
A Peer-to-Peer Notification System for Distributed

Online Social Networks

Michele Amoretti

University of Parma, Italy

michele.amoretti@unipr.it

Lorenzo Gandolfi

University of Parma, Italy

lorenzo.gandolfi@studenti.unipr.it

Michele Tomaiuolo

University of Parma, Italy

michele.tomaiuolo@unipr.it

Abstract—Current social networking systems are almost al-
ways centralized systems. This architecture poses issues about
privacy, censorship and control of personal data. On the other
hand, peer-to-peer systems can overcome these issues, in exchange
with additional architectural complexity. This paper describes a
peer-to-peer system provided with a spanning tree for distributing
online notifications inside a group of interested peers. These
notifications may regard discussion messages for a chat system,
or any kind of update messages for spreading social activities
performed by users of a Distributed Online Social Network. In
particular, we describe and compare different mechanisms for
the creation and management of the spanning tree.

Index Terms—Distributed Systems, Online Social Network,
Peer-to-Peer, Notification Systems.

I. INTRODUCTION

Social media attracts millions of people, who in fact spend

most of their online time social networking, for a variety

of everyday actions. Accordingly, these social platforms are

assuming different forms and aims, including distribution of

news, sharing of photos and videos, direct messaging, group

discussions, etc. [1]. Together with their mass spreading and

also in consequence of big scandals, social platforms are also

raising concern and criticism. In particular, many users are

wary of privacy threats coming from other users, external

entities, and also directly from the service providers.

In fact, even if the social networking systems are greatly

dissimilar in their user base and functionality [2], they are

almost always centralized systems, which often allow service

providers to: (i) mine user provided data for advertisements

and other purposes, (ii) guide their users into “walled gardens”,

without full control over their own information [3], [4], (iii)

perform a-priori or a-posteriori censorship [5], (iv) disclose all

the information they have to other entities, either motivated by

selfish interests or forced under legal terms and other forms

of pressure.

Conversely, in exchange with additional architectural com-

plexity, peer-to-peer (P2P) systems essentially achieve auto-

matic resource scalability, in the sense that the availability of

resources is proportional to the number of users [6]. Moreover,

without a central entity, nobody is in the position of censoring

data systematically. Privacy can also be achieved, by means

of key systems and cryptography. In a P2P system, if global

trusted third parties are avoided, no entity has the ability to

disclose a user’s private key or other sensible credentials.

However, such P2P systems have to confront with the most

convenient features provided by current social platforms, both

in terms of functionalities and responsiveness. While some

trade-offs are certainly to be considered, it is necessary to

allow users of distributed social platforms to develop fluent

online discussions, with notifications of new activities received

with short and acceptable delays.

In this paper, we describe specifically a P2P system pro-

vided with a spanning tree for distributing online notifications

inside a group of interested users. These notifications can

regard discussion messages for a chat system, or any kind

of update messages for spreading social activities performed

by users of a Distributed Online Social Network (DOSN) [7]–

[10]. In particular, we describe and compare some mechanisms

for the creation and management of the spanning tree. With

respect to similar approaches, our spanning tree does not

rely on a specific P2P architecture, and does not require that

all nodes of the underlying P2P network are fully involved

in the DOSN. Any structured P2P network (such as Chord,

Kademlia, or Pastry) could be used as a substrate for several

partially overlapping spanning trees, each one corresponding

to a specific group of users.

The manuscript is organized as follows. Section II analyzes

the state of the art for P2P publish-subscribe systems. Section

IV illustrates and proposes some algorithms for the creation

and management of a tree structure among peers. Section V

shows the results obtained by comparing the proposed different

mechanisms and policies. Finally, some concluding remarks

are provided in Section VI.

II. RELATED WORKS

Castro et al. proposed Scribe [11], an application level

multicast infrastructure on top of the Pastry DHT, which is

used in a number of projects for peer-to-peer collaboration

and dissemination of information. Scribe creates and manages

multicast groups on top of Pastry. Any Scribe node can create a

group, providing a group ID and some credentials to be used

for access control. Other nodes can then join the group or

send multicast messages, which are delivered to all members.

