
A Scalable and Distributed Actor-Based Version of

the Node2Vec Algorithm

Gianfranco Lombardo

Department of Engineering and Architecture

University of Parma

Parma, Italy

gianfranco.lombardo@unipr.it

Agostino Poggi

Department of Engineering and Architecture

University of Parma

Parma, Italy

agostino.poggi@unipr.it

Abstract—The analysis of systems that can be modeled as
networks of interacting entities is becoming often more important
in different research fields. The application of machine learning
algorithms, like prediction tasks over nodes and edges, requires
a manually feature extraction or a learning task to extract them
automatically (embedding techniques). Several approaches have
been proposed in the last years and the most promising one
is represented by the Node2Vec algorithm. However, common
limitations of graph embedding techniques are related to memory
requirements and to the time complexity. In this paper, we
propose a scalable and distributed version of this algorithm called
ActorNode2vec, developed on an actor-based architecture that
allows to overcome these kind of constraints. We demonstrate the
efficacy of this approach with a real large network by analyzing
the sensitivity of two algorithm’s parameters (walk length and
number of walks) with a comparison with the original algorithm.
Results shows an average reduction between the 65% and the
82% in terms of the required computational times.

Index Terms—Network science, embedding, graph embedding,
node2vec, actodes, distributed systems, data mining, complex
systems, random walk,actor model

I. INTRODUCTION

Real systems are often characterized by heterogeneous or

similar entities that interact with each other. These interac-

tions, with their characteristics and the possible feature of

the entities, are the key factors to discover the dynamics

of these systems. These types of systems are pervasive in

various disciplines such as sociology, health science, computer

science, physics and finance. For this reason, the study of

the, so-called, complex systems is gaining increasing interest

in various research fields. The analysis of complex systems

involves often the use of networks or graphs to model the

behavior of the system. The basic idea is describing the

entities in form of nodes and their interactions and dynamics

with (un)directed edges. For decades the study of graph-data

has been limited to analysis of the network topology with

structural metrics that are capable of extracting connectivity

patterns among the system entities. More recently, with the

development of machine learning techniques, it is emerged

the idea of taking advantages from this kind of structures,

also to perform prediction tasks and knowledge discovery. For

example in [1] and [2] the authors analyze a Facebook group

of patients to extract new knowledge about their emotional

state and disease temporal pattern by modeling them in two

attributed networks: an interaction network and a friendship

network. In [3] the authors analyze the same community in

order to extract the giant component without using topology

information with a bio-inspired algorithm. In [4] the authors

uses a temporal network to model the USA financial market in

order to discover correlations among the dynamics of stocks’

cluster and to predict economic crises. In [5] the authors

modeled the interaction between proteins as a network, with

the aim of automatic predicting a correct label for each protein

describing its functionalities. In light of this, this formulation

of the complex systems enables analysis that keep in consider-

ation not only the features of the entities (nodes), but also the

relationships that get established among them. For this reason,

the application of machine learning techniques to structured

data, such as node classification task and link prediction, rep-

resents one of the most challenge in Data Mining and Network

Science. Traditionally these tasks have been performed using

statistical model with a manual extraction of features based

on the network topology (e.g degree, clustering coefficient,

modularity). During the last years, thanks to the adoption of

neural networks in other data mining contexts, several works

have highlighted the importance of performing previously a

Representation Learning task to extract automatically features

from networks that can preserve local and global information

from the graph topology. The most promising approaches are

represented by the embedding techniques, with the aim of

learning nodes and edges representations in a n-dimensional

euclidean space. To the best of our knowledge, the State of

Art in this field is represented by the Node2Vec algorithm [6].

However, the main limitations of graph embedding techniques

are related to memory constraints and the increase of compu-

tational times that make sometimes infeasible the application

of this techniques on real and large networks. In this paper, we

propose a scalable version of the Node2Vec algorithm based

on a distributed actor-based framework: ActorNode2Vec. This

version of the algorithm, has been developed on ActoDeS

[7], a framework for the development of large concurrent

and distributed systems. We demonstrate the efficacy of this

approach with a real large network (Enron network [8]) by

analyzing the sensitivity of two algorithm’s parameters (walk

length and number of walks). Results show a significant

improvement in terms of reduction of computational times and

Workshop "From Objects to Agents" (WOA 2019)

134



the overcome of the memory constraints in the case of a real

large network.

