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ABSTRACT
Establishing a docker-based replicability infrastructure offers the
community a great opportunity: measuring the run time of informa-
tion retrieval systems. The time required to present query results
to a user is paramount to the users satisfaction. Recent advances
in neural IR re-ranking models put the issue of query latency at
the forefront. They bring a complex trade-off between performance
and effectiveness based on a myriad of factors: the choice of encod-
ing model, network architecture, hardware acceleration and many
others. The best performing models (currently using the BERT
transformer model) run orders of magnitude more slowly than sim-
pler architectures. We aim to broaden the focus of the neural IR
community to include performance considerations – to sustain the
practical applicability of our innovations. In this position paper we
supply our argument with a case study exploring the performance
of different neural re-ranking models. Finally, we propose to ex-
tend the OSIRRC docker-based replicability infrastructure with two
performance focused benchmark scenarios.

1 INTRODUCTION
The replicability and subsequent fair comparison of results in Infor-
mation Retrieval (IR) is a fundamentally important goal. Currently,
the main focus of the community is on the effectiveness results
of IR models. We argue that in the future the same infrastructure
supporting effectiveness replicability should be used to measure
performance. We use the term performance in this paper in the sense
of speed and run time – for the quality of retrieval results we use
effectiveness. In many cases, the time required to present query
results to a user is paramount to the users satisfaction, although in
some tasks users might be willing to wait longer for better results
[20]. Thus a discussion in the community about existing trade-offs
between performance and effectiveness is needed.

This is not a new insight and we don’t claim to re-invent the
wheel with this position paper, rather we want to draw attention
to this issue as it becomes more prevalent in recent advances in
neural network methods for IR. Neural IR ranking models are re-
rankers using the content text of a given query and a document
to assign a relevance score. Here, the choice of architecture and
encoding model offer large effectiveness gains, while at the same
time potentially impacting the speed of training and inference by
orders of magnitude.

The recently released MS MARCO v2 re-ranking dataset [1] is
the first public test collection large enough to easily reproduce
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neural IR models.1 The public nature of the dataset also makes it
the prime contestant for replicability efforts for neural IR models.

Nogueira et al. [13, 14] first showed the substantial effectiveness
gains for the MS MARCO passage re-ranking using BERT [4], a
large pre-trained transformer based model. However, they note the
stark trade-off with respect to performance. MacAvaney et al. [11]
show that by combining BERT ’s classification label with the output
of various neural models exhibits good results for low-training-
resource collections. They also show that this comes at a substantial
performance cost – BERT taking two orders of magnitude longer
than a simple word embedding.

On one hand, the retrieval results achieved with BERT ’s con-
textualized encoding are truly impressive, on the other hand, the
community should not lose focus of the practicality of their so-
lutions – requiring fast performance for search. Complementing
our argument we present a case study about the performance of
different neural IR models and embedding models (Section 2). We
show that using a FastText [2] encoding provides a small trade-off
between effectiveness and performance, whereas BERT shows a big
trade-off in both directions. BERT is more than 100 times slower
than non-contextualized ranking models.

The medical computer vision community has already recognized
the need for a focus on run time considerations. The medical image
analysis benchmark VISCERAL [10] included run time measure-
ments of participant solutions on the same hardware. Additionally,
computer vision tasks, such as object detection and tracking, often
require realtime results [8]. Here, iterations over neural network
architectures have been focusing on performance [18, 19]. The
object detection architectures commonly start with a pre-trained
feature extraction model. As Huang et al. [8] show, this feature
extraction stage can easily be swapped to accommodate different
performance-effectiveness needs. We postulate that for neural IR
models the time has come to do the same. Neural IR models depend
on an encoding layer and recent works [6, 11, 13] show that the
neural IR community has at least 4 different encoding architectures
to choose from (basic word embedding, FastText, ELMo, BERT).

The public comparison of results on leaderboards and evalua-
tion campaigns sparks interest and friendly competition among
researchers. However, they naturally incentivise a focus on the ef-
fectiveness metrics used and other important aspects of IR systems
– for example the latency of a response – are left aside. The intro-
duction of docker-based submissions of complete retrieval systems
makes the comparison of run time metrics feasible: All system can
be compared under the same hardware conditions by a third party.