Multicast messages are delivered by some forwarder nodes,

which form a multicast tree. Forwarder nodes themselves are

not required to be part of the group, instead they automatically

become forwarders if they are on the Pastry route of some new

member of the group, when it sends a join request.

Workshop "From Objects to Agents" (WOA 2019)

142

FeedTree [12] is an RSS (Real Simple Syndication) feed

distribution service based on P2P subscription mechanisms.

FeedTree proposes a transition toward pushing RSS items over

a P2P network, distributing the load over the nodes of a group

multicast tree. For this purpose, FeedTree exploits Pastry and

Scribe.

Xu et al. introduced Cuckoo [13] as a decentralized and

socio-aware online micro-blogging service. It follows a hybrid

approach consisting of: (i) a structured overlay network, Pas-

try, and a gossip protocol for disseminating micro-news among

users with the same interests; and (ii) support for centralized

dedicated services, like Twitter, which in fact still store user

profiles and other data. Friend nodes help each other to balance

load, thus creating a sort of virtual node. Notifications are dealt

with direct push, in the case of normal users, or with gossip

propagation, in the case of celebrities and broadcasters.

Perfitt & Englert proposed Megaphone [14] as a micro-

blogging system, based on an optimized, trustworthy peer-to-

peer network. In fact, nodes are enabled to sign and encrypt

each piece of content they publish, making it verifiable and

confidential for subscribers. The basic distribution mechanism

is based on Scribe multicast trees. Thus, a subscriber node has

to know in advance the node ID of the posters to follow, or

at least it has to be able to generate it. The poster’s node

ID corresponds exactly to a Scribe multicast group ID. In

Megaphone, the node ID is a hash of its public key, and the

couple of public/private keys is generated autonomously by

each node.

Messina et al. introduced HySoN [15], based on an overlay

network of software agents, which exploits a gossip protocol.

HySoN allows users to locally maintain sensitive user’s data,

satisfying the privacy requirements preserving sensitive data.

Indeed, the properties involved in the HySoN user aggregation

are inferred by local data not published in the social network.

Though some research works exist, for building a notifica-

tion system exploiting the Pastry DHT, very few works try

to exploit the Kademlia DHT, which is used in BitTorrent

and other content sharing systems, including the Blogracy

platform [8]. Matl et al. [16] deal with group communications

in overlay networks based on the Kademlia distributed hash

tables (DHT), considering three cases:

• Anycast, to deliver a message to any member of the

group;

• Multicast, to deliver to all members;

• Manycast, to deliver to a particular subset of the group.

The article describes some abstract solutions, based on tree

structures built on top of the Kademlia layer. The advantages

of these structures are better exploited if the branches are bal-

anced. Additional maintainance tasks are required to guarantee

robustness and reliability, also in the case of frequent discon-

nections of nodes. These tasks require periodical monitoring

of links and recovery mechanisms, for reconnecting the whole

tree and avoiding loosing messages.

With respect to the aforementioned approaches, our span-

ning tree does not rely on a specific P2P architecture. More-

over, it does not require that all nodes of the underlying

P2P network are fully involved in the DOSN. Structured P2P

networks like Chord, Kademlia, or Pastry, could serve as a

substrate for partially overlapping spanning trees, each one

corresponding to a specific group of users. That is, one peer

may belong to different groups at the same time.

III. DISTRIBUTED SOCIAL ARCHITECTURES

The diffusion of online social networks is opening new

scenarios for envisaging novel kinds of applications, either to

support new social networking activities, or to exploit estab-

lished relationships among users and use them to offer higher-

level services. Software agents are a natural fit for mediating

access to local software- or hardware-based services, including

access to data, sensors, monitors, printers and various kinds

of actuators. Given their ability to negotiate and plan in a

dynamic social context, software agents are also good for

composing locally available services and resources, following

existing trust relationships with other persons and agents

located in the users proximity area. New trust relationships

can also be created, on the basis of reputation and mutual

acknowledgement, through the incremental and controlled

exchange of profile data.

