
BM25 Pseudo Relevance Feedback Using Anserini
at Waseda University

Zhaohao Zeng
Waseda University

Tokyo, Japan
zhaohao@fuji.waseda.jp

Tetsuya Sakai
Waseda University

Tokyo, Japan
tetsuyasakai@acm.org

ABSTRACT
We built a Docker image for BM25PRF (BM25 with Pseudo Rele-
vance Feedback) retrieval model with Anserini. Also, grid search is
provided in the Docker image for parameter tuning. Experimental
results suggest that BM25PRF with default parameters outperforms
vanilla BM25 on robust04, but tuning parameters on 49 topics of
robust04 did not further improve its effectiveness.

Image Source: github.com/osirrc/anserini-bm25prf-docker
Docker Hub: hub.docker.com/r/osirrc2019/anserini-bm25prf

1 OVERVIEW
BM25 has been widely used as a baseline model for text retrieval
tasks. However, some researches only implement the vanilla form
of BM25 without query expansion and parameter tuning. As a re-
sult, the performance of BM25 may be underestimated [2]. In our
Docker image, we implemented BM25PRF [3], which utilises Pesudo
Relevance Feedback (PRF) to expand queries for BM25. We also
implemented parameter tuning in the Docker image because we
believe how to obtain the optimised parameters is also an important
part of reproducible research.We built BM25PRF and parameter tun-
ing with Anserini [5], a toolkit built on top of Lucene for replicable
IR research.

2 RETRIEVAL MODELS
Given a query q, BM25PRF [3] ranks the collection with the classic
BM25 first, and then extractsm terms that have high Offer Weights
(OW) from the top R ranked documents to expand the query. To
calculate the Offer Weight for a term ti , its Relevance Weight (RW)
needs to be calculated first as follows:

RW (ti) = log (r + 0.5) (N − n − R + r + 0.5)
(n − r + 0.5) (R − r + 0.5) (1)

where r is the Document Frequency (DF) of term ti in the top R
documents, n is the DF of ti in the whole collection, and N is the
number of documents in the collection. Then, the Offer Weight is

OW (ti) = RW (ti) · r (2)

However, in practice a term that has high r will tend to have high
OW , so some common words (e.g., be, been) may have high OW
and be selected as expansion terms. Since the common words are
not informative, they may be not helpful for ranking. Thus, in our

Copyright© 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). OSIRRC 2019 co-located with SIGIR
2019, 25 July 2019, Paris, France.

Docker image, logarithm is applied to r in the OW calculation to
alleviate this problem according to Sakai and Robertson [4]:

OW (ti) = RW (ti) · log(r) (3)

After query expansion, the expanded terms will be used for the sec-
ond search using a BM25 variant: for one term ti and one document
dj , the score s (ti ,dj) is calculated as follows:

s (ti ,dj) =

s ′(ti ,dj) if ti ∈ q

w · s ′(ti ,dj) else
(4)

s ′(ti ,dj) =
RW (ti) ·TF (ti ,dj) · (K1 + 1)

K1 · ((1 − b) + (b · (NDL(dj)))) +TF (ti ,dj)
(5)

where TF (ti ,dj) is the term frequency of term ti in dj , NDL(dj) is
the normalised document length of dj : NDL(dj) =

N · |dj |∑N
k |dk |

, w is
the weight of new terms, and K1 and b are the hyper-parameters
of BM25. All the tunable hyper-parameters are shown in Table 1.

Table 1: Tunable parameters of BM25PRF and their search
spaces in the parameter tuning script.

Search space Default Note
K1 0.1 - 0.9 step=0.1 0.9 K1 of the first search
b 0.1 - 0.9 step=0.1 0.4 b of the first search
K1pr f 0.1 - 0.9 step=0.1 0.9 K1 of the second search
bpr f 0.1 - 0.9 step=0.1 0.4 b of the second search
R {5, 10, 20} 10 num of relevant docs
w {0.1, 0.2, 0.5, 1} 0.2 weight of new terms
m {0, 5, 10, 20, 40} 20 num of new terms

3 TECHNICAL DESIGN
Supported Collections:
robust04

Supported Hooks:
init, index, search, train
Since the BM25PRF retrieval model is not included in the original
Anserini library, we forked its repository and added two JAVA
classes: BM25PRFSimilarity and BM25PRFReRanker by extending
the Similarity Class and the ReRanker Class, respectively. Thus, the
implemented BM25PRF can be utilised on any collections supported
by Anserini, though we only tested it on the robust04 collection
in this paper. Python scripts are used as hooks to run the necessary
commands (e.g., index and search) via jig.1 Jig is a tool provided

1https://github.com/osirrc/jig

62

github.com/osirrc/anserini-bm25prf-docker
hub.docker.com/r/osirrc2019/anserini-bm25prf
https://github.com/osirrc/jig

OSIRRC 2019, July 25, 2019, Paris, France Zhaohao Zeng and Tetsuya Sakai

by the OSIRRC organisers to operate the Docker images which
follow the OSIRRC specification.