1Easy in this context means: MS MARCO has enough training samples to successfully
train the neural IR models without the need of a bag of tricks & details applied to the
pre-processing & training regime – which are often not published in the accompanying
papers
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Concretely, we propose to extend the docker-based replicability
infrastructure for two additional use cases (Section 3):

(1) Dynamic full system benchmark
We measure the query latency and throughput over a longer
realistic period of a full search engine (possibly including
a neural re-ranking component). We envision a scripted
"interactive" mode, where the search engine returns results
for a single query at a time, giving the benchmark a lot of
fidelity in reporting performance statistics.

(2) Static re-ranking benchmark
We measure the (neural) re-ranking components in isolation,
providing them with the re-ranking candidate list. This al-
lows for direct comparability of models as all external factors
are fixed. This static scenario is very close to the way neural
IR re-ranking models are evaluated today, with added timing
metrics.

A standardized performance evaluation helps the research com-
munity and software engineers building on the research to better
understand the trade-offs of different models and the performance
requirements that each of them have. It is our understanding that
the replicability efforts of our community are not only for good
science, they are also geared towards the usability of our innova-
tions in systems that people use. We argue that the performance is
a major contributor to this goal and therefore worthwhile to study
as part of a broader replicability and reproducibility push.

2 NEURAL IR MODEL PERFORMANCE
In the following case study we take a closer look at the training and
inference time as well as GPU memory requirements for different
neural IR models. Additionally, we compare the time required to
re-rank a query with the model’s effectiveness.

2.1 Neural IR Models
We conduct our experiments on five neural IR models using a basic
Glove [17] word embedding and FastText [2]. Additionally, we eval-
uate a BERT [4] based ranking model. We use the MS MARCO [1]
passage ranking collection to train and evaluate the models. All
models are trained end-to-end and the word representations are
fine-tuned. Now, we give a brief overview of the models used with
a focus on performance sensitive components:

KNRM [22] applies a differentiable soft-histogram (Gaussian
kernel functions) on top of the similarity matching matrix of query
and document tokens – summing the interactions by their similarity.
The model then learns to weight the different soft-histogram bins.

CONV-KNRM [3] extends KNRM by adding a Convolutional
Neural Network (CNN) layer on top of the word embeddings, en-
abling word-level n-gram representation learning. CONV-KNRM
cross-matches n-grams and scores n2 similarity matrices in total.

MatchPyramid [15] is a ranking model inspired by deep neural
image processing architectures. The model first computes the sim-
ilarity matching matrix, which is then applied to several stacked
CNN layers with dynamic max-pooling to ensure a fixed size output.

PACRR [9] applies different sized CNN layers on the match ma-
trix followed by a max pooling of the strongest signals. In contrast
to MatchPyramid, the CNNs are only single layered, focusing on
different n-gram sizes and single word-to-word interactions are
modeled without a CNN.

DUET [12] is a hybrid model applying CNNs to local interac-
tions and single vector representation matching of the query and
document. The two paths are combined at the end of the model to
form the relevance score. Note: We employed v2 of the model. We
changed the local interaction input to a cosine match matrix – in line
with the other models – in contrast to the exact matching in the pub-
lished DUET model. We were not able to reproduce the original exact
match results, however the cosine match matrix shows significantly
better results than in [12].

BERT[CLS] [4] differs strongly from the previously described
models. It is a multi-purpose transformer based NLP model. We
follow the approach from Nogueira et al. [13] and first concatenate
the query and document sequences with the [SEP] indicator. Then,
we apply a single linear layer on top of the first [CLS] token to
produce the relevance score.

2.2 Experiment Setup
In our experiment setup, we largely follow Hofstätter et al. [6].
We use PyTorch [16] and AllenNLP [5] for the neural models and
Anserini [23] to obtain the initial BM25 rankings. The BM25 base-
line reaches 0.192 MRR@10 – as all neural models are significantly
better, we omit it in the rest of the paper. We use the Adam op-
timizer and pairwise margin ranking loss with a learning rate of
1e-3 for all non-BERT models; for BERT we use a rate of 3e-6 and
the "bert-base-uncased" pre-trained model2. We train the models
with a batch size of 64; for evaluation we use a batch size of 256.
We keep the defaults for the model configurations from their re-
spective papers, except for MatchPyramid where we follow the
5-layer configuration from [6]. For the basic word embedding we
use a vocabulary with a minimum collection occurrence of 5. The
nature of the passage collection means we operate on fairly short
text sequences: We clip the passages at 200 and the queries at 20
tokens – this only removes a modest number of outliers.