A. Autonomous agents for DOSNs

Especially in the case of completely distributed or federated

social networking platforms, multi-agent systems can play

an important role. Indeed, one of the very specific features

of multi-agent systems is the sociality of agents, i.e., their

ability to communicate in a semantic way and to develop

trust relationships among them. Moreover, agents can (i)

express their communication acts by means of acknowledged

standards for interoperability among diverse systems, like

FIPA; (ii) and exchange messages directly, in a peer-to-peer

way. Therefore, it is not surprising that these two technologies

are often applied together for developing advanced social

platforms. In particular, multi-agent systems have been used as

(i) an underlying layer, or middleware, for developing social

networking platforms; and (ii) a technology to increase the

autonomous and intelligent behavior of existing systems.

For the first type of solutions, many of the distinguishing

features of multi-agent systems can be fully exploited. Multi-

agent systems provide semantic communication among agents,

which is handy for expressing all the different actions that

users can perform in a social platform. The different types of

messages can be understood according to their meaning and

applied according to existing trust relations among the users

and their respective agents. In addition, complex negotiation

protocols help creating acknowledgements and trust among

users, in an automatic or assisted way, without exposing

sensitive data. Mobility can also be useful for moving the

computation closer to data, if massive analysis is needed, but

it can also be handy for adding functionality to a node of a

distributed social platform or to a users client application.

In the second case, agents are mainly used because of their

proactive and reactive behaviors that can provide recommen-

dations of both users and content, and that can enable the

Workshop "From Objects to Agents" (WOA 2019)

143

personalization of results. Reactive abilities are particularly

important in a social networking environment where events

happen continuously and users can be easily distracted by

the huge information flow, which is associated with highly

connected social networks [17]. Sensing the environment and

executing automatic tasks can reduce this overload signifi-

cantly. Goal-oriented behaviors, on the other hand, can support

users in prosecuting their long term objectives about friend and

content discovery, i.e., to discover known persons registered

in the network, to make new acquaintances with users with

common interests, to find interesting content hidden in less

relevant data or from new sources.

B. Blogracy

Blogracy [8] is a distributed social networking system which

uses many of the services and techniques described above,

with the aim to provide adaptive and composite services

on top of its core features. At the lower level, Blogracy

uses widespread and stable peer-to-peer technologies, such

as distributed hash tables and the BitTorrent protocol, for

coping with the intrinsic defects of centralized architectures

and to become the basis of solid distributed social networking

platforms. At the higher level, it takes advantage of multi-agent

systems for simplifying the implementation of social network

services in a decentralized setting.

The architecture of the application is modular and composed

of two basic components: (i) an underlying module for basic

file sharing and DHT operations, built as an extension of

existing implementations, and (ii) an OpenSocial container,

i.e., a module providing the services of the social platform

to the local user through a Web interface. Additionally, the

system supports autonomous agents for providing (i) recom-

mendations of both users and content, (ii) personalization of

results, and (iii) trust negotiation mechanisms.

The Blogracy system itself relies only on users nodes for its

operation and users need to perform background tasks on their

own, in a distributed way. A layer of autonomous agents takes

charge of assisting the user in finding new interesting content

and connections, and in pushing the local users activities to

followers.

IV. DESIGNED ALGORITHMS

As demonstrated by the systems described is Section II,

a practical approach for implementing distributed publish-

subscribe systems is to organize a group of peers in a tree-

like structure. In this way, each node has the duty to forward

messages to a limited number of intermediate destination

nodes, which are directly linked to it. Section V will discuss

some guidelines for the organization and functioning of these

trees, obtained through simulations of various algorithms and

configurations, which are introduced in this section.

Since P2P systems have to scale to a very large number of

nodes, as a first feature to configure it is necessary to choose

the degree of nodes, i.e., the maximum allowed number of

children nodes, for each parent node. The aim is to obtain the

best performance, without creating excessive burden for each

involved node. Higher values of this parameter lead to less

deep trees, but increase the number of messages to forward at

each step.

