
MDE based IoT Service to enhance the safety of
controllers at runtime

Miren Illarramendi Rezabal1[0000−0003−3770−1495], Leire Etxeberria1, Xabier
Elkorobarrutia1, Jose Maria Perez1, Felix Larrinaga1, and Goiuria Sagardui1

Mondragon Goi Eskola Politeknikoa, Loramendi 4, 20500 Mondragon, Spain
millarramendi@mondragon.edu

Abstract. One of the challenges for complex IoT software systems is to
increase their safety. A Model Driven Development approach helps in the
design and development phase of these systems while runtime checking
techniques help to enhance safety. To supervise the status of different IoT
services that are registered in a local cloud at runtime, the solution that
is presented in this work uses the information that it receives from the
different services registered in a local cloud in model terms. The runtime
checker, the new Safety related service of the Arrowhead framework, has
predefined contracts to ensure the correctness of the services at runtime.
Based on these contracts and checking the information that it receives
at runtime it is able to detect unsafe scenarios. Once an unsafe scenario
is detected, it starts a safe process to protect the behaviour of the whole
system adapting the wrong service or services to a degraded operation
mode at runtime. All these services will be Arrowhead compliant.

Keywords: Models@runtime · IoT Services · Runtime Verification ·
Runtime Adaptation · Runtime Monitoring.

1 Introduction

In our live, we are surrounded by Cyber Physical Systems (CPSs) and System of
CPSs (SoCPS)s due to an increasing number of intelligent systems that involve
safety, life and business-critical requirements in domains such as transportation,
healthcare or systems for managing aspects of our homes. These systems directly
interfere with our physical world which makes their safe, dependable and resilient
operation one of their primary requirements.

In recent years, software components have gained importance as controller
part of the CPSs. This has led to the control software taking more responsibility
and needing mechanisms to enhance correct and safe behaviour. Furthermore,
every component of a CPS is a potential point of failure.

Monitoring information related to the internal status of the CPSs at runtime
can anticipate the occurrence of failures. This makes it possible to take corrective
actions earlier and prevent faulty scenarios. This idea is described as a safety
bag in [5]. The goal is to prevent software systems’ hazardous states by means of
safety verification at runtime. Thus, we increase their robustness ensuring safety.

Advances in computing and communication are leading to the digitization
of industry. The use of IoT platforms allows the access devices and machines in

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



34 M.Illarramendi et al.

a transparent way making possible the digitalization of manufacturing systems.
There are many initiatives around Digital Manufacturing Platforms and IoT
that have been developed in different Research and Innovation actions in the
European Community (CREMA [6], FIWARE [8], Arrowhead [7],...).

In the European ECSEL project Productive 4.0 [1], using IoT platforms to
enhance the robustness of the software controllers has been identified as a novel
research topic. Different approaches and works have been started in this area
and the work that is presented in this position paper, the Arrowhead compliant
Safety service, is one of them.

Section 2 presents background concepts of the work, and in Section 3 the
overall Safety Service Architecture is shown. Section 4 presents an academic
example of the solution and finally, Section 5 closes the paper with conclusions
and future lines.

2 Background

The proposed work in this position paper is a mix of two different approaches. On
the one hand, REflective State-Machines based observable software COmponents
(RESCO) software components, which have introspection and reflection ability
at runtime are considered. For this end, the work presented in [9] has been the
starting point. On the other hand, we have selected an IoT platform to develop
the Safety service itself: the Arrowhead IoT framework.

2.1 RESCO software components

The overview of the approach considered in this study to automatically gene-
rate software components with introspection and reflection ability at runtime is
highlighted in Figure 1. It represents the Model-driven workflow that safety and
software engineers must consider when using the methodology we propose.

First, the behaviour of the components is modelled using Unified Modeling
Language - State Machines (UML-SMs) by the Papyrus tool [11].

This first step is performed by the designer and in order to have the adapta-
tion ability at runtime, the designer has to design two or more annotated UML-
SM models: the normal-mode UML-SM and one or more safe-mode (degraded-
mode) UML-SMs. Thus, when an error is detected, the software component will
adapt from normal-mode UML-SM to the safe-mode (degraded-mode) UML-SM.