II. GRAPH EMBEDDING

Combining machine learning and graph analysis techniques

to work with networks is challenging since decades and two

main general approaches have been proposed in literature:

• Ad-hoc learning models for graph: Building new learn-

ing models that can take directly a network as input and

that are specialized in prediction tasks on graph-data.

The most important advances in this case are represented

by the Graph Neural Network Model [9] that makes a

mapping of the network topology as units of a Recurrent

Neural Network and Graph Convolutional Network [10]

that takes the adjacency matrix and nodes specific fea-

tures as input to learn prediction tasks by using different

kinds of convolution operations in the graph domain.

• Embedding techniques for non-euclidean data: The

idea of finding a latent vector representation that is able to

capture the key features of the data is common in different

Data mining and Machine Learning tasks (e.g Natural

Language Processing, Computer Vision, Dimensionality

Reduction). The main reason of this approach lies on the

need of use the well-known machine learning models (e.g

SVM, decision trees, regression models and neural net-

works) that requires an euclidean feature representation

to work with non-euclidean heterogeneous data, such as

text, graph-data, collection of images, database records.

In this paper we will refer to this approach.

Graph embedding techniques can be divided in two general

sectors: Factorization based Methods and Random walk

based methods. Algorithms of the first case obtain the em-

bedding by factorizing specific matrix of the graph, like the

Adjacency matrix, Laplacian matrix or the node transition

probability matrix. Approaches to factorize the representative

matrix vary based on the matrix properties. If the considered

matrix is positive semi-definite, e.g. the Laplacian matrix,

one can use eigenvalue decomposition. In other cases it is

possible to factorize using gradient descent methods. Some

examples of this kind of embedding algorithms are LLE [11]

which preserves first-order proximity and LINE [12] which

preserves also the second-order proximity in the graph. In-

stead, algorithms of the second case obtain a graph embedding

by generating walks on the edges randomly and processing

them using different learning models to extract and preserve

key feature of the graph. The main advantages of random

walks are that are useful to approximate many properties in

the graph, including node centrality and similarity and the easy

generation of them. This approach is gaining interest for its

simplicity and thanks to the adoption of the Skip-gram model

[13] as learning model, largely used in text embedding yet.

The key innovation of this approach is optimizing the node

embeddings so that nodes have similar representations if they

tend to co-occur on short random walks over the graph. To

the best of our knowledge the best algorithm that outperforms

the State of Art in graph embedding is Node2Vec [6] that is

a random walk based algorithm.

III. THE NODE2VEC ALGORITHM

The Node2Vec algorithm aims to learn a vectorial rep-

resentation of nodes (edges) in a graph by optimizing a

neighborhood preserving objective. It extends the previous

node embedding algorithm DeepWalk [14] and it is inspired

to the State of Art word embedding algorithm Word2Vec [15].

From the last one, Node2Vec retrieves the Skip-gram model

[13] and the idea of learning embeddings by analyzing the

relationships among the entities in the form of sequences and

the use of a shallow neural network model. Infact, Word2Vec

learns word embeddings by analyzing the context of each word

in a corpus. It predicts the current word from a sliding window

of surrounding context words. The key idea of applying this

model in the graph domain is to build something similar

to a text corpus (a set of word sequences) by performing

random walks on the graph. The result can be thought as

a set of word sentences where words are substituted with

nodes that compose the walk. The innovation of Node2Vec

with respect to DeepWalk is in the method that is used to

build biased random walks on the network. In the previous

one infact, random walking is obtained by a uniform random

sampling over the linked nodes, while Node2Vec combine two

different strategies for the network exploration: Depth-First-

Search (DFS) and Breadth-First-Search (BFS), see Figure 3. It

uses also a second-order Markov chain and the Alias sampling

to select the next node to be visited in the walk. The main

parameters of the algorithm are presented in Table I, while

the main steps of the algorithm are the following:

1) Probabilities computation over edges with a second-

order Markov chain.

2) Alias sampling and random walks generation.

3) Embedding with the Neural network model.