A. Group Join

A node that intends to join a group, and thus its associated

logical tree, has to find a node of the tree and send a

join request to that node. There are various possibilities for

performing both steps of the process. A connection point is

a node to which a join request can be sent. We suppose that

each node participating to a group, registers under the group

identifier into the P2P network. As described by Matl et al.

[16] with reference to the Kademlia network, it is possible for

a new node to contact some other node, already in the group,

without finding and contacting the root node. In particular,

we have defined the following two connection policies: (i)

the join request is only sent to the root node (root strategy);

(ii) the join request is sent directly to the first node found,

which already participates to the tree (first strategy). In the

first case, the join request is sent only after finding the root

node. Sending the request to the root node can lead to a more

balanced tree, under some conditions. In the second case, the

join request is sent more easily as soon as any node of the

tree is found. In this way, the workload on the root node is

reduced, consequently removing a possible bottleneck.

B. Connection

After a node n has been chosen as an entry point to the

group, a join request is sent to it, for being accepted as a

new child node. Node n checks if it can accept one more

child node, according to the node degree k of the tree (i.e.,

the maximum number of children each node may have). If

the answer is positive, the connection is successful. Else, if n

does not have room for one more child node, it is necessary to

find another possible entry point. In fact, in its refusal answer,

n also inserts a reference to an alternative connection point,

which is chosen among its own children. Simple possible

policies for this choice include: (i) the minimun XOR distance

between the chosen node and the new one, similarly to the

other protocols of a Kademlia network; or (ii) a random

selection, which may be a simplistic approach, but could

nevertheless provide surprisingly good results in some cases.

However, also the new connection point can be unavailable,

thus the process goes on iteratively, till finding a suitable

connection point.

Algorithms 1 and 2 illustrate the procedures for sending and

handling join requests, respectively.

Algorithm 1 Join request, followed by acceptance or refusal.

Require: a reference to a node of the tree

response = reference.ConnectionRequest()
while not response.connectionAccepted() do

reference = response.getAlternativeNode()
response = reference.ConnectionRequest()

end while

Workshop "From Objects to Agents" (WOA 2019)

144

Algorithm 2 Management of a join request. numChildren

represents the children count, maxChildren is the maximum

degree set for the tree.

Require: request from node n

Ensure: request response

if numChildren < maxChildren then

buildConnection()
numChildren = numChildren+ 1
return ConnectionAccepted

else

response = ConnectionRefused

response.setAlternativeNode()
return response

end if

C. Tree Reconstruction

Once the tree structure has been established, it is necessary

to ensure its maintainance. In fact, in a P2P environment, each

element can suddenly disconnect or disappear. If a node of the

tree fails, some mechanisms need to be in place to assure the

reachability of all remaining nodes, including the children and

descentants of the failed node.

First of all, some mechanisms need to be adopted to peri-

odically check connections. This can be enforced in practice

by sending periodical ping requests from each node to its own

direct neighbours. If a ping request is not answered before a

timeout, the node has to be supposed to be missing.

A disconnection can lead to two fundamental problems. If a

leaf node disconnects, the problem is limited and it is sufficient

to remove its link with the parent node. Instead, if a node with

children diconnects, an additional problem is represented by

the reachability of the children and descendants; in fact, it is

necessary to reconnect all those nodes to the main tree, i.e., to

reconstruct the tree. To solve the problem of the reconstruction

of a tree, we have devised various algorithms.

The subtree breakout algorithm is the simplest procedure,

from the logical point of view. It simply consists in assigning

to each node in the broken branch the duty to reconnect to

the tree, individually. A node that finds its own parent to be

disconnected, tells its children to find a new entry point. It then

removes all its own links and autonomously tries to reconnect

to the tree. Each child and descendant acts in the same way,

till all nodes are reconnected.

The subtree preservation algorithm is more conservative

with respect to the broken branches, after their parent node

disconnects. In fact, it is based on a mechanism of reconnec-

tion, in which the topmost node is assigned the responsibility

to reconnect to the main tree, possibly without affecting its

descendants.

