
Reproducible IR needs an (IR) (Graph) Query Language
Chris Kamphuis
ckamphuis@cs.ru.nl
Radboud University

Nijmegen, The Netherlands

Arjen P. de Vries
arjen@acm.org

Radboud University
Nijmegen, The Netherlands

ABSTRACT
IR research should concentrate on the retrieval model, and
not be hindered by its implementation in terms of low-level
data structures; and we should embrace graph databases to
realize that vision!

Even results from retrieval systems based on the clas-
sic Okapi BM25 retrieval model (an approach that seems
straightforward to implement) have been remarkably difficult
to actually reproduce in practice. Pin-pointing the cause of
not obtaining identical results on an identical collection is
surprisingly hard, especially since retrieval systems usually
mix the retrieval model itself with the code necessary to
make IR efficient. Unlike the database community, our field
has never moved away from implementing query processing
directly on the file system; historically best attributed to a
need for speed on large data sets of heterogeneous documents,
never a good match for our database colleagues’ solutions.

Nevertheless, this position paper calls for a shift toward
a declarative approach to specify retrieval. Not only has
the state of the art in database query processing reached a
level where doing IR as database queries is not unimagin-
able, advancing retrieval effectiveness has become dependent
on systems that handle complex data models in multiple
layers of processing, usually involving machine learning and
thereby including the data itself into the retrieval model. If
the results of ranking with a straightforward combination of
term frequency and document frequency can hardly be repro-
duced, how will we advance our field when researchers face
the implementation of ranking formulas that integrate the
data itself, knowledge bases and advanced machine learning
methods?

Reproducibility in IR will be much easier to achieve if the
retrieval model can be expressed concisely (and precisely!)
in terms of operations over the document-term graph, or,
probable today, a document-metadata-entity-term-graph. We
propose to adopt G-core, a language proposed by the database
community to become a standard graph query language, and
where necessary extend it for IR purposes. IR researchers
and practitioners can represent documents and annotations
naturally as graphs. We discuss the advantages of a graph
model over previous work using relational databases, and
illustrate how the key properties of simple and extended IR
models can be expressed naturally.

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).
OSIRRC 2019 co-located with SIGIR 2019, 25 July 2019, Paris, France.

CCS CONCEPTS
• Information systems → Query languages; Document rep-
resentation; Evaluation of retrieval results; Search engine
indexing.

KEYWORDS
information retrieval, graph query language, reproducibility,

1 INTRODUCTION
The IR community should work towards being a community
where reproducibility is the norm. We recognize that such a
process can happen gradually, and that weaker forms of repro-
ducibility, like replicability, are better than none. However,
when introducing tools for replicability, researchers should
keep in mind that replicability is only a temporarily solution
in the greater picture when working towards reproducibility.

The definition of reproducibility by the ACM1states that,
for computational experiments, an independent group can
obtain same results using artifacts they developed indepen-
dently. Exact reproduction is not required, but results ob-
tained should support the claims of the original work. For IR
experiments, this implies that evaluation metrics observed in
the reproduction study should be within a tolerable margin
from those in the published study.

In general, exact reproduction of studies is not a realistic
expectation to hold, and illustrated well by two published
results from the information retrieval field. First, work carried
out by Mühleisen et al. [5] compared multiple systems that
all claim to implement the BM25 ranking formula, and found
that four different implementations result in four different
effectiveness scores, both in 𝑀𝐴𝑃 and 𝑃 @5. Given that
these systems included Indri [9] and Terrier [6], this came
out as quite a surprise; the authors took specific care to
keep document pre-processing identical for both systems,
but the observed difference in 𝑀𝐴𝑃 of 3% absolute was the
largest deviation in score reported in that study. Similarly,
the RIGOR workshop compared different systems to each
other, out of which four systems implemented the BM25
ranking model Arguello et al. [2]. Again, the differences in
effectiveness amounted to 3% absolute on 𝑀𝐴𝑃 @1000.

Whether these differences are ‘within a tolerable margin’
is arguable. Why the differences are so large has not been
uncovered in detail; the authors of [2] pointed at tuning
parameters, differences in interpretation of the equations,
and optimizations. We suspect that implementations might

1https://www.acm.org/publications/policies/artifact-review-
badging, last accessed July 4th, 2019.

17

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging


OSIRRC 2019, July 25, 2019, Paris, France Kamphuis and de Vries

(unintentionally) modify the specification of the ranking for-
mula when implementing techniques to obtain faster query
processing. Whatever the correct explanation, what we can
conclude is that, apparently, widely used experimental IR
systems do not implement the same BM25 ranking formula
(and given the differences between all systems, it is not clear
which one implements the ranking formula that was proposed
in Robertson and Walker [7]).