In their work, Hofstätter et al. [6] evaluate the effectiveness of
the models along the re-ranking depth (i.e. how many documents
are re-ranked by the neural model) – they show that a shallow
re-ranking depth already saturates most queries. This insight can
be employed to tune the performance of re-ranking systems further
in the future. In our case study, we keep it simple by reporting the
best validation MRR@10 (Mean Reciprocal Rank) results per model.

We present average timings per batch assuming a batch contains
a single query with 256 re-ranking documents. We report timings
from already cached batches – excluding the pre-processing and
therefore reducing the considerable negative performance impact
of Python as much as possible. We use a benchmark server with
NVIDIA GTX 1080 TI (11GBmemory) GPUs and Intel Xeon E5-2667
@ 3.20GHz CPUs. Each model is run on a single GPU.

We caution that the measurements do not reflect production
ready implementations – as we directly measured PyTorch research
models and we strongly believe that overall the performance can
further be improved by employing more inference optimized run-
times (such as the ONNX runtime3) and performance optimized
support code (for example non-Python code feeding data into the
neural network). We would like to kick-start innovation in this
direction with our paper.
2From: https://github.com/huggingface/pytorch-pretrained-BERT
3https://github.com/microsoft/onnxruntime
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Table 1: Training performance (Triples/second includes: 2x
forward, 1x loss & backward per triple), Training duration
(best validation result after batch count), peakGPUmemory
requirement as well as the effectiveness score (MRR@10)

Model Triples Batch Peak MRR/ second count Memory

W
or
d
v e

ct
or
s KNRM 5,200 44,000 2.16 GB 0.222

C-KNRM 1,300 98,000 2.73 GB 0.261
MatchP. 2,900 178,000 2.30 GB 0.245
PACRR 2,900 130,000 2.21 GB 0.249
DUET 1,900 146,000 2.47 GB 0.259

Fa
st
Te

xt

KNRM 2,300 62,000 7.34 GB 0.231
C-KNRM 1,000 184,000 7.81 GB 0.273
MatchP. 1,800 182,000 7.47 GB 0.254
PACRR 1,700 100,000 7.40 GB 0.257
DUET 1,600 182,000 7.46 GB 0.271

BERT[CLS] 33 77,500 7.68 GB 0.347

Table 2: Re-ranking speed (256 documents per query &
batch), peak GPUmemory requirement andMRR@10 effec-
tiveness of our evaluated neural IR models.

Model Docs Time GPU MRR/ second / query Memory

W
or
d
ve

ct
or
s KNRM 48,000 5 ms 0.84 GB 0.222

C-KNRM 12,000 21 ms 0.93 GB 0.261
MatchP. 28,000 9 ms 0.97 GB 0.245
PACRR 27,000 9 ms 0.91 GB 0.249
DUET 14,000 18 ms 1.04 GB 0.259

Fa
st
Te

xt

KNRM 36,000 7 ms 2.59 GB 0.231
C-KNRM 11,000 23 ms 2.68 GB 0.273
MatchP. 23,000 11 ms 2.72 GB 0.254
PACRR 21,000 12 ms 2.67 GB 0.257
DUET 17,000 15 ms 2.68 GB 0.271

BERT[CLS] 130 1,970 ms 7.29 GB 0.347

2.3 Results & Discussion
We start our observations with the training of the models as shown
in Table 1. The main performance metric is the throughput of triples
per second. A triple is a single training sample with a query and one
relevant and one non-relevant document. The models are trained
with a pairwise ranking loss, which requires two forward and a
single backward pass per triple. The batch count is the number of
batches with the best validation result. KNRM is the fastest to train,
it also saturates first. MatchPyramid and PACRR exhibit similar
performance. This is due to their similar architecture components
(CNNs applied on a 2D match matrix). In the class of CNNs applied
to higher dimensional word representations, DUET is slightly faster
thanCONV-KNRM, althoughCONV-KNRM is slightlymore effective.
In general, FastText vectors improve all models with a modest
performance decrease. The peak GPU memory required in the
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Figure 1: A comparison of performance and effectiveness
Note: the break in the x-axis indicates a large time gap

training largely depends on the encoding layer 4. Fine-tuning the
BERT model is much slower than all other models. It also is more
challenging to fit on a GPU with limited available memory, we
employed gradient accumulation to update the weights every 64
samples. We did not observe big performance differences between
batch sizes.