TABLE I
MAIN PARAMETERS OF NODE2VEC

Parameter Description

Dimension Dimension of the embedding space

Number of walks N◦ of walks to be generated per each node

Walks length The desired length for each walk

P (Return parameter) Controls the likelihood of immediately
revisiting a node in the walk.

If high more DFS, else more BFS exploration

Q (In-out parameter) If Q higher than 1 more BFS
else more DFS exploration

A. Probabilities computation

In order to feed the neural network for the embedding

step, Node2Vec has to perform a fixed number of random

walks starting from each node, with a fixed length. These

walks are based on a second-order Markov chain that takes in

consideration the parameters P and Q to mix the two different

search strategies introduced previously. To achieve this result,

the first duty of the algorithm is to generate all of the required

probabilities over the edges for the next step of random walks

Workshop "From Objects to Agents" (WOA 2019)

135



Fig. 1. BFS and DFS search strategies from node S.

generation. Formally, given a source node t, that can be also

an intermediate step for other walks, a 2nd order walk has to

be generated by considering the 2nd order neighborhood of

node t. Let c0 = t and c1 = v, where v is a first order neighbor

of node t. The next edge to be traversed is chosen by the

following distribution:

P (Ci = x|Ci−1 = v) =







ωvx · αpq(t,x)
Z

if(v, x) ǫ E

0 otherwise

(1)

where ωvx is the edge weight, Z is the normalizing constant

and αpq(t, x) is the search bias function. The bias function α

is defined with the aim of joining BFS and DFS strategies:

αpq(t, x) =























1
P

if dtx = 0

1 if dtx = 1

1
Q

if dtx = 2

(2)

Where dtx is the geodesic distance between the starting node

t and the considered node x. An example of this step is

presented in Figure 2. At the end of this phase, each edge of

the networks has a set of values that describe the probabilities

for the edge to be traversed during a random walk, depending

on the source node. This computational step represents the first

bottleneck of the algorithm in terms of memory and required

computational times because it depends on the dimension of

the network (nodes and edges number) and on its density.

How to overcome the emerging limits of this calculus, while

analyzing a large network, will be further explained in the V

section.

B. Generation of the random walks

Once that a set of probabilities is associated to each edge

depending on the second-order neighborhood of each node,

Node2Vec is ready to perform effectively the random walks

based on the Number of walks and Walks length parameters.

To sample the edges to be traversed from the probability

distribution obtained in the previous step, the algorithm uses

the Alias method [16]. This method enables the algorithm to

sample efficiently from the discrete probability distribution by

building and consulting two tables: the probabilities table and

Fig. 2. Example of the calculus of probabilities over edges with a second-
order Markov chain

the alias table. To take a decision the algorithm uses a system

based on a biased coin to be flipped. At the end of this phase,

random walks get collected in a structure that plays the role

of a sentences corpus in text mining, where sentences are

composed by an ordered sequence of nodes that have been

traversed by each walk.

C. Embedding with Neural networks

The neural network model used by Node2Vec is exactly

the same of Word2Vec [15]. The basic idea is to train a

simple neural network with a single hidden layer to predict

the most probably word that follows the input one, but then

the algorithm does not use this model for the task we trained it

on. Instead, the goal is actually just to learn the weights of the

hidden layer that will represent our euclidean representation

of the input. The training set is composed by words pairs

(x,y) where x is the input word and y is a nearby word of

x in a fixed window in each sentence of the corpus. In the

case of Node2Vec the operation is the same but the algorithm

uses node pairs and the corpus is composed by the previous

calculated random walks.

IV. ACTODES OVERVIEW

ActoDeS (Actor Development System) is a Java software

framework for the development of concurrent and distributed

applications [17], [18] that has been experimented in different

application domains (see, for example, [17], [19], [20], [21]).

