CEUR-WS.org/Vol-2408/paper7.pdf

ADA: Embracing technology change acceleration

Ondrej Dvorak, Robert Pergl, and Petr Kroha

Czech Technical University in Prague,
Faculty of Information Technology, Czech Republic,
{ondrej.dvorak, robert.pergl, petr.kroha}@fit.cvut.cz,
WWW home page: http://ccmi.fit.cvut.cz

Abstract. The pace of technology change has accelerated in the past
decade. Conceptually similar technologies are introduced on nearly a
daily basis. On one hand, IT experts call for applying the most modern
approaches and technologies to software projects, on the other, compa-
nies suffer from liabilities to a technology used in their legacy solutions.
This seems to result in a disturbing situation when a specific technol-
ogy of an ongoing software project becomes legacy almost before the
project successfully hits a production. This poses a continual challenge
for software development, and effective ways of technology transition are
sought. Affordance-Driven Assembling (ADA) represents such an effort
from the standpoint of enterprise engineering theories. In this paper, we
formulate a high-level architecture of a software system based on ADA.
We demonstrate the architecture on an example of an object-oriented
system. We evaluate the qualities of such architecture from the perspec-
tive of evolvability using Normalized Systems Theory, and we formulate
conclusions on potential of this approach.

Keywords: component-based systems, semantic descriptions, software
architecture, EE theories, ADA, O-ADA, design patterns, evolvability

1 Introduction

In the past decades, a range of new software technologies and frameworks have
been developed to provide various solutions to software development challenges.
For instance, we can find tens of frameworks and libraries for Dependency Injec-
tion, Object-Relational-Mapping, Service-Bus, we can dabble with hundreds of
User Interface (UI) technologies, or rummage thousands of controls in JavaScript.
Although there are considerable differences among them, many of them address
the same class of problems. At the same time, it feels like the pace at which

these frameworks are introduced is accelerating.
We commonly refer to the famous Moore’s Law which observes this phe-

nomenon in computing. This widely known exponential doubling of transistors is
powering the advances in the past five decades. However, it seems there is a sim-
ilar common force driving information technology forward. In [5], Ray Kurzweil
introduces the so-called Law of Accelerating Returns which shows that the tech-
nological change is exponential, as well, and every decade the overall rate of
progress is doubling [5]. He demonstrates that: “We wont experience 100 years

of progress in the 21st century it will be more like 20,000 years of progress (at
todays rate)” [5].

If Kurwzeil is right, we can expect that more and more frameworks and li-
braries will be introduced even quicker. This brings a serious problem to deal
with legacy software, i.e., software which has been developed using already out-
dated technology. Due to the technology pace, the software systems can thus
become legacy almost before hitting a production — as the pace of develop-
ment technology increases, so too does the pace of technology obsolescence [8].
Therefore, the software industry must address this problem of adopting to new
technologies quickly. Otherwise, it will be much earlier facing the painful issues
when maintaining legacy software, e.g., lack of IT resources, lack of skilled man
power, lack of up-to-date documentation, costly to support and maintain [9].
This problem is even worsen with the evidence showing that companies already

spend most of their available budgets on maintenance [1].
In this paper, we focus on technologies used for Ul development where the

problem of a technology transition is arguably the most observable in the prolif-
eration and dynamics of Ul frameworks. For instance, the JavaScript community
coined a term the “JavaScript fatigue”. Regardless the progress and popularity
of JavaScript, developers report that they are dealing with a fatigue which refers
to an inability to keep up with the latest libraries, there is a fear of becoming
obsolete and outdated due to a constant change of the ecosystem and an over-

whelming number of choices [2].
We argue that by following certain architectural patterns in a software sys-

tem, we can adapt software artefacts to the latest technologies more efficiently.
In this paper, we elaborate on the ADA (Affordance-Driven Assembling) ap-
proach that is founded in formal EE (enterprise engineering) theories. In [4], we
introduced the way of thinking about software systems aligned with EE theories
lens, in this paper we elaborate on this and show how a way of working looks in
ADA to demonstrate the desired benefits of easing the technology transition.

2 Evolvability and Formal Foundations

To measure an improvement in helping technology transition, we work with
the term “evolvability”. We understand “evolvability” in terms of Normalized
Systems Theory (NST) [6] that explains it as the “ability for software to be
easily changed” [7]. In our research, the “technology change” is a so-called NST
change driver. We measure it from a perspective of combinatorial effects. Thus,
the main criterion used to evaluate the quality of a certain software architecture

is a bounded impact of the technology transition.
When migrating a software from one technology to another, we suffer from

incompatibilities between them. In practice, we usually tackle the problem of
moving to another framework, or library based on the same platform or language,
e.g., .NET, Java, C++, JavaScript. Thus, we typically identify parts which can
be left untouched while the rest is adopted to the new technology. This rises a
question of what are the concepts that can be easily reused, and which make it
harder to move. Additionally, in which way we have to capture these concepts

in a software system in order to optimize it for future upgrades. In [4], it was
shown that such concepts can be found in Enterprise Engineering (EE) 7-theory
and fS-theory [3].

