for several reasons [11]. For now,

we just start from the assumption that the user appreciates the

collaborative initiative of the robot, but sometimes the robot

can make a mistake in classifying the user it is interacting

with, because of its limited perceptive skills. As we will see in

the next section, the computational model stem this limitation

without losing its ability to go beyond the task delegated by

the user.

IV. EXPERIMENTAL SETUP AND APPLICATION SCENARIO

Our computational model has been tested on a well known

robotic platform: the humanoid robot Nao [24]. We figured a

scenario where the Nao robot serves as an ”infoPoint assistant”

that could help people to get information about restaurants,

museums, historical monuments to visit and nightclubs, in

the city of Rome. We choose this domain for three main

reasons: first of all, as mentioned in the introduction, tourism

and hospitality companies have started to adopt robots and

AI services in the form of chatbots, robot-concierge, self-

service information/check-in/check-out systems and so on;

second, this domain allowed us to make experiments with a

real robot by overcoming the technological limitations related

to the robotic platform (grasping issues, navigation issues).

Furthermore, robot as touristic assistant can figure several

possible scenarios, of which providing information is only a

part.

Through the use of a simple interactive map (figure 5), the

robot shows to the user where the requested point of interest

(POI) is placed and indicates the path to the destination.

It suggests the less busy way (dashed path), starting from

the infoPoint (marked landmark) to the POI. The map is

partitioned in zones, encoded by landmarks that Nao can easily

recognize and associate to integers (e.g. 68, 80, 107). Every

point of interest is associated to a particular area of the city

populated by restaurants, museums and so on. The map is

interfaced to a specific artifact exploited by the contractor

agent to make it accessible. POIs are described in the belief

base of the contractor through expressive annotations. For

instance, to a restaurant can be associated a tuple of the

form restaurant(name, category, location, capacity, target,

state), where category describes the restaurant’s typology,

state indicates if it’s open or closed, target the audience
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τ f if 0.7≤ Accs ≤ 1.0

Q1 en joyT heCity : c1 ←− f indRestaurant(laSoraLella,68,Typical); f indPlaceToVisit(araPacis,68,historical).
Q2 en joyT heCity : c1 ←− f indRestaurant(laParolaccia,68,Typical); f indPlaceToVisit(araPacis,68,historical).

τ f if 0.0≤ Accs < 0.4

Q1 en joyT heCity : c1 ←− f indRestaurant(laSoraLella,68,Typical); f indPlaceToVisit(SantaCecilia,68,church).
Q2 en joyT heCity : c3 ←− f indRestaurant(AngoloDelVino,68,Typical); f indMuseumToVisit(MuseoDal,68,art).

τ f if 0.4≤ Accs < 0.7

Q1 en joyT heCity : c1 ←− f indRestaurant(laSoraLella,68,Typical); f indPlaceToVisit(piazzaTrilussa,68,square).
Q2 en joyT heCity : c1 ←− f indRestaurant(Otello,68,Typical); f indPlaceToVisit(piazzaTrilussa,68,square).

TABLE I
TASK ADOPTION RESULTS

for whom it is addressed (e.g. singles, couples, groups) and

capacity if it is small, big or medium.

The robot can interact with different kind of users: for

instance, it can give information to tourists and citizens. Since

our goal is to demonstrate the flexibility of the computational

model, without loss of generality we leverage on a simplified

user encoding, based on colors and numbers. Tourists are

encoded with a red shirt and citizens with a green one.

Moreover, people can have different mental states, depending

on their characteristics and attributes, i.e. the age, the marital

status and so on. In our case study we exploited the marital

status in order to classify the interlocutor as i) single, ii) in

couple, iii) with family and iv) in group. The marital status

is represented by a number on the shirt: 1 for singles, 2 for

couples, 3 for families and 4 for groups. In conclusion, the

robot can perceive the user as, for instance, a single citizen, or

a tourist on holiday with his own family. The robot can make

mistake in perceiving the user. For mapping this perceptive

process into the model, two beliefs, in the contractor agent,

are updated when the robot detects the user:

userCategory(Uc,Accc) and maritalStatus(S,Accs)

The first one indicates if the user is a tourist or a citizen, the

second one indicates its marital status. The robot classifies

the user’s attributes with a certain accuracy, expressed by

Accc and Accs. We conducted a test in which the robot could

interact with tourists or citizens with different marital status.

