CEUR-WS.org/Vol-2407/paper-04-167.pdf

38

UDC 004.85
Using Docker to deploy computing software

Tatiana S. Demidova, Anton A. Sobolev,
Anastasia V. Demidova, Migran N. Gevorkyan

Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia
Miklukho-Maklaya str. 6, Moscow, 117198, Russia

Email: dem_tatiana@mail.ru, raven357be@gmail.com, demidova_av@rudn.university,
gevorkyan_mn@rudn.university

There are many ways to facilitate the creation of large-scale projects. One of the most
commonly used methods is to create virtual machines that contain the program environment.
However, software has recently been created to make this process even easier. One example
is Docker, a software for automating the deployment and management of applications in an
operating system-level virtualization environment.

This paper discusses the Docker software, its features and benefits, which allows you to
create images that contain the program and all the necessary components for its operation.
The purpose of this work is to study the capabilities of Docker. And also, the creation of
a container containing a software implementation of the neural network for recognition of
various handwritten characters. Training and test data is a database of handwritten numbers
and letters "MNIST" and "EMNIST". To teach the neural network to recognize numbers, a
training set containing 60 thousand copies was used, and the test set includes 10 thousand
copies. For letters — the training set contains 88800 copies, and the test set includes 14800
copies. The project was created on the basis of the image tensorflow downloaded from
public Docker-registry Docker Hub. The program is written in Python3, using the service for
interactive computing Jupyter Notebook.

Copyright () 2019 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

In: K. E. Samouylov, L. A. Sevastianov, D. S. Kulyabov (eds.): Selected Papers of the IX Conference
“Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems”,
Moscow, Russia, 19-Apr-2019, published at http://ceur-ws.org

http://ceur-ws.org

Demidova T.S. et al. 39

1. Docker — container virtualisation system

In this paper we use Docker to automate the deployment and management of
applications. Docker is collection of programs used to run processes in an isolated
environment based on special images [1]. It allows one to create containers that contain
the application and its entire environment, and provides an environment for their use.

The main components of Docker are images, registry and containers.

Docker image is a read-only template. For example, an image might contain an
operating system with installed applications. Images are used to create containers.
Docker makes it easy to create a new image and update existing ones or download
ready-only images.

Docker-registry stores images. There are public and private registries. One can
download images from registry or upload images to registry. There is free public Docker
registry called Docker Hub. It is accessible for all users.

Containers are similar to directories. They contain everything to run the application.
Each container is created from an image, which forms an isolated and a secure platform
for the application.

Docker container is created by following command
$ docker run <attributes> <image> <command>

One of the advantages of Docker is the ability to create a container using Dockerfile
and the docker build command. Dockerfile contains the base image. This image is
used to build the desired container by applying commands, specified in Dockefile.

To demonstrate the capabilities of Docker, a project was created using a neural
network for handwriting recognition.

Machine learning libraries

Artificial neural network is a mathematical model built on the principle of biological
neural networks of nerve cells of a living organism. A neural network is constructed
in such a way that its nodes work like neurons in the human brain. The node collects
information, processes it, and passes it to the next node [3,11,18].

For the implementation of neural networks, there is a huge amount of software. The
main differences between them are their functionality. While some frameworks are used
as shells to extend functionality and facilitate the writing of neural networks, others are
full-fledged languages and can define neural networks of any level of complexity.

TensorFlow is library designed for machine learning. This framework is created
by Google. It uses Python languages as back-end, but core parts are written in
C++[?,13,14]. We use TensorFlow to train and build a neural network for classifying and
finding images that are close to human perception. All calculations in this environment
are performed using stream data graphs, where nodes represent different mathematical
operations and graph branches represent arrays of data.

The Keras library [12] is an add-in for TensorFlow to create high-level neural networks,
written in the Python programming language [15]. The main advantage of this library it
is easy usage when working with deep learning networks. Keras can be easily extended
with new modules in the form of classes and functions. This environment includes the
implementation of optimizers, layers, functions, and other tools for working with images
and text.