This software framework allows the definition of applications

where the computation is distributed on some concurrent

objects (from here called actors), derived from the actor model

[22] and are implemented on the top of some preexisted Java

software libraries and solutions for supporting concurrency and

distribution. These actors interact by exchanging asynchronous

messages and, after their creation, can change several times

their behaviors until they kill themselves. Each behavior has

the main duty of processing the incoming messages that match

some message patterns. Therefore, if an unexpected message

arrives, then the actor maintains it in its mailbox until a

behavior will be able to process it, or a behavior kills the

actor. The processing of the incoming messages is performed

through some message handlers. In response to a message, an

actor uses the associated handler for: sending other messages,

creating new actors, changing its local state or its behavior,

Workshop "From Objects to Agents" (WOA 2019)

136



setting a timeout within receiving a new message and finally

killing itself. In particular, when a timeout fires, the actor sends

automatically a timeout message to itself and the correspond-

ing message handler is executed. Depending on the complexity

of the application and on the availability of computing and

communication resources, an application can be distributed

on one or more actor spaces. Each actor space corresponds to

a Java virtual machine and so a system distributed on some

actor spaces can be deployed on one or more computational

nodes. An actor space acts as container for a set of actors

and provides them the necessary services for their execution.

In particular, an actor space performs its tasks through three

main run-time components, (i.e., controller, dispatcher and

registry) and through two run-time actors (i.e., the executor

and the service provider). In particular, the controller manages

the execution of an actor space. In particular, it configures

and starts the run-time components and the actors of the

application, and manages its activities until the end of its

execution by using different communication technologies (the

current release of the software supports ActiveMQ, MINA

RabbitMQ, RMI, and ZeroMQ). The registry is a run-time

component that supports actor creation and message passing.

In fact, it creates the references of new actors and supports the

delivery of those messages that come from remote actors, by

mapping each remote reference onto the local reference of the

final destination of the message. The executor actor manages

the execution of the actors of an actor space and in some cases

creates its initial set of actors. Finally, the service provider

actor provides am extensible set of services to the other actors

of the application that allows them to perform new kinds of

actions (e.g., to broadcast or multi-cast a message and to move

from an actor space to another one). The development of a

standalone or distributed application consists in the definition

of the behaviors assumed by its actors and in the definition

of few configuration parameters that allow the selection of

the more appropriate implementation of the actors and of the

other run-time components of the application. This solution

allows the optimization of some or others execution attributes

of an application (e.g., performance, reliability and scalability).

Moreover, the deployment of an application on a distributed

architecture is simplified because an actor can move to another

computational node and can transparently communicate with

remote actors.

Fig. 3. The actor space structure in ActoDeS.

V. ACTORNODE2VEC

In this section, we present our contribution in the develop-

ment of a distributed actor-based version of the Node2Vec

algorithm, ActoNode2Vec, with the aim of improving per-

formance in terms of the required computational times and

scalability. In order to achieve this result we started by

analyzing the three different phases of the algorithm in order

to detect the main bottlenecks of the algorithm.

A. Computational limits of Node2Vec

Although Node2Vec is presented as a scalable algorithm,

the original formulation and implementation involve the use

of a multi-threading solution only for the second phase of

the random walk generation (workers parameter) to reduce

the computational times. However experimenting Node2Vec

with large networks it is immediately clear that the first phase

of the probabilities computation is the most critical point

of the architecture. This issue is due to the construction of

the required probability distribution presented in equation 1.

The use of a second-order Markov chain considering the

second-order neighborhood of each node, inevitably has the

consequence of leading to a heavy dependency on the number

of nodes and in particular on the network density. Increasing

the dimension of the network (number of nodes and edges) in

fact, leads to two main critical issues:

• Memory requirements become computationally un-

feasible: Memory availability represents often a critical

point in large networks mining. Requirements become

infeasible on a single calculus node when the probability

distribution construction requires to store a vector of

probabilities on each edge depending on the second order

Markov chain.

• The explosion of algorithm’s time complexity: Re-

quired time to construct the probability distribution in-

creases depending on the dimension of the graph and on

random walks parameters (e.g number of walks and walk

length)

In light of this, this phase of the algorithm represents a

first considerable bottleneck of the algorithm. Our proposal

is to overcome this issue using an actor-based architecture

that enables a reformulation of this step. The key idea is to

distribute the computation of the probabilities distribution in

equation 1 using several specialized actors that take the burden

of this computation each one for a subset of actors without the

need of a preliminary ordering of nodes in the graph.