Hereinafter we describe the scenario where the robot interacts

with a tourist who is single and asks it to achieve the result

to find a restaurant. Moreover, we took in consideration the

case where the robot was able to correctly recognize the user

as a tourist, but it could classify its marital status at different

levels of accuracy Accs. The user asks to the robot:

• Q1: ”I would like to go to La Sora Lella restaurant”

• Q2: ”I would like to go to eat something in Trastevere”

Questions imply two different τi delegation:

• Q1: f indRestaurant(”LaSoraLella”,68,”Typical”)
• Q2: f indRestaurant(””,68,””)

In the plan library of the agent representing the real user, a

plan π1 is present which has the result to enjoy the city, eating

in a restaurant and visiting a monument:

π1 :en joyT heCity : c1←−

f indRestaurant(Name,Location,Category);

f indPlaceToVisit(Name,Location,Category).

This means that the robot attributes this plan to the user and

maps it in the client agent. Notice that, in the client’s plan

library, can be attributed several plans with the same goal of

enjoying the city, but different contexts and bodies. Last, the

robot choses the relevant plan to execute as depicted in section

III.

Table 1 shows the level of τi adoption related to the situation

described above. In all cases where the delegation is univocal

(Q1), the robot can go beyond the delegation, without changing

the client’s plan (over-help). When the delegation is vague (Q2)

the robot is still able to extend its help: indeed, it can use

the few task specifications in order to find a restaurant which

better adapts to the user, by considering the accuracy which it

has been classified. For example, when 0.0 ≤ Accs < 0.4 the

robot exploits the ”stereotype” of a tourist representation in

its decision making system and chooses a typical restaurant

(typically a tourist wants eat in typical restaurants) targeted

for couples instead of single people. Vice versa it chooses a

restaurant targeted for singles when it is almost sure that the

user is effectively single (0.7 ≤ Accs ≤ 1.0). Finally, when it

cannot distinguish singles from couples, it chooses a restaurant

suitable for a generic target audience. Notice that, when the

robot does not find any monument to visit, it still does more

than delegated, by finding a museum to visit, instead of a

monument: it realizes an over help and in addition it modifies

the plan attributed to the user (over-critical help).

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a cognitive model which inte-

grates the concept of adjustable social autonomy as a basis for

an effective human-robot interaction. Exploiting the notions

of task delegation, adoption and the theory of mind, the

computational model has proven to be really adaptive and

flexible, giving to the robot the capability to adjust its level of

help on the basis of several dimensions of the cooperation. The

computational model is knowledge-dependent, but domain-

independent: the agent’s mental state can be extended, in order
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to make it applicable across a number of domains and real

situations.

Since the computational model can be exploited in order

to build robots that have as their main goal the positive

collaboration with the user, the next step of our work will be

to introduce the concept of trust in the model. The notion of

trust is strictly related to delegation. More precisely, delegation

is the result of a complex mental state, described as a set of

beliefs, goals and decisions: in one word, trust. A possible

strategy to integrate trust in the computational model could

be exploit the third multi-agent programming dimension, the

organizational one, in order to define a set of behavioral con-

straints that the agent belonging to the computational model

adopts when they reproduce the real interaction. Moreover,

considering that specifying plans in the representation of the

real actor can be a limit, we aim at introducing of a more

dynamic approach for plan selection, more adapt to complex

and uncertain real scenarios. Finally we aim at introducing

some form of learning in order to improve the ability of the

robot to reason about other agent’s behaviors, goals, beliefs

and decide what level of task adoption it will be necessary

and more adapt to entire context of the cooperation.
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