Now we focus on the practically more important aspect: the re-
ranking performance of the neural IR models. In Table 2 we report
the time that the neural IR models spend to score the provided
query-document pairs. The reported time only includes the model
computation. This corresponds to benchmark scenario #2 (Section
3.2).

The main observation from the re-ranking performance data
in Table 2 is the striking difference between BERT and non-BERT
models. Both the word vector and FastText encodings have a low
memory footprint and the level of performancemakes them suitable
for realtime re-ranking tasks. There are slight trade-offs between
the models as depicted in Figure 1. The differences correspond to
the training speed, discussed above. However, compared to BERT ’s
performance those differences become marginal. BERT offers im-
pressive effectiveness gains at a substantial performance cost. We
only evaluate a single BERT model, however the performance char-
acteristics should apply to all BERT -based models.

We believe that the practical applicability of BERT -based re-
ranking models is currently limited to offline scoring or domains
where users are willing to accept multiple second delays in their
search workflow. Future work will likely focus on the gap between
the contextualized and non-contextualized models – both in terms
of performance and effectiveness. Another path is to speed-up BERT
and other transformer based models, for example with pruning [21].
Therefore, we argue that it is necessary to provide the replicability
infrastructure with tools to take both performance and effectiveness
dimensions into account.

4We report peak memory usage provided by PyTorch, however we observed that
one requires additional GPU memory, FastText & BERT are not trainable on 8 GB.
We believe this is due to memory fragmentation. The size of the required headroom
remains an open question for future work.
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Figure 2: A simplified query workflow with re-ranking – showing the reach of our proposed performance benchmarks

3 BENCHMARK SCENARIOS
Following the observations from the case study above, we propose
to systematically measure and report performance metrics as part
of all replicability campaigns. Concretely, we propose to extend
the OSIRRC docker-based replicability infrastructure for two addi-
tional use cases. The different measured components are depicted
in Figure 2.

3.1 Full System Benchmark
Currently, most IR evaluation is conducted in batched processes –
working through a set of queries at a time, as we are mostly inter-
ested in the effectiveness results. The OSIRRC specifications also
contain an optional timing feature for batched retrieval5. While we
see this as a good first step, we envision a more performance fo-
cused benchmark: A scripted "interactive" mode, where the system
answers one query at a time. Here, the benchmark decides the load
and is able to measure fine grained latency and throughput.

The scripted "interactive" mode needs as little overhead as possi-
ble, like a lightweight HTTP endpoint receiving the query string
and returning TREC-formatted results. The execution of the bench-
mark needs to be conducted on the same hardware, multiple times
to reduce noise.

Although we present a neural IR model case study, we do not
limit this benchmark scenario to them – rather we see it as an op-
portunity to cover the full range of retrieval methods. For example,
we are able to incorporate recall-boosting measures in the first
stage retrieval such as BERT -based document expansion [14] or
query expansion with IR-specific word embeddings [7].

Measuring the latency and throughput over a longer realistic
period of a full search engine (with neural IR re-ranking component)
touches many previously undeveloped components: Storing neural
model input values of indexed documents, generating batches on the
fly, or handling concurrency. If a neural IR model is to be deployed
in production with a GPU acceleration, the issue of concurrent
processing becomes important: We observed that slower models
also have a higher GPU utilization, potentially creating a traffic jam
on the GPU, that in turn would increase the needed infrastructure
cost for the same amount of users.
5See: https://github.com/osirrc/jig

3.2 Re-ranking Benchmark
The neural IR field is receiving considerable attention and has a
growing community. In our opinion, the community is in need of a
more structured evaluation – both for performance and effective-
ness. We now propose a benchmark, which aims to deliver on both
dimensions.

The re-ranking benchmark focuses on the innermost component
of neural IR models: the scoring of query-document tuples. We
provide the re-ranking candidate list and the neural IR model scores
the tuples. Many of the existing neural IR models follow this pattern
and can therefore easily be swapped and compared with each other
– also on public leaderboards, such as the MS MARCO leaderboard.
This static scenario provides a coherent way of evaluating neural
IR re-ranking models. It helps to mitigate differences in the setup
of various research groups.

4 CONCLUSION
The OSIRRC docker-based IR replicability infrastructure presents
an opportunity to incorporate performance benchmarks. As an
example for the need of a broader view of the community, we show
in a case study the trade-off between performance and effectiveness
of neural IR models, especially for recent BERT based models. As a
result, we propose two different performance-focused benchmarks
to be incorporated in the infrastructure going forward. We look
forward to working with the community on these issues.
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