The Scikit-learn [7,8] library, written in Python, has many algorithms for training
neural networks with and without a teacher. Developers pay much attention to the
usability of this environment and optimization issues to improve the speed of its operation.
Scikit-learn includes various classification, regression and clustering algorithms. It is
designed for interaction with numerical and scientific Python libraries such as NumPy
and SciPy.

40 ITTMM—2019

2. Neural network architecture

The convolutional neural network [6,9,17] was chosen as the topology of the neural
network to solve the problem of handwriting recognition. Today convolutional neural
networks are considered to be the best for solving image recognition problems. The
architecture of the neural network, which is based on the convolution operation, was
first developed in the late 1990s by Lekun et al.

Convolutional neural network (CNN) consists of the following types of layers: convolu-
tional layers, subsampling (or pooling) layers and perceptron layers. The first two types
of layers, alternating with each other, form the input feature vector for the multilayer
perceptron.

In convolutional neural network a convolution operation uses a limited matrix of
weights of small size, which moves through the processed layer, forming after each shift
activation signal for the next layer of the neuron with a similar position.

This weight matrix is called the convolution kernel. In a convolutional neural
network, sets of weights encoding image elements are formed independently by training
the network. After a convolutional layer comes the pooling layer. It also has maps, the
number of which coincides with the previous layer. The purpose of this layer is to reduce
the dimension of the maps. In the previous convolution operation, signs were identified
that do not require such detail. Filtering already unnecessary parts helps the network
avoid overtraining. After several repetitions of convolutional layers and pooling layers, a
layer of the usual multilayer perceptron follows. The output layer is connected to all
neurons of the previous layer and the number of neurons corresponds to the number of
recognized classes. In the case of binary classification, a single neuron and hyperbolic
tangent can be used as an activation function. Then, the output of a neuron with a
value of 1 means belonging to a class, and the output of a neuron with a value of -1
means not belonging to a class.

The following architecture was used for the convolution network to recognize digits
(fig. 1).

This network consists of 6 layers:

Convolutional layer with 75 feature maps, convolution kernel size: 5x5.

Pooling layer (MaxPooling) with 2x2 poolsize.

Another convolution layer with 100 feature maps, convolution kernel size: 5x5.
Second pooling layer with 2x2 poolsize.

Fully connected layer with 500 neurons

Fully connected output layer with 10 neuron, which correspond to the classes of
handwritten digits from 0 to 9.

The activation function in hidden layers is ReLU, and the output layer is softmax.

As training and test data we use "MNIST" database of handwritten numbers. To
train the neural network to recognize numbers we use a training set containing 60
thousand copies and the test set containing 10 thousand copies.

‘We use Matplotlib library to create an image of the symbols from the database 2.

SO

3. Neural network classification quality assessment

One of the concepts for describing metrics in terms of classification errors is the
error matrix. It is used if there are two classes and an algorithm predicting that each
object belongs to one of the classes, then the classification error matrix will look like
this [10,16]:

One of the simplest metrics is accuracy — the proportion of true results (both positive
and true negative) among the total number of cases considered, i.e. the probability that
the class will be predicted correctly.

TP+ TN
TP+TN+FP+FN'

accuracy =

Demidova T.S. et al. 41
Layer (type) cutput Shape Param #
convid 1 (ConvZD) (None, 24, 24, 75) 1950
max pooling2d 1 (MaxPocling2 (None, 12, 12, 75) 0
dropout_1 (Dropout) (None, 12, 12, 75) 0
convid 2 (ConvZD) (None, 2, &, 100) 137600
max pooling2d 2 (MaxPooling2 (None, 4, 4, 100) 0
dropout_2 (Dropout) (None, 4, 4, 100)]
flatten 1 (Flatten) (None, 1600)]
dense 1 (Dense) (None, 500) 800500
dropout 3 (Dropout) (None, 500) 0
dense_ 2 (Dense) (None, 10) 5010
Total params: 985,060
Trainable params: 995,060
Non-trainable params: 0
Figure 1. Neural network architecture
o Digits
i -
mlEb
o 0 2
o= Digit3
-
QOIE!
D
Figure 2. Symbols from MNIST database
Table 1