Figure 1 shows the two cases. Case (a) represents the subtree

breakout algorithm. Node n1 fails; the different colors of

the descendants of n1 indicate a fragmentation of the sub-

structure, after which each node reconnects autonomously.

Case (b) is related to the subtree preservation algorithm. After

node n1 fails, the structure of its former branches (colored

(a) (b)

Fig. 1. Subtree breakout (a) and subtree preservation (b) algorithms. In subtree
breakout, nodes n2,n3,n4,n5 and n6 try to reconnect autonomously to the
tree, after n1 fails. In subtree preservation, the structures of subtrees below
n2 and n3 are unaltered after n1 fails.

in green and blue) remains unaltered till the new connection.

Only nodes n2 and n3 are involved in finding a new connection

point to the main tree.

The last recovery algorithm we propose is denoted as

recursive election. The previous algorithms do not guarantee

to solve the problem of the disconnection of the root node.

This particular case can be solved with an election of a

substitute node among the former children of the disconnected

root. This election can be performed efficiently with the bully

algorithm [18]. For the election, we have considered two

different policies:

• distance, the elected node is the one with the closest

identifier to the group identifier, according to the XOR

distance;

• lifetime, the elected node is the one which has been

connected for the longest time, thus coherently assigning

a more important role to the more reliable and continuous

nodes.

To complete the election process, it is necessary that each

child maintains a reference to all its own siblings. Such

references have to be kept fresh and constantly updated.

Once a new root node is elected, it takes charge of all its

former siblings. Instead, its own previous children may have

to reconnect to the tree, if their parent node is no more able

to keep them, according to the maximum allowed degree for

the tree.

For their reconnection, these nodes can break or maintain

the structure of their own branch, according to one of the

policies described above. However, an alternative solution

is to apply the same mechanism described to replace the

root node, with an election among siblings according to the

bully algorithm. And similarly, this approach can be applied

recursively at each level of the disconnected branch. In this

case, each node, at each level of the structure, has to keep

references to all its own siblings. Moreover, since each node

could have to substitute its own parent, in case of being

elected, it has to keep a reference to its parent and to the

node immediately above it, in the tree.

Figure 2 represents some executions of the recursive elec-

tion algorithm after a node disconnects. To ease the represen-

tation, the node degree k is supposed to be 3.

Workshop "From Objects to Agents" (WOA 2019)

145

Fig. 2. Executions of the recursive election algorithm. At time t0 the root
node r fails. Node n3 is elected as a substitute. At time t1, node n3 is no more
available for its previous role and must be substitued. Node n4 is elected as
substitute. At time t2, node n4 is no more available and node n7 substitutes
it. No election is required in this case. At time t3, the structure is completely
reorganized, with all nodes connected.

V. SIMULATIONS

To evaluate the proposed algorithms, we used DEUS,

general-purpose discrete event simulation environment [19],

which is available as open source [20]. DEUS enables the

simulation of large and highly dynamic networks, with the

desired detail level. DEUS is particularly suitable to study

P2P architectures, focusing on overlay protocols [21]–[23].

Tree construction algorithms are compared in terms of

• workload ditribution on network nodes,

• quickness,

• communication robustness.

To this purpose, the following performance indicators are

taken into account.

1) Number of control messages ν.: Tree construction and

maintenance require that nodes exchange control messages.

In our simulations, each node has its own counter ν, which

is incremented by 1 every time a control message is delivered

to the node. In this way, it is possible to characterize the

amount of network traffic both locally and globally. A large

total number of control messages implies high consumption of

network bandwidth, and poor user experience due to delayed

tree construction and maintenance.

2) Tree depth δ.: Tree depth, defined as the maximum

distance between the root node and any leaf node, is a very

important metric. Given two trees with N nodes each, but dif-

ferent depths δ1 < δ2, the one with depth δ1 is more balanced

than the one with depth δ2. Higher balancing is preferable, as

it means reduced total delays and better parallelism.

