
A Formalisation of the Soccer Substitution Rules

Yves Ledru

Université Joseph Fourier - Grenoble 1
Laboratoire Logiciels, Systèmes, Réseaux - IMAG

B.P. 72 - F-38402 - Saint Martin d’Hères Cedex - France
Yves.Ledru@imag.fr

Abstract. This paper presents a formal model of the substitution rules
for soccer games as they existed at the 1994 World Cup. The model is
expressed in VDM and can be animated with the VDMTools environ-
ment. The formalisation helps improve the precision of the original rules,
stated in natural language. This animation shows that the rules make a
useless distinction between goalkeeper and field player substitutions.

1 Introduction - Motivating example

During the 1994 Soccer World Cup, a problem arose about the interpretation
of the substitution rules when Italy’s goalkeeper was excluded during a match
against Norway. At that time, the rules only allowed to substitute one goalkeeper
and two field players. But the definition of “goalkeeper substitution” remained
informal. The usual meaning of a goalkeeper substitution is when the actual
goalkeeper leaves the field and is replaced by another goalkeeper. Unfortunately,
there are times when a field player leaves the field and is replaced by a goal-
keeper. Should such a substitution be counted as a goalkeeper or field player
substitution?

What actually happened during the Italy-Norway match is the following:

1. The italian goalkeeper Pagliuca (number 1) is excluded.
2. Baggio (number 10) exits the field and is substituted by the substitute goal-

keeper (number 12).
3. Two further substitutions of field players are performed.

If the first substitution is counted as a field player substitution, then the
third one was not allowed!

This paper will present one possible formalisation of the substitution rules
and show how the actual sequence of events of the 1994 Italy-Norway fits in these
rules. The paper is intended to give an entertaining example of the potential
usefulness of formalising the informal rules which govern human activities.

2 The informal soccer substitution rules

This paper models the referee’s book for a soccer game. Its goal is to model the
rules for the substitution of players during a game.

850 Regulations Modelling and their Validation and Verification 



For a given team, the following rules apply during a match:

– A soccer team consists of up to eleven players and a set of substitutes.
– At most one of the players is the goal-keeper.
– The rules of soccer allow for the substitution of a player by one of the

substitutes.
– Once a player has been replaced by another, he may no longer take part to

the match.
– There is a maximum number of allowed substitutions (in 1994, one goal

keeper and two field players).
– The referee may exclude a player (including the substitutes).
– The role of goalkeeper may be transfered from one player to another, pro-

vided the referee is notified about this transfer.

3 The VDM specification

Our model uses the VDM specification language. VDM is an ISO standard for
software specification [3, 4, 2]. A VDM specification is composed of two main
parts:

– A state is described by several variables. These variables may be constrained
by invariant properties.

– Operations modify the state. These operations are specified by pre- and
post-conditions.

Part of the language is executable and supported by a suite of industrial tools
named VDMTools [1]. The specification presented here was initially prototyped
with KIDS/VDM [5], then adapted to VDMTools.

3.1 Constants, types and state variables

Two constants are introduced to denote the maximum numbers of substitutions
for goalkeepers (gk-subs-max) and field players (fp-subs-max). Type player is
introduced as a renaming for natural numbers.

values gk_subs_max : nat = 1;
fp_subs_max : nat = 2

types player = nat

The state of the soccer team, as it appears in the referee’s book, may be
abstracted to five variables:

– the set of players on the field
– the set of potential substitutes
– the player who is the goalkeeper1

1 The goalkeeper is usually a member of the players on the field, but not always, e.g.
he can be excluded by the referee.