B. The actor-based architecture

In order to implement an actor-based solution, we have

defined different actor behaviors and elements that compose

the software architecture:

• Remote Launcher: It represents the algorithm initializa-

tion point, it has the duty of deciding how many and

which computational nodes have to be involved in the

execution of the algorithm.

Workshop "From Objects to Agents" (WOA 2019)

137



• ActoDeS Broker: It is a software component imple-

mented in ActoDeS that has the duty of initializing

communications among the actor spaces.

• Node2Vec Initiator: This behavior has the duty of ini-

tializing the algorithm. It requires some starting messages

from the remote launcher to set the Node2Vec parameters

and the input. network to embed. The actor space that

contains the unique actor with this behavior is defined as

the primary actor space.

• Actorspace Initiator (AI) : It has the duty of initializing

the necessary actors for the algorithm in the actor space

that do not contain any Node2Vec Initiator (secondary

actor spaces). In detail it has the burden of creating the

actors that are responsible for the probabilities computa-

tion.

• Coordinator: This behavior represents the core behavior

of the algorithm. Once the initialization operations are

terminated, it has the duty of managing all of the actors

in the architecture and of managing the entire graph

embedding process.

• Probabilities Manager (PM) This behavior represents

the reformulation of the Probabilities computation in the

original Node2Vec algorithm. Each actor that assumes

this behavior has the duty of computing probabilities

only for a subset of nodes, considering their second-order

neighborhood.

C. Starting and initialization steps

The execution of the algorithm is performed by the Remote

Launcher (RL) introduced in the previous section. The RL

represents a server application that has the duty of reading the

input network from the memory, of choosing the embedding

parameters and of initializing different ActoDeS actor spaces

in the distributed network. It initializes the primary actor

space, requiring the creation of the Node2Vec initiator on it

and by sending to this actor the graph and the parameters.

At the same time, the RL initializes an ActoDeS broker on a

secondary actor space to establish the communication among

the different actor spaces that build the architecture (Figure

4). After this step the RL main duties are concluded and it

can wait a notification of the algorithm’s termination. At the

same time, the Node2Vec Initiator actor requests the creation

of an Actorspace Initiator on each secondary actor space and

sends to each one the entire graph to be embedded and the

Node2Vec parameters. The previous ActoDeS broker become

another Actorspace initiator for its actor space. These different

Initiators generate several Probabilities Manager actors (PM)

to prepare the architecture for the next steps. The number of

actors that are created is a parameter, but the default value

is equal to the number of available logical CPUs on the

network node. Each PM actor receives the entire graph and

the other parameters. This design choice is motivated by the

next steps of the algorithm and in particular to do not have to

order the nodes of the graph,that would make computational

complexity exponential. Not only, this choice is due also to

take advantages from the shared memory of the actors on a

single node because operation on the graphs are read-only.

(See Figure 5).

Fig. 4. Starting step and creation of the actor spaces

Fig. 5. Initialization step of ActorNode2Vec

D. Distributed and actor-based probabilities computation

This step represents the key difference between the original

version of the algorithm and our proposal. In light of the limits

presented previously, we propose a reformulation of this step

where the required probability distribution is computed not

on a single thread and neither with a multi-thread solution

but dividing and distributing the entire computation. The

simple multi-thread solution on a single computational node

has been excluded because it does not permit to overcome

the memory issue presented in section A in the case of a

large network. We defined a specialized typology of actor’s

behavior (Probabilities Manager or PM) that has the duty of

computing probabilities for a subset of the graph nodes. Once

the initialization step is terminated, the Node2Vec Initiator

changes its behavior into Coordinator. This last actor, as its

name suggests, it is the real execution responsible of the

following algorithms step. Its first action is to receive all of

the PM’s references from the Actorspace Initiators and then it

kills the latters as they are no longer necessary. Secondly, the

Coordinator sends all of the actors references to each PM actor.

This operation is necessary to enable the PMs to understand

which subset of nodes are under their responsibilities for the

probabilities computation. The Probabilities Managers behav-

ior will be explained in detail in the next section. Once the

probabilities have been calculated for each second-order node

Workshop "From Objects to Agents" (WOA 2019)

138



neighborhood by the PMs, they send them to the Coordinator

that builds effectively the probability distribution for the next

steps. Figure 6 describes this phase of the algorithm.