As the scientific field that aims to identify the mechanisms
that can predict relevance computationally, it is disappointing
that we cannot even reach conclusive results for classic, highly
effective models. So, how can we improve upon the current
situation?

This paper takes the position that IR research should use
higher level abstractions in the implementation of the re-
trieval models we study. Prototyping retrieval models using
a declarative query language would improve reproducibility,
because the query expressions used provide a much better
basis to help investigate the differences that would explain
observed variations in effectiveness scores. If the reason be-
tween such differences can be explained, they can either be
fixed or kept depending on the nature of the cause.

More specifically, we propose to adopt a graph query lan-
guage as prototyping tool to achieve reproducibility in IR
experimentation. We first review arguments given in favour
of ‘a database approach to IR’. We explain how a graph query
language would be used for IR tasks and discuss its advan-
tages over other approaches. After sketching our solution
direction, we conclude by identifying the challenges that still
lie ahead.

2 A GRAPH QUERY LANGUAGE FOR IR
Mühleisen et al. [5] have argued that relational databases
implemented as column store would be a suitable choice for
creating information retrieval systems, and demonstrated how
TF-IDF like ranking functions can be expressed easily and
executed efficiently (show-casing a conjunctive BM25 ranking
function). They give the following arguments in favour of ‘a
database approach to IR’:

∙ A query language is a formal framework in which
query evaluations have to be formulated precisely. Re-
searchers do not have the option the resort to shortcuts
in corner cases;

∙ data management components are separated from the
query evaluation specifications, reducing system com-
plexity and yielding a better structured architecture;

∙ advances made in the database community (e.g. moving
from column-wise query processing to vectorized query
processing) will benefit the retrieval engine ‘for free’;

∙ error analysis can be carried out on the same database
that represents the collection. A researcher can write
additional queries for analysis without having to write
low-level code to interact with the data;

∙ a database provides a rapid prototyping tool. IR re-
searchers are primarily interested in questions regard-
ing the ranking components of their problem. They

only have to focus on issuing queries, without having
to write additional code.

All of these arguments relate directly to improving repro-
ducibility of IR experimentation. However, what the authors
did not mention is the increased friction of mapping all the
elements of an information retrieval model onto a relational
representation, especially when both the documents and the
ranking functions have been increasing in complexity in re-
cent years. While it is definitely possible to express retrieval
models in SQL or a relational algebra variant (assuming
it includes aggregation operators), this is not a convenient
approach, and, in our opinion, error-prone as well.

We embrace the arguments in favour of a database ap-
proach to IR, but propose to move along with recent trends in
the database community and model documents and queries
as graphs, and adopt a graph database model instead of a
relational model. Recently, a standard query language over
graphs, G-CORE, has been introduced in Angles et al. [1].
The language proposal is supported by database researchers
and practitioners united in the Linked Data Benchmark Coun-
cil (LDBC)2, and (at least partially) implemented by vendors
like Neo4J. In other words, it is the right time to consider
the question how to express information retrieval problems
in G-CORE, and identify possible extensions that might be
necessary for adoption in our community.

2.1 Documents and terms
G-core assumes the property graph data model: graphs are
directed, have labels on both nodes and edges, and every node
and edge can have associated <property, value> pairs.

We can represent both documents and terms as nodes
of the graph. Edges are formed between a document node
and a term node if the term appears in the document. If a
term appears multiple times in a document, G-CORE allows
for multiple edges between two nodes to exist. Edges may,
optionally, save the position of the term in the document.

G-CORE is a graph query language that is closed over
property graphs; when querying a graph, the result is another
graph. Expressing a retrieval model like BM25 then corre-
sponds to defining different graphs to determine the different
components in the ranking function. To illustrate, consider
how the term frequency of term 𝑡 given a document 𝐷 is
computed from the graph specified using the G-CORE query
shown in listing 1.
CONSTRUCT (d)<-[:appearsIn]-(t)

MATCH (d:Document) ON document_graph,
(t:Term) ON term_graph

WHERE t.value = query_t.value
AND d.id = doc_D.id

Listing 1: Term frequency for term document pair

The resulting graph contains two nodes; the document
node of document 𝐷 and the term node of term 𝑡. Term
frequency 𝑡𝐷 is calculated by counting the number of edges
connecting these nodes. G-CORE does not offer methods
2http://ldbcouncil.org, last accessed June 14th, 2019.