3 Affordance-Driven Assembling

In [4], it was clarified that the concept of EE theories can be observed in Soft-
ware Engineering (SE) as well. It was shown that software systems founded in
these theories must be composed of components that suit the needs of a given
user with a specific purpose. This relationship between users with purposes and
components with properties can be captured by the term affordance:
Definition 1. Ajffordance is a user-component relationship, which can be rep-
resented by the following formula:

affordance: (user * purpose) * (component * properties).

When building software systems based on this definition, we must be able
to identify so-called ADA-users, describe their ADA-purposes, and based on
that build the final solution composed of ADA-components. All of these ADA
artifacts are formally defined in [4]. Fig. 1 depicts basic high-level components
and their relations in an ADA component-based system.

Semantic

Get Available P Components
Descriptions [Users Provide iy itory
Engins Y —C Purposes Repository Repository

Purposes Descriptions

Provide
Components

Provide
Users
Descriptions

User
Repository

Get
Components

Provide
Collection

Search Get Domain Structures
L) iofi — | Mapper —_ 0 —
Index by ®) Description by bp Views [

User & Purpose User & Purpose

in
Technology

Fig. 1. A possible high-level architecture of a system applying ADA

4 Case Study: Evaluating ADA in Practice — corima

The COPS company has implemented an application framework corima. It is
an example of ADA in practice. The system corima is capable of hosting appli-
cations in various business domains'. By now, the biggest application suite is fo-
cused on banking and corporate treasury management. It encompasses around 50

! Under the business domain, we understand the area of a business, e.g., finance,
health-care, etc.

data-centric web and desktop applications used across tens of customers mainly
in Europe.

The system corima implements ADA concepts captured in Fig. 1. We eval-
uated its code-base in order to measure the impact of a technology or domain
transition.

Our preliminary calculations show that if the change-driver is a technology
(e.g., a move to another Ul framework), the impact of such a change is bounded.
We only need to change a code which corresponds to the Mapper and Component
Repository in Fig. 1. This only makes ~2.2% of the entire code-base.

On the other hand, if the change driver is in the domain. The adjustment of
Purpose and User repository is bounded to ~1.7% of the whole code-base and
it won’t change with the amount of new applications.

5 Conclusion and Future Work

In this paper, we started by observing that the pace of introducing new tech-
nologies is exponentially accelerating, posing a serious challenge for the software
industry with systems becoming quickly legacy ones much sooner. We addressed
this challenge by showing how ADA can ease technology transitions.

We formulated a possible high-level architecture for software systems follow-
ing ADA and demonstrated it on a case study of a real system. Using NST,
we evaluated that ADA improves the evolvability of software in situations of
technological transitions by putting clear boundaries of change impact.

Although our measurements indicated the potential of ADA, further statis-
tical evaluation on a large number of cases is as subject of a future work.

References

1. Alija, N.: Justification of software maintenance costs 7, 15-23 (03 2017)

2. Clemmons, E.: Javascript fatigue. https://medium.com/@ericclemmons/javascript-
fatigue-48d4011b6fcd (2018)

3. Dietz, J., Hoogervorst, J.: Theories in Enterprise Engineering Memorandum - TAQO,
BETA

4. Dvordk, O., Pergl, R., Kroha, P.: Affordance-driven software assembling. In: Enter-
prise Engineering Working Conference. pp. 39-54. Springer (2018)

5. Kurzweil, R.: The law of accelerating returns. In: Alan Turing: Life and legacy of a
great thinker, pp. 381-416. Springer (2004)

6. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems Theory, From Foun-
dations for Evolvable Software Towards a General Theory for Evolvable Design.
Normalized Systems Institute (2016)

7. Oorts, G., Huysmans, P., De Bruyn, P., Mannaert, H., Verelst, J., Oost, A.: Building
evolvable software using normalized systems theory: A case study. In: 2014 47th
Hawaii International Conference on System Sciences. pp. 4760-4769. IEEE (2014)

8. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing legacy systems: software tech-
nologies, engineering processes, and business practices. Addison-Wesley Professional
(2003)

9. Srinivas, M., Ramakrishna, G., Rao, K.R., Babu, E.S.: Analysis of legacy system in
software application development: A comparative survey. International Journal of
Electrical & Computer Engineering (2088-8708) 6(1) (2016)