Fig. 6. Distributed and actor-based probabilities computation

E. Probabilities Managers behavior

Probabilities Managers have the duty of computing proba-

bilities following the second-order Markov chain model pre-

sented in equations 1 and 2. Each one is responsible for

a subset of the graph nodes. PMs know the references of

each other in order to identify the number of actors involved

in that calculus and to divide the nodes set. This choice

permits to avoid nodes ordering that is an operation that

grows exponentially with the number of nodes. In this way,

each PM has the visibility of the entire graph to consider

the neighborhood of each node and it is computationally

efficient using the advantages of the shared memory among

the actors on a single working node. The nodes set is divided

by each PM using an ordered list of the other involved PMs

references, so each actor is able to detect the subset under its

responsibility and who are the responsible for the other nodes.

Once probabilities have been computed by each actor using

for the first-order neighborhood the edges weights and for the

second-order the Markov chain model, they also prepare the

probability distribution to be sampled with the alias method.

The output of each PM in fact, are two data structures, one for

the probabilities and one for the related alias as the method

requires [16]. At the end each PM sends these two structures

to the Coordinator, which has the duty of collecting and

joining them in a single probability distribution. To summarize,

Probabilities Managers compute probabilities for a subset of

nodes and edges but they compute also the alias probabilities

to improve the following sampling process.

F. Random walks generation and embedding phase

Once the Coordinator received all of the required probabil-

ities, it builds the probability distribution to be sampled for

the random walks generation. It implements the biased coin

system to sample from the probabilities or from the alias data

structures and generates the random walks from each node

with a fixed length, depending on the algorithm’s parameters.

After that, the Coordinator collects all of the random walks

in a corpus and feed the Neural Network model based on

Word2Vec described previously. The embedding phase can

represent the second bottleneck of the system in terms of time

complexity, in particular depending on which technologies are

used to implement the model. Some approaches to resolve this

other issue are presented in the future developments section.

VI. EXPERIMENTATION AND RESULTS

We experimented ActorNode2Vec with a well-known large

network ”Enron”, to demonstrate the benefits of the actor-

based solution and its efficiency in terms of time complexity.

Memory issues are overcome by the scalability of the actor-

based solution.

A. The Enron Email dataset

The Enron Email dataset is a large collection of over

600,000 emails generated by the past employees of the Enron

Corporation and acquired by the Federal Energy Regula-

tory Commission during its investigation after the company

bankruptcy in 2001. This collection has been processed for

several scientific studies (e.g [8], [23]), analyzing discussion

threads and the content of the email. These works have

identified the most important component in about 37 thousands

of email addresses. In particular in [23] they modeled this

component as a graph by considering each email address as a

node (36692 nodes), and the emails exchanges as undirected

edges (183831 edges). Currently it is considered one of the

most important standard network in Network Science.

B. Experiments setup

In order to compare Node2Vec and ActorNode2Vec with the

Enron network we used a computer cluster with 4 linux nodes.

The most performing one (Node 1) has been used to execute

Node2Vec and The coordinator of ActorNode2Vec, the others

to execute the Remote Launcher, the ActoDeS broker and

the secondary actor spaces for the probabilities computation.

Hardware specifications are the followings:

• Node 1: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

with 8 cores per socket, 2 threads for each core, 64 GB

of RAM

• Node 2: Genuine Intel(R) CPU T1300 @ 1.66GHz, with

4 cores per socket, 1 threads for each core, 16 GB of

RAM

• Node 3: Genuine Intel(R) CPU T1300 @ 1.66GHz, with

4 cores per socket, 1 threads for each core, 16 GB of

RAM

• Node 4: Genuine Intel(R) CPU T1300 @ 1.66GHz, with

4 cores per socket, 1 threads for each core, 16 GB of

RAM

C. Results

In order to compare the two versions of the algorithm, we

choose an initial configuration of the parameters:

• Embedding dimensions : 100

• P : 1

• Q : 1

• Walk length: 10

• Numbers of walks: 10

Workshop "From Objects to Agents" (WOA 2019)