18

http://ldbcouncil.org


Reproducible IR needs an (IR) (Graph) Query Language OSIRRC 2019, July 25, 2019, Paris, France

to return properties yet, but Angles et al. [1] show how an
extension of the language would implement this; listing 2
expresses this using the current implementation in Neo4J’s
Cypher [4].
CONSTRUCT (d)<-[e:appearsIn]-(t)

MATCH (d:Document) ON document_graph,
(t:Term) ON term_graph

WHERE t.value = query_t.value
AND d.id = doc_D.id

RETURN COUNT(e)

Listing 2: Extension to return properties

A term’s Inverse Document Frequency (IDF) statistic can
be determined similarly: construct a graph consisting of all
nodes that are directly connected to the term node. The
number of document nodes in this graph is equal to the
number of documents in the collection containing query term
𝑡. Listing 3 shows how this graph can be constructed.
CONSTRUCT (d)

MATCH (d:Document) ON document_graph,
(t:Term) ON term_graph

WHERE t.value = query_t.value
AND (d)<-[:appearsIn]-(t)

Listing 3: Number of documents containing term

2.2 Entities and metadata
For the BM25 example, both the relational and the graph
database would be appropriate. However, when the data
becomes more (semi-)structured, using a graph model will
have clear advantages. Consider for example the TREC news
track Soboroff et al. [8], that introduces two retrieval tasks:
background linking and entity ranking. Both can be expected
to benefit from a richer document representation, where
the documents are enriched with their metadata and entity
annotations – perfectly modelled as a document graph.

2.2.1 Background linking. For the background linking tasks,
the news articles to be retrieved provide background informa-
tion to help understand a query article of interest. Annotating
the documents in the collection with metadata can be ex-
pected to help this task. For example, articles can be linked
with author information. Articles written by the same author
might have a higher chance of being relevant, as authors tend
to write articles within a narrow range of topics. As articles
can be written by multiple authors it also possible to identify
which authors co-authored often. This also might help when
determining if an article is suited for background reading.
These extra annotations can easily be represented in a graph
database, authors are simple nodes that are connected to
article nodes if they authored the article. The graph of all
articles written by the same author as the query article can
be constructed using the query shown in listing 4.
CONSTRUCT (d)

MATCH (d:document)
WHERE (d)-[:writtenBy]->()<-[:writtenBy]-(query_d)

Listing 4: Documents written by same author

2.2.2 Entity ranking. For the entity ranking task, entities
that appear in a query article, need to be ranked. The more
important an entity is in context of the article, the higher
it should be ranked. The set of entities that appear in the
document is provided, and, obviously, considering the docu-
ments as graphs lets us represent this information directly.
For ranking the entities one might want to know the collec-
tion statistics of said entities. In order to measure these, we
would extend the documents by running an entity tagger.
We can easily express entity occurrence in articles as graph
queries, and, if deemed useful to improve effectiveness, bring
in additional information from a knowledge base, an external
graph that we can join as easily, providing a complete and
high level specification of the exact way how the knowledge
base would be used in the ranking function.

2.3 Helping reproducibility
So far, we have focused on using a graph database for proto-
typing information retrieval models. The common practice
today among IR researchers and practitioners is however to
implement their approach to retrieval directly on top of an
inverted file index structure. The result is an implementa-
tion with many different interwoven individual components:
tokenisation, stemming, stop word removal, memory man-
agement, query processing, etc. When trying to reproduce a
study, it can be quite a challenge to determine which parts
of the process are different from the original study.

For a graph database solution, data management is taken
care of by the database system. The ranking function is ex-
pressed in the graph query language. This setup allows for
easy analysis if a particular component fails in the reproduc-
tion process. Ideally the original work and the reproduction
study both have represented their work with a graph data-
base. If reproduction fails in that case it easy to analyze
whether the ranking function represented in the graph query
language is the same and whether the document representa-
tions are identical. If either one is different it might explain
why it was not possible to reproduce results.

Consider again the study [5]. The query expression to cap-
ture the retrieval model is easily shared between research
groups. The column store approach was executed on two dif-
ferent database engines, MonetDB Boncz [3] and VectorWise
Zukowski et al. [10]. Remarkably, only those two systems
produced identical effectiveness scores, even though the ex-
ecution engines are completely different; only the queries
representing the IR model are identical. Had the effectiveness
scores not been the same, that would show that the systems
processed the queries differently. The cause of a difference
would be clear: either a bug, or differences in the data. If
another group would also represent their document collection
on one of these column store databases, and would find differ-
ent effectiveness scores, the document representations must
differ. This might be the case because of text processing. It
is immediately clear why differences probably occur when
investigating this way.

19



OSIRRC 2019, July 25, 2019, Paris, France Kamphuis and de Vries

Even if the original work is not executed in the form
of graph queries, our approach is still useful for analysis
during a reproduction study. Because of the separation of
concerns between data management and the expression of
the ranking function, comparing minor modifications in data
(pre-)processing and ranking gives the researchers a low-
effort opportunity to explore the effects of these changes. If
some implementation details are not provided in a scientific
publication, the graph database allows for quick analysis to
compare different implementations that follow from the left
out details.