3) Propagation delay π.: According to a widely used

approach [16], the communication delay between any two

nodes A and B is defined as τ = τA + τB . Each node’s

contribution is a continuous random variable with uniform

distribution in the interval [τmin, τmax]. In our simulations,

we adopted the following values: τmin = 10 [ms], τmax = 20
[ms]. We define the propagation delay π as the time that is

necessary for the message to reach all nodes in the tree.

A. Group Join

To analyze the group join strategies denoted as root and first,

illustrated in Section IV, we have compared the performance

indicators defined above, by taking into account different

values for the node degree k.

In a first group of simulations, whose results are illustrated

in Figure 3, a tree with 4000 nodes has been constructed using

the root strategy and k ∈ {2, 4, 8, 16, 32, 64}. Then, the same

experiment has been performed using the first strategy. For

each value of parameter k, the simulation has been repeated 10
times, with different pseudorandom number generation seeds.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 8 16 24 32 40 48 56 64

δ

k

first

root

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 8 16 24 32 40 48 56 64

ν

k

first

root

Fig. 3. Tree depth δ (left) and number of control messages ν per node (right),
for increasing values of k, comparing the root and first strategies for group
join.

The variation of number of requests and tree depth with

respect to k is evident. The higher k, the higher the balancing

of the tree and the efficience in terms of message traffic. It is

also worth noting than this behavior is more accentuated with

the first strategy. The root strategy produces slightly lower

depth values, with respect to the first strategy, for any k value.

Workshop "From Objects to Agents" (WOA 2019)

146

Taking into account all these aspects, the first strategy is better

than the root one. Thus, in the following, all presented results

are those regarding the first strategy.

In Figure 4, the propagation delay as a function of k

is reported. Also for this performance indicator, the higher

variation is achieved for low k values, up to k = 8. Thus,

considering all the performance indicators, the best tradeoff

between performance and complexity is k = 8.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 8 16 24 32 40 48 56 64

π

k

Fig. 4. Propagation delay π for increasing values of the node degree k,
considering the first strategy for group join.

B. Connection

When a node receives a connection request, there may be

two different scenarios. In the first one, the node is able to

accept a new child and acknowledges the connecting node.

In the second scenario, the node has already k children, thus

cannot accept a new one but can suggest another parent to the

connecting node, according to either the distance or random

strategy (described in Section IV).

To evaluate the performance of the aforementioned strate-

gies, we performed 50 simulations for each one, considering

the construction of a tree with 4000 nodes, with node degree

k = 8 and first strategy or group join. The results reported in

Table I show that the random connection strategy is slightly

better that the distance one.

TABLE I
PERFORMANCE EVALUATION OF THE CONNECTION STRATEGIES.

strategy δ ν

distance 6.93 7.68
random 6.00 7.20

C. Tree Reconstruction

The strategies for tree reconstruction, illustrated in Section

IV, are subtree breakout, subtree preservation and recursive

election. Their performance has been evaluated with respect to

the disconnection of different groups of nodes, which are 1%,

5%, 10%, 20% and 50% of the total number of nodes in the

tree, respectively. We considered a tree with 4000 nodes, k =
8, first group join strategy and random connection strategy.

We recall that for the strategy that imply node election after

a root node failure, the XOR distance has been used as the

winner selection metric. More specifically, the node with lower

distance is the one that gets selected.

TABLE II
EFFECTS OF THE subtree breakout STRATEGY, FOR INCREASING VALUES OF

THE NODE DEGREE k. THE FIRST ROW SHOWS THE δ AND ν VALUES

BEFORE THE NODES FAIL.

% of failed nodes δ variation ν variation

- 6.0 - 7.1 -

1% 6.0 0% 7.5 4.3%
5% 5.9 -1.5% 9.4 31.1%

10% 5.8 -2.8% 11.5 60.9%
20% 5.8 -2.8% 15.6 117.3%
50% 5.4 -9.0% 37.9 427.9%

TABLE III
EFFECTS OF THE subtree preservation STRATEGY, FOR INCREASING

VALUES OF THE NODE DEGREE k. THE FIRST ROW SHOWS THE δ AND ν

VALUES BEFORE THE NODES FAIL.