139



TABLE II
REQUIRED TIMES WITH THE INITIAL PARAMETERS CONFIGURATION

Probabilities and rand. walks Embedding Total

Node2Vec 244.23 s 390.87 s 635.10 s

ActorNode2Vec 58.3 s 69.62 s 127.92 s

TABLE III
REQUIRED TIMES WITH EMBEDDING DIMENSIONS @300

Probabilities and rand. walks Embedding Total

Node2Vec 481.22 s 745.16 s 1226.38 s

ActorNode2Vec 60.28 s 823.75 s 884.03 s

In particular with parameters P and Q equal to one, we can

assume that the DFS and BSF strategies are used uniformly in

the random walks generation. This particular choice of param-

eters enable us also a comparison with Deep Walk algorithm

where the two searching strategies are balanced. However P

and Q do not affect the algorithm’s performance. Results of

this first comparison are in Table II. In this first experiment

ActorNode2vec required about the 80 % less time to embed

the Enron network. In this first case the improvements seem to

be related both to a minus time in probabilities computation

and in the embedding phase. We have further analyzed this

case by increasing the number of embedding dimension to

300. In such way the embedding phase take several minutes

in both versions of the algorithm because it represents the

number of neurons in the hidden layer of the adopted Multi-

layer perceptron. It is also to report that training and inference

of the statistical model could be more efficient in Python

with the Gensim implementation of the neural network than

in Java. Results of this case are in Table III. In fact, in this

case ActorNode2Vec took about the 28 % less than Node2Vec,

however the improvements are related only to a minus required

time of the actor-based probabilities computation.

D. Sensitivity analysis of the parameters

In light of the results presented in the previous section, we

experimented ActorNode2Vec and Node2Vec with the same

initial configuration set of the parameters, but further analyzing

the results by changing the number of walks and the walks

length in a range between 1 and 50. Results concerning the

walk length sensitivity are presented in Figure 7, while the

others concerning the numbers of walks in Figure 8. These

two analysis are necessary to understand how the actor-based

solution of ActorNode2Vec improves the time complexity of

the algorithm. Walk length and the number of walks are

the main parameters that affect the probabilities computation

phase in terms of required time. In both cases, it is possible to

note that our solution requires less seconds to embed the large

network of interest. Results have been obtained as an average

of three executions of the two algorithms. ActorNode2Vec

requires on average the 65 % less time by varying the Walk

length and the 82 % less in the case of the number of walks.

Fig. 7. Sensitivity analysis of the Walk length parameter

Fig. 8. Sensitivity analysis of the Number of walks parameter

VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper, we propose a scalable and distributed version

of the Node2Vec algorithm called ActorNode2vec, developed

on an actor-based architecture that allows to overcome some

limitations in terms of memory requirements and time com-

plexity when applied to large networks. Results show an

average reduction between the 65% and the 82% in terms

of the required computational times, while memory issues are

overcome with the scalability of the solution. Some future

developments are related to the second bottleneck of the algo-

rithm, that concerns with the time complexity of the Neural

Network adopted for the embedding phase. For example an

implementation with DeepLearning4j could improve required

training times, as the choice of distributing also the training

phase. Some other future developments are related to the use of

the actors also for a distributed generation of the random walks

and the use of different strategies for the network exploration.

Finally, other future research activities will be dedicated to

ActoDeS. We are working about the improvement of the

support for knowledge and ontology based applications [?],

[24], [25] and in the development of tool that has the aim of

simplifying the design of applications [26], [27].

REFERENCES

[1] G. Lombardo, P. Fornacciari, M. Mordonini, L. Sani, and M. Tomaiuolo,
“A combined approach for the analysis of support groups on facebook-
the case of patients of hidradenitis suppurativa,” Multimedia Tools and

Applications, vol. 78, no. 3, pp. 3321–3339, 2019.

Workshop "From Objects to Agents" (WOA 2019)

140



[2] G. Lombardo, A. Ferrari, P. Fornacciari, M. Mordonini, L. Sani, and
M. Tomaiuolo, “Dynamics of emotions and relations in a facebook group
of patients with hidradenitis suppurativa,” in International Conference on

Smart Objects and Technologies for Social Good, pp. 269–278, Springer,
2017.