In a second step, a RESCO metamodel conformant model (instrumented
model) is generated automatically by ATL [3] language performing Model to
Model (M2M) transformations. In this step, the original UML-SM model is en-
riched by information needed to decide which states have to be observed at
runtime or not and as result we have the RESCO-SMs.

In the last step, a model conforming to the RESCO metamodel is transformed
to code by means of a Model to Text (M2T) transformation by Acceleo [2].

Having these software components with introspection ability, we can design
a solution that enables the developers to generate software systems able to check
their software components in model terms at runtime.



MDE based IoT Service to enhance the safety of controllers at runtime 35

Fig. 1. Model-driven Workflow

2.2 Arrowhead framework

The Arrowhead project addresses efficiency and flexibility on a global scale
through collaborative automation. Thus, Arrowhead’s greatest challenges are
to enable: 1) interoperability of services provided by almost any device. 2) in-
tegrity of the services provided by any device. In response to these challenges,
the Arrowhead framework [7] was created.

The framework aims to normalize the interaction between IoT industrial
applications through service-oriented architectures (SOA). Services are exposed
and consumed by systems, which run on devices. Figure 2 shows the different
types of services within the Arrowhead framework.

2.3 State of the Art and Opportunity of the Solution

In the scope of Models@run.time, different solutions to trace the UML-SMs in
order to obtain information about the monitored software components at runtime
have been analyzed. Most of the approaches focus on instrumenting the code and
not the model (e.g., [10]).

There is a similar approach, [4], but the implementation and the model-to-
model transformation rules are different. In their solution they add new objects
to debug/trace the execution in all the transition chains. In our case, the same
object is reused in all the transitions. This way, the number of objects in the
model is independent of the size and number of transitions of the state machine.
In addition, they use these traces to debug the model at runtime. Our aim is to
use these traces to detect system inconsistencies and errors as soon as possible
and once something wrong is detected to start an adaptation process at runtime.

Regarding the IoT platforms, as mentioned before, there are many initiatives
around Digital Manufacturing Platforms and IoT that have been developed in



36 M.Illarramendi et al.

Fig. 2. Basic Services and Advance Services of the Arrowhead Framework. Source:
Productive 4.0 project [1].

different Research and Innovation actions in the European Community. How-
ever, these platforms have not led to a successful and efficient digitisation of
all aspects and resources of manufacturing industry. There are also commercial
IoT platforms being used in industry such as Amazon’s AWS IoT, Microsoft’s
Azure IoT Suite, IBM’s Watson IoT or MathWorks’ ThingSpeak. These solu-
tions are closed solutions based on specific technologies making interoperability
between different solutions difficult. In response to these challenges, the Arrow-
head framework [8] was created.

This work, aims to fill the gap identified in the above defined two research
lines. On the one hand, RESCO based software are able to provide software
components information in model element terms at runtime and, on the other
hand, if we are able to serve this information as services, we can use them as
Arrowhead compliant services with the aim to detect hazardous scenarios in IoT
based solutions (e.g. industrial plants). This is the main objective of this work:
proof of concept of the Arrowhead Safety Manager based on RESCO software
components.

3 Safety Service Architecture

The main objective of the Safety service is to supervise the status of different
Arrowhead compliant services that are registered in a local cloud. Based on
defined contracts, it will ensure the reliable and safe operation of these services.

Its role can be defined as unsafe scenarios detector. When it detects an unsafe
scenario, it starts a safe process to protect the behaviour of the system.

The approach or concept developed has the following characteristics:
– Arrowhead Local cloud has a Safety related service.
– Different services are monitored by the Safety Monitor.



MDE based IoT Service to enhance the safety of controllers at runtime 37

– These services are based on the RESCO software components. they have to
be offered as Arrowhead compliant services and they provide information
about the status of the controlled system in model terms at runtime.