3 FUTURE DIRECTIONS
Using a graph database with a graph query language instead
of a column store database with a structured query language,
offers new research opportunities. Firstly, we need empirical
research to determine whether graph databases have matured
sufficiently to execute the information retrieval queries as
efficient as their alternatives. Secondly, how should keyword
search be integrated in a graph query language? In the previ-
ous section a suggestion on how this can be accomplished was
made, but different representations may be explored, both
from an efficiency and an effectiveness perspective.

With respect to expressiveness of the language, the XQuery
Fulltext vs. NEXI debate from the XML IR era should be
revisited. Should we add operators that express clearly how
the graphs are constructed from the underlying documents,
including stemming and text normalization? With the in-
creased use of neural methods, topic models, and word embed-
dings, the question remains to what extent the construction
and/or their application should also be captured in declar-
ative queries. Creation of a topic model can be viewed as
an aggregation operation, just like we express the compu-
tation of IDF in context of a collection graph. The nearest
neighbour search operations in high dimensions for using
word embeddings can be expressed declaratively, and even
the efficient query processing strategies necessary (e.g. cite-
bond02). Future research will have to point out the need for
expressing these (often merely pre-processing) steps in the
same graph query language, or are more naturally addressed
as user-defined functions that primarily call external machine
learning libraries.

Finally, it is an open question how to rank edges and/or
nodes when taking into account the graph structure itself.
When the data is represented as a graph, graph specific
ranking components like pagerank might easily be taken
advantage of. Here, a specific property of interest is the
notion of path expressions offered by the G-CORE query
language.

Graph structures often appear in the context of social
media. In this context the graph constantly changes. New
nodes and edges are created all the time, and nodes and edges
might also leave the network. It will be useful to consider the
aspect that the graph structure constantly changes. So, it is
finally of interest to investigate which data structures and
algorithms are efficient in presence of continuous updates.

Finally, how can continuous updates of the graph be sampled
efficiently? It might be hard do determine when we need to
check which parts of the graph need to be updated when.

4 CONCLUSION AND
RECOMMENDATIONS

In this position paper we propose that IR practitioners should
represent their data as graphs managed in a graph database
system. We argue that this helps when trying to reproduce
studies, and will simultaneously make your own research
more reproducible for others.

ACKNOWLEDGMENTS
This work is part of the research program Commit2Data
with project number 628.011.001 (SQIREL-GRAPHS), which
is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

REFERENCES
[1] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz,

George Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus
Paradies, Stefan Plantikow, Juan Sequeda, Oskar van Rest, and
Hannes Voigt. 2018. G-CORE: A Core for Future Graph Query
Languages. In SIGMOD (SIGMOD ’18). ACM, New York, NY,
USA, 1421–1432. https://doi.org/10.1145/3183713.3190654

[2] Jaime Arguello, Fernando Diaz, Jimmy Lin, and Andrew Trotman.
2015. Sigir 2015 workshop on reproducibility, inexplicability, and
generalizability of results (rigor). In SIGIR. ACM, 1147–1148.

[3] Peter Boncz. 2002. Monet: A next-generation DBMS kernel for
query-intensive applications. Ph.D. Dissertation. Universiteit van
Amsterdam.

[4] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Ryd-
berg, Petra Selmer, and Andrés Taylor. 2018. Cypher: An evolving
query language for property graphs. In SIGMOD. ACM, 1433–
1445.

[5] Hannes Mühleisen, Thaer Samar, Jimmy Lin, and Arjen De Vries.
2014. Old dogs are great at new tricks: Column stores for IR
prototyping. In SIGIR. ACM, 863–866.

[6] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig
Macdonald, and Christina Lioma. 2006. Terrier: A high perfor-
mance and scalable information retrieval platform. In Proceedings
of the OSIR Workshop. 18–25.

[7] Stephen E Robertson and Steve Walker. 1994. Some simple
effective approximations to the 2-poisson model for probabilistic
weighted retrieval. In SIGIR. Springer, 232–241.

[8] Ian Soboroff, Shudong Huang, and Donna Harman. 2018. TREC
2018 News Track Overview. In The Twenty-Seventh Text RE-
trieval Conference (TREC 2018) Proceedings.

[9] Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce
Croft. 2005. Indri: A language-model based search engine for
complex queries (extended version). IR 407. University of Mas-
sachusetts.

[10] Marcin Zukowski, Mark Van de Wiel, and Peter A Boncz. 2012.
Vectorwise: A Vectorized Analytical DBMS.. In ICDE. 1349–1350.

20

https://doi.org/10.1145/3183713.3190654

	Abstract
	1 Introduction
	2 A Graph Query Language for IR
	2.1 Documents and terms
	2.2 Entities and metadata
	2.3 Helping reproducibility

	3 Future directions
	4 Conclusion and Recommendations
	Acknowledgments
	References