% of failed nodes δ variation ν variation

- 6.0 - 7.1 -

1% 6.4 8.1% 7.3 1.8%
5% 7.5 26.2% 7.6 6.1%

10% 7.0 18.0% 8.1 13.7%
20% 8.1 36.0% 9.9 38.6%
50% 8.6 44.2% 18.9 163.7%

TABLE IV
EFFECTS OF THE recursive election STRATEGY, FOR INCREASING VALUES

OF THE NODE DEGREE k. THE FIRST ROW SHOWS THE δ AND ν VALUES

BEFORE THE NODES FAIL.

% of failed nodes δ variation ν variation

- 6.0 - 7.1 -

1% 6.0 0% 7.2 1.3%
5% 6.0 0% 7.6 5.8%

10% 6.0 0% 8.0 12.3%
20% 6.0 0% 9.3 29.5%
50% 5.9 -1.6% 14.7 105.1%

The results related to the subtree breakout strategy are

illustrated in Table II. We can observe that tree depth remains

small even for the largest group of failed nodes. However,

the number of requests increases too much (427% when 50%

nodes fail).

The results related to the subtree preservation strategy are

presented in Table III. With respect to subtree breakout, the

tree depth increases considerably (by 44.26% in the worst

cade). The reason is that not breaking the tree may cause a

branch to be reconnected to a node that is already very deep

in the tree. Fortunately, the increase of network traffic is lower

(163.7% in the worst case).

The recursive election strategy is a compromise between

the previous ones. This is confirmed by the results reported

in Table IV. Facing a node group failure, tree depth slightly

changes and the number of requests has a very limited in-

crease. For these reasons, the recursive election strategy has

to be preferred.

Workshop "From Objects to Agents" (WOA 2019)

147

VI. CONCLUSION

In this paper, we described and compared a number of

mechanisms for creating and managing a spanning tree, hosted

by a generic structured P2P network. The adopted decentraized

approach is motivated by the need to solve issues about

privacy, censorship and control of personal data in DOSNs.

According to our simulations, tree robustness is guaranteed

by the following mix of strategies: first for group join, random

for connection, and recursive election for tree reconstruction

in case of node failures.

Regarding future work, we plan to implement the proposed

algorithms in the Blogracy platform [8] and test them over

the PlanetLab facility. Furthermore, we plan to improve the

agorithms by means of adaptive strategies, e.g., for online

tuning of the node degree k.

REFERENCES

[1] G. Angiani, P. Fornacciari, M. Mordonini, M. Tomaiuolo, and E. Iotti,
“Models of participation in social networks,” in Social Media Perfor-

mance Evaluation and Success Measurements. IGI Global, 2016, pp.
196–224.

[2] E. Franchi, A. Poggi, and M. Tomaiuolo, “Social media for online
collaboration in firms and organizations,” International Journal of In-

formation System Modeling and Design, vol. 7, no. 1, pp. 18–31, 2016.
[3] S. Shankland, “Facebook blocks contact exporting tool,” Retrieved

January 26, 2014, 2010. [Online]. Available: http://news.cnet.com/8301-
30685 3-20076774-264/facebook-blocks-contact-exporting-tool/

[4] T. Berners-Lee, “Long live the web,” Scientific American,
vol. 303, no. 6, pp. 80–85, 2010. [Online]. Available:
http://www.scientificamerican.com/article.cfm?id=long-live-the-web

[5] A. D. Salve, P. Mori, and L. Ricci, “A survey on privacy in decentralized
online social networks,” Computer Science Review, vol. 27, pp. 154–176,
2018.

[6] A. Poggi and M. Tomaiuolo, “A dht-based multi-agent system for
semantic information sharing,” Studies in Computational Intelligence,
vol. 439, pp. 197–213, 2013.