– The monitored information is checked by the Safety Manager. For doing
that, safety rules or properties common language is defined and the safety
rules will be defined using this common language in each use case.

– When an unsafe scenario is detected, a safe process starts and the services
involved in the use case are updated to a graceful mode.

4 Safety Service: Toy Example

Fig. 3. Safety Manager Toy Example.

In this section we will present a proof of concept example developed in the
Productive 4.0 [1] project. In that example, we consider a system with a RESCO
Engine Monitoring Service, RESCO Air System Monitoring Service and a Tem-
perature Monitoring Service.

Both RESCO based services are providing their internal status at runtime
and in model terms (using the UML-SM formalism). Every time that the transi-
tion is going to be performed, they send the related information to the Safety
service of the Arrowhead framework. In addition, the Temperature service pro-
vides the value of the temperature sensor that is installed in the engine.

In addition, different contracts that define the not allowed unsafe scenarios
are defined. Thus, at runtime, when the Safety service receives new updates,
it checks if these contracts are fulfilled or not. In case they are not, it starts a
process to adapt the RESCO services to a safe state.

Figure 3 shows the example that has been developed to check the concept
we are presenting in this work. We have done the first evaluation of the demon-
strator presented in this work obtaining successful results. We inserted faulty



38 M.Illarramendi et al.

temperature values to force non-safe scenarios and the Safety Manager service
detected the situations and started the adaptation process in the involved ser-
vices sending the system to a safe scenario.

5 Conclusion
In this paper we have presented the first concept of a Safety Service that could
be added to the Arrowhead framework. Its main aim is to check the correct and
safe operation of the different controls by this IoT platform. For doing this, we
suggest to develop RESCO based Arrowhead compliant software services. These
software components have the ability to offer their internal status in models
terms at runtime. Thus, we may reuse the models used in design and development
phases also at runtime for correctness verification purposes.

In order to check that the concept is achievable, we have developed an simple
toy example. We have mixed both approaches, RESCO and Arrowhead frame-
work, and the result has been that it is possible to check the correctness of
software controllers in model terms at runtime. In the future, we would like to
expand the evaluation using more realistic industrial cases and environments.

Acknowledgment
The project has been developed by the Embedded System Group of MGEP and
supported by the Department of Education, Universities and Research of the
Basque Government under the projects Ikerketa Taldeak (Grupo de Sistemas
Embebidos) and TEKINTZE (Elkartek 2018) and the European H2020 research
and innovation programme, ECSEL Joint Undertaking, and National Funding
Authorities from 19 involved countries under the project Productive 4.0 with
grant agreement no. GAP-737459 - 999978918.

References

1. 4.0, P.: (2019), https://productive40.eu/
2. A: Acceleo. Tech. rep., https://www.eclipse.org/acceleo/ (2016)
3. ATL: Atl transformation language (2018), http://www.eclipse.org/atl/
4. Bagherzadeh, M., Hili, N., Dingel, J.: Model-level, platform-independent debugging

in the context of the model-driven development of real-time systems. In: Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering. pp.
419–430. ACM (2017)

5. Brini, M., Crubill, P., Lussier, B., Schn, W.: Complementary methods for designing
safety necessities for a safety-bag component in experimental autonomous vehicles.
In: Proceedings 12th National Conference on Software and Hardware Architectures
for Robots Control (2017)

6. CREMA: https://www.crema-project.eu/
7. Delsing, J.: Iot automation: Arrowhead framework. CRC Press (2017)
8. FIWARE: https://www.fiware.org/
9. Illarramendi, M., Etxeberria, L., Elkorobarrutia, X., Sagardui, G.: Runtime ob-

servable and adaptable uml state machines: Models@run.time approach. In: 34th
ACM/SIGAPP Symposium On Applied Computing (SAC) (2019)

10. Mazak, A., Wimmer, M., Patsuk-Bösch, P.: Execution-based model profiling. In:
International Symposium on Data-Driven Process Discovery and Analysis. pp. 37–
52. Springer (2016)

11. Papyrus: Papyrus (2019), https://eclipse.org/papyrus/