Grid search is also provided in the Docker image for parameter
tuning, and can be executed using the train hook of jig. It performs
search and evaluation for every combination of parameters speci-
fied. To reduce the search space of grid search, our tuning process
consists of two steps. First, it performs search on a validation set
using the original BM25 to find the optimal parameters of it (i.e.,
K1 and b) based on Mean P@20. The K1 and b are the parameters
for the initial iteration of BM25PRF, so precision may be important
for extracting effective expansion terms. Then, the tuned K1 and b
are frozen, and the other parameters of BM25PRF (i.e., K1pr f ,bpr f ,
R,w , andm) are tuned on the validation set based on MAP.

4 RESULTS
The parameter tuning was performed on 49 topics2 of robust04,
and the tuned parameters are shown in Table 2. As shown in Table 3,
the BM25PRF outperforms the vanilla BM25, but the tuned hyper-
parameters do not improve BM25PRF’s performance on robust04.
This may be because the validation set used for tuning is too small,
and the parameters have been overfitted. Since the goal of this
study is about using Docker for reproducible IR research instead of
demonstrating the effectiveness of BM25PRF and grid search, we
do not further discuss the performance in this paper.

Table 2: Tuned hyper-parameters.

K1 b K1pr f bpr f m R w

Tuned Value 0.9 0.2 0.9 0.6 40 10 0.1

Table 3: BM25PRF performance on robust04.

Model MAP P@30
BM25 [1] 0.2531 0.3102
BM25PRF (default parameters) 0.2928 0.3438
BM25PRF (tuned parameters) 0.2916 0.3396

5 OSIRRC EXPERIENCE
Docker has been widely used in industry for delivering software,
but we found that using Docker to manage an experimental en-
vironment has advantages for research usage as well. First, it is
easier to configure environments with Docker than with a bare-
metal server, especially for deep learning scenarios where a lot of
packages (e.g., GPU driver, CUDA and cuDNN) need to be installed.
Moreover, Docker makes experiments more trackable. Research
code is usually messy, lacks documentation, and may need a lot
of changes during the experiment, so even the author may have
difficulty to remember the whole change log. Since each Docker
tag is an executable archive, it provides a kind of version control
on executables. Moreover, if the docker images follow some com-
mon specification like the ones we build for OSIRRC, running the
2The topics ids of the validation set are provided by the OSIRRC organisers in jig:
https://github.com/osirrc/jig/tree/master/sample_training_validation_query_ids

research codes we wrote several months ago is not a nightmare
anymore.

However, the biggest obstacle we faced during the development
for OSIRRC is that it is more difficult to debug with Docker and jig.
For example, there is no simple approach to setting a debugger into
the Docker container when it was launched by jig. Furthermore,
current jig assumes that the index files are built inside the Docker
container and commit the Docker and built index as a new image,
which means that the index needs to be built again after modifying
the source code. While it is not a serious problem for small collec-
tions like robust04, it may take too much time for large collections.
To solve this problem, we think jig should allow users to mount
external index when launching the search hook. Although mount-
ing external data into a Docker container is a standard action when
using Docker’s command line tools directly, but OSIRRC expects
Docker images to be operated through jig, which currently does
not provide such a feature.

REFERENCES
[1] Ryan Clancy and Jimmy Lin. 2019. osirrc/anserini-docker: OSIRRC @ SIGIR 2019

Docker Image for Anserini. https://doi.org/10.5281/zenodo.3246820
[2] Jimmy Lin. 2019. The Neural Hype and Comparisons Against Weak Baselines. In

ACM SIGIR Forum, Vol. 52. ACM, 40–51.
[3] Stephen E. Robertson and Karen Spärck Jones. 1994. Simple, proven approaches

to text retrieval. Technical Report 356. Computer Laboratory University of Cam-
bridge.

[4] Tetsuya Sakai and Stephen E Robertson. 2002. Relative and absolute term selection
criteria: a comparative study for English and Japanese IR. In SIGIR 2002. 411–412.

[5] P. Yang, H. Fang, and J. Lin. 2017. Anserini: Enabling the Use of Lucene for
Information Retrieval Research. In SIGIR 2017. 1253–1256.

63

https://github.com/osirrc/jig/tree/master/sample_training_validation_query_ids
https://doi.org/10.5281/zenodo.3246820

	Abstract
	1 Overview
	2 Retrieval Models
	3 Technical Design
	4 Results
	5 OSIRRC Experience
	References