Error classification matrix

Condition mark — 1

Condition mark — 0

Algorithm response — 1

True Positive (TP)

False Positive (FP)

Algorithm response — 0

False Negative (FN)

True Negative (TN)

42 ITTMM—2019

To assess the quality of the algorithm on each of the classes precision and recall
metrics are used:

. TP TP
precision = ————, recall = ————.
TP+ FP TP+ FN

The accuracy of the classification of positive results (precision) is the proportion of
positive results that are correctly identified by the classifier among the total number of
considered cases.

Recall, also known as sensitivity, reflects the proportion of positive results that are
correctly identified by the classifier.

Specificity — reflects the proportion of negative results that are correctly identified
by the classifier.

To associate a precision with the fullness F-measure are used. F-measure is a harmonic
mean of precision and completeness:

2 - precision - recall

Fmeasura = . .
precision + recall

One way to evaluate the model is AUC-ROC — square under the curve of error in
coordinates True Positive Rate (TPR) and False Positive Rate (FPR):

TP FP

TPR=——- FPR=—" .
TP+ FN FP+TN

4. Software implementation of neural network

The neural network is implemented in Python 3, using TensorFlow and Keras
modules, as well as Jupyter Notebook shell. These modules have built-in tools for
building and fine-tuning neural networks. The project was created on the basis of the
image tensorflow [2]. The container is created by the command

$ docker run -p 8888:8888 tensorflow/tensorflow:latest-py3-jupyter.

The source code for building a neural network using the Keras library is:
model = Sequential()
model.add(Conv2D (75, kernel_size=(5, 5),activation=’relu’,

input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add (Dropout (0.2))
model.add(Conv2D (100, (5, 5), activation=’relu’))
model . add (MaxPooling2D (pool_size=(2, 2)))
model.add(Dropout (0.2))
model.add(Flatten())
model .add (Dense (500, activation=’relu’))
model.add (Dropout (0.5))
model .add(Dense (10, activation=’softmax’))
model.compile(loss="categorical_crossentropy", optimizer="adam",

metrics=["accuracy"])

‘When creating a neural network using the Keras library, we add layers sequentially
using the model.add and then compile it using the model.compile.

The most important layers are the basic layers, such as dense,
activation, dropout, flatten, input, etc. Dense layer is fully connected layer, dropout
is used to prevent overfitting, flatten layer is used to convert two-dimensional or
three-dimensional data into one-dimensional, the input layer used to input data.

For this neural network the error (confusion) matrix 3 was calculated and graphs
of accuracy and error dependence were plotted depending on the number of learning
epochs 4 and 5.

Demidova T.S. et al. 43

1000

800

600

400

200

Figure 3. Confusion matrix

1.00
—— train
0.991 —— test

Accuracy

4
©
o

0.94

0.93

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Figure 4. Model Accuracy
The neural network for handwriting recognition based on MNIST, showed an average

efficiency of about 99.24%. The average training time of one era is about 160 seconds
Metrics were also calculated for each of the classes:

44 ITTMM—2019

—— train
0.20 test
0.15
@
o
—0.10
0.05
0.00
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Figure 5. Model Loss

precision recall fl-score

0 0.99 0.99 0.99
1 1.00 0.99 0.99
2 0.99 1.00 0.99
3 0.99 0.99 0.99
4 0.99 0.98 0.99
5 0.97 0.99 0.98
6 0.99 0.98 0.99
7 0.98 0.99 0.98
8 0.99 0.98 0.98
9 0.97 0.98 0.98

5. Implementation of the project using Docker

The following describes the process of downloading the created software package
in Docker Hub. The first step is to create an image from the container that contains
the program. We use the commit command to commit the changes to the new Docker
image.