[3] L. Sani, G. Lombardo, R. Pecori, P. Fornacciari, M. Mordonini, and
S. Cagnoni, “Social relevance index for studying communities in a face-
book group of patients,” in International Conference on the Applications

of Evolutionary Computation, pp. 125–140, Springer, 2018.
[4] A. Kocheturov, M. Batsyn, and P. M. Pardalos, “Dynamics of cluster

structures in a financial market network,” Physica A: Statistical Me-

chanics and its Applications, vol. 413, pp. 523–533, 2014.
[5] P. Radivojac, W. T. Clark, T. R. Oron, A. M. Schnoes, T. Wittkop,

A. Sokolov, K. Graim, C. Funk, K. Verspoor, A. Ben-Hur, et al., “A
large-scale evaluation of computational protein function prediction,”
Nature methods, vol. 10, no. 3, p. 221, 2013.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 855–864,
ACM, 2016.

[7] F. Bergenti, A. Poggi, and M. Tomaiuolo, “An actor based software
framework for scalable applications,” in International Conference on

Internet and Distributed Computing Systems, pp. 26–35, Springer, 2014.
[8] B. Klimt and Y. Yang, “Introducing the enron corpus.,” in CEAS, 2004.
[9] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,

“The graph neural network model,” IEEE Transactions on Neural

Networks, vol. 20, no. 1, pp. 61–80, 2009.
[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
[11] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by

locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the

24th international conference on world wide web, pp. 1067–1077,
International World Wide Web Conferences Steering Committee, 2015.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
[23] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community

structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

of social representations,” in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining,
pp. 701–710, ACM, 2014.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in neural information processing systems, pp. 3111–
3119, 2013.

[16] A. J. Walker, “An efficient method for generating discrete random vari-
ables with general distributions,” ACM Transactions on Mathematical

Software (TOMS), vol. 3, no. 3, pp. 253–256, 1977.

[17] E. Franchi, A. Poggi, and M. Tomaiuolo, “Blogracy: A peer-to-peer
social network,” in Censorship, Surveillance, and Privacy: Concepts,

Methodologies, Tools, and Applications, pp. 675–696, IGI Global, 2019.

[18] F. Bergenti, E. Iotti, A. Poggi, and M. Tomaiuolo, “Concurrent and
distributed applications with actodes,” in MATEC Web of Conferences,
vol. 76, p. 04043, EDP Sciences, 2016.

[19] G. Angiani, P. Fornacciari, G. Lombardo, A. Poggi, and M. Tomaiuolo,
“Actors based agent modelling and simulation,” in Highlights of Prac-

tical Applications of Agents, Multi-Agent Systems, and Complexity:

The PAAMS Collection, (Cham), pp. 443–455, Springer International
Publishing, 2018.

[20] P. Fornacciari, M. Mordonini, A. Poggi, L. Sani, and M. Tomaiuolo,
“A holistic system for troll detection on twitter,” Computers in Human

Behavior, vol. 89, pp. 258–268, 2018.

[21] G. Lombardo, P. Fornacciari, M. Mordonini, M. Tomaiuolo, and
A. Poggi, “A multi-agent architecture for data analysis,” Future Internet,
vol. 11, no. 2, p. 49, 2019.

[22] G. Agha, Actors: A Model of Concurrent Computation in Distributed

Systems. Cambridge, MA, USA: MIT Press, 1986.
[24] F. Bergenti, A. Poggi, M. Tomaiuolo, and P. Turci, “An ontology

support for semantic aware agents,” in Proc. Seventh International Bi-

Conference Workshop on Agent-Oriented Information Systems (AOIS-

2005@ AAMAS), Utrecht, The Netherlands, 2005.

[25] A. Poggi, “Developing ontology based applications with o3l,” WSEAS

Trans. on Computers, vol. 8, no. 8, pp. 1286–1295, 2009.

[26] F. Bergenti and A. Poggi, “Exploiting uml in the design of multi-agent
systems,” in International Workshop on Engineering Societies in the

Agents World, pp. 106–113, Springer, 2000.

[27] F. Bergenti and A. Poggi, “A development toolkit to realize autonomous
and interoperable agents,” in Proceedings of the fifth international

conference on Autonomous agents, pp. 632–639, ACM, 2001.

Workshop "From Objects to Agents" (WOA 2019)

141