[7] B. Guidi, T. Amft, A. De Salve, K. Graffi, and L. Ricci, “DiDuSoNet:
A P2P architecture for distributed Dunbar-based social networks,” Peer-

to-Peer Networking and Applications, pp. 1–18, 2015.
[8] E. Franchi, A. Poggi, and M. Tomaiuolo, “Blogracy: A peer-to-peer

social network,” International Journal of Distributed Systems and Tech-

nologies (IJDST), vol. 7, no. 2, pp. 37–56, 2016.
[15] F. Messina, G. Pappalardo, D. Rosaci, C. Santoro, and G. Sarné, “Hyson:

A distributed agent-based protocol for group formation in online social
networks,” in Multiagent System Technologies (MATES 2013), Lecture

Notes in Computer Science, 2013, pp. 320–330.

[9] B. Guidi, A. Michienzi, and G. Rossetti, “Dynamic community analysis
in decentralized online social networks,” in Euro-Par 2017: Parallel

Processing Workshops, 2017, pp. 517–528.

[10] M. Amoretti, A. Ferrari, P. Fornacciari, M. Mordonini, F. Rosi, and
M. Tomaiuolo, “Local-first algorithms for community detection,” in
CEUR Workshop Proceedings 1748, KDWeb2016, 2016.

[11] M. Castro, P. Druschel, A. Kermarrec, and A. I. Rowstron, “Scribe: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications, vol. 20, no. 8, pp.
1489–1499, 2002.

[12] D. Sandler, A. Mislove, A. Post, and P. Druschel, “Feedtree: Sharing
web micronews with peer-to-peer event notification,” in P2P Systems

IV, ser. Lecture Notes in Computer Science, vol. 340. Springer, 2005,
pp. 141–151.

[13] T. Xu, Y. Chen, X. Fu, and P. Hui, “Twittering by cuckoo: decentralized
and socio-aware online microblogging services,” in ACM SIGCOMM

Computer Communication Review. ACM, 2010, pp. 473–474.

[14] T. Perfitt and B. Englert, “Megaphone: fault tolerant, scalable, and
trustworthy p2p microblogging,” in Internet and Web Applications and

Services (ICIW), 2010 Fifth International Conference on. IEEE, 2010,
pp. 469–477.

[16] L. Matl, T. Cerny, and M. J. Donahoo, “Effective Manycast Messaging
for Kademlia Network,” in Proc. of the 30th Annual ACM Symposium

on Applied Computing (SAC ’15), 2015, pp. 646–652.

[17] G. Lombardo, P. Fornacciari, M. Mordonini, M. Tomaiuolo, and
A. Poggi, “A multi-agent architecture for data analysis,” Future Internet,
vol. 11, no. 2, 2019.

[18] H. Garcia-Molina, “Elections in a distributed computer system,” IEEE

Trans. on Computers, vol. C-31, no. 2, pp. 48–59, 1982.

[19] M. Amoretti, M. Picone, F. Zanichelli, and G. Ferrari, “Simulating
mobile and distributed systems with DEUS and ns-3,” in Proc. of the

2013 International Conference on High Performance Computing and

Simulation (HPCS 2013), 2013, pp. 107–114.

[20] M. Amoretti, “DEUS on GitHub,” cited June 2019. [Online]. Available:
https://github.com/dsg-unipr/deus

[21] M. Martalò, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli,
“Randomized network coding in distributed storage systems with layered
overlay,” in Proc. of the 2011 Information Theory and Applications

Workshop (ITA 2011), 2011, pp. 324–330.

[22] M. Picone, M. Amoretti, and F. Zanichelli, “Evaluating the robustness of
the DGT approach for smartphone-based vehicular networks,” in Proc.

of the 36th Annual IEEE Conference on Local Computer Networks (LCN

2011), 2011, pp. 820–826.

[23] M. Amoretti, A. L. Lafuente, and S. Sebastio, “A cooperative approach
for distributed task execution in autonomic clouds,” in Proc. of the

21st Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP 2013), 2013, pp. 274–281.

Workshop "From Objects to Agents" (WOA 2019)

148