$ docker commit container_id repository/new_image_name

To show container’s id we use command docker ps -a. As repository name we
use user’s Docker Hub login and assign a name to the image. This image is saved
locally and to make sure that the new image is saved successfully, we use the command
docker images.

Next, we upload our image to Docker Hub. To do this we enter the DockerHub
account with command

$ docker login -u docker-registry-username
where docker-registry-username — Docker Hub user name. We enter the password
and upload the image to DockerHub by the command

$ docker push docker-registry-username/docker-image-name
After successfully uploading the image, we can see it in the account toolbar (Fig. 6).

Thus, we can conclude that Keras library combined with Docker is a powerful toolset
for the development software implementation of various machine learning methods.
Keras is the most convenient library for writing neural networks, as it is easy to use

Demidova T.S. et al. 45

*dockerhub Q. search for great content (e.g.. mysql) Explore Repositories Organizations

demtatiana ~ Q search by repository name... Create Repository +

& PUBLIC

[~

demtatiana / neural_num o
Updated 16 minutes ago

Figure 6. Our image on Docker Hub

and has a high speed of creating neural network models. The ease of use of Keras is
due to the huge number of pre-installed functions designed to create different layers
of the neural network. And Docker makes it easier to develop applications, because
the installation of all the necessary libraries can be replaced by a single command —
download the desired image and in addition, is a universal way to deliver the developed
applications on local machines and run them in an isolated environment.

6. Conclusion

The paper considered Docker software that allows you to create images that contain
the program and all the necessary components for its operation.

Created image based on tensorflow containing the Jupyter notebook implemented in
Python convolutional neural network using bibltoteki Keras.

This image was uploaded to the public image repository of Docker Hub containers.

Acknowledgments
The publication has been prepared with the support of the “RUDN University
Program 5-100”.

References

1. Docker: Enterprise Container Platform — URL: www.docker.com

2. Docker Hub — URL: https://hub.docker.com/

3. Tariq, Rashid. Make Your Own Neural Network — Spb.: “Alfa-kniga”, 2017. —
272 p.

4. The MNIST database of handwritten digits — URL:

http://yann.lecun.com/exdb/mnist

5. The EMNIST Dataset — URL: http://www.nist.gov/itl/iad /image-group/emnist-
dataset

6. LeCun, Y. Gradient-based learning applied to document recognition / Y. LeCun [et
al.] // Proc. of the IEEE. — 1998. — Vol. 86, No 11. — P. 1-46.

7. Scikit-Learn: Machine Learning in Python. — URL: https://scikit-learn.org/stable/

8. Aurelien Geron. Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems.: O’Reilly Media —
2017. — 564 p. — ISBN-13: 978-1491962299

9. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. — Psychological review. — Vol. 65, No. 6. — 1958

10. Werbos P. J., Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Ph.D. thesis, Harvard University, Cambridge, MA, 1974.

46

ITTMM—2019

11.
12.
13.
14.
15.
16.
17.

18.

Hopfield J. J. Learning algorithms and probability distributions in feed-forward and
feed-back networks. — 1987.

Keras: The Python Deep Learning library. — URL: https://keras.io/

Aurelien Geron. Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems.: O’Reilly Media —
2017. — 564 p.

Tensorflow: official website — URL: https://www.tensorflow.org/

Richert W.; Coelho L. Building machine learning systems with Python. — Birming-
ham: Packt Publ. — 2013. — 290 p.

Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data
mining, inference, and prediction. -2nd ed. -New York: Springer. — 2013. — 745 p.
Hornick K., Stinchcombe M., White H. Multilayer feedforward networks are universal
approximators//Neural Networks. 1989. Vol. 2, no. 5. P. 359-366.

Ben J. A. Kroese and P. Patrick van der Smagt. An introduction to neural networks.
— 1993.