REMO2V'06 851



– the number of goalkeeper substitutions already performed
– the number of field player substitutions already performed

state R_Book of
on_field_players : set of player
potential_substitutes : set of player
goalkeeper : player
nb_gk_subs : nat
nb_fp_subs : nat

inv mk_R_Book(ofp,ps,gk,ngk,nfp) ==
(card ofp) <= 11
and (ngk <= gk_subs_max) and (nfp <= fp_subs_max)
and gk not in set ps
and ofp inter ps = {}

init r == r = mk_R_Book({1,2,3,4,5,6,7,8,9,10,11},
{12,13,14,15,16}, 1, 0, 0)

end

The state invariant expresses that there are at most eleven players of the
team on the field, and that the numbers of performed substitutions are less than
or equal to the maxima allowed. It also states that the goalkeeper is not within
the substitutes. Finally, the invariant states that a player can not simultaneously
be on field and substitute. The last lines state the initial values, which are the
usual ones in soccer matches.

3.2 Operations

There are three operations allowed on this state:

– the referee gives a red card to exclude one of the players,
– the goalkeeper role is transfered to another field player,
– a player is substituted by another player.

The RED-CARD operation takes the excluded player as argument. The player
may be any of the team players, so the pre-condition states that he is member
of one of both sets on-field-players and potential-substitutes. The post-
condition states that he no longer appears in any of these sets and that everything
else remains unchanged. Operations in VDM-SL include an implicit part where
a pre-condition and a post-condition are stated, and an explicit part which is
actually code to be executed by the operation. The VDM tools check at execution
time that the execution of the operation conforms to the pre and post-conditions,
as well as to the state invariant.

852 Regulations Modelling and their Validation and Verification 



operations
RED_CARD : player ==> ()
RED_CARD (p) ==
(
on_field_players := on_field_players \ {p};
potential_substitutes := potential_substitutes \ {p}
)
pre p in set on_field_players or p in set potential_substitutes
post on_field_players = on_field_players~ \ {p}

and potential_substitutes = potential_substitutes~ \ {p}
;

The second operation CHANGE-GOALKEEPER expresses that one of the field
players takes the role of goalkeeper. The pre-condition states that the player is
on the field (not really mandatory, but often useful) and the post-condition that
he is the new goalkeeper.

CHANGE_GOALKEEPER : player ==> ()
CHANGE_GOALKEEPER (p) ==
(
goalkeeper := p
)
pre p in set on_field_players
post goalkeeper = p

;

The last operation models the substitution of a player by another one. De-
pending on the role of the player who quits the field, the relevant variable
(nb-gk-subs or nb-fp-subs) is updated. Actually, since our model does not
allow the goalkeeper to be a substitute, the choice to update nb-gk-subs or
nb-fp-subs may only depend on the role of the player that leaves the field.
The pre-condition states that the player is on the field, that the substitute is
a valid substitute, and that the maximum number of substitutions has not yet
been reached. The post-condition states that the substitute is on the field and
that pl no longer participates to the match. It also states that subs is the new
goalkeeper if pl was goalkeeper. Finally, it updates the substitution counters.

REMO2V'06 853



SUBSTITUTION : player * player ==> ()
SUBSTITUTION (pl, subs) ==
(
on_field_players := on_field_players union {subs} \ {pl};
potential_substitutes := potential_substitutes \ {subs};
if pl = goalkeeper then

(goalkeeper := subs;
nb_gk_subs := nb_gk_subs +1)

else (nb_fp_subs := nb_fp_subs +1)
)
pre pl in set on_field_players and subs in set potential_substitutes

and (pl = goalkeeper => (nb_gk_subs+1 <= gk_subs_max))
and (pl <> goalkeeper => (nb_fp_subs+1 <= fp_subs_max))

post on_field_players = on_field_players~ union {subs} \ {pl}
and potential_substitutes = potential_substitutes~ \ {subs}
and (pl = goalkeeper~ =>

((goalkeeper = subs)
and (nb_gk_subs = nb_gk_subs~ +1 )
and (nb_fp_subs = nb_fp_subs~)))

and (pl <> goalkeeper~ =>
((goalkeeper = goalkeeper~)
and (nb_gk_subs = nb_gk_subs~)
and (nb_fp_subs = nb_fp_subs~ +1)))

;

4 Model execution and validation

The VDMTools environment proposes a validation approach based on animation
and test of the specification. Animation is based on the execution of the explicit
parts of operations, starting from the initial state. Validation can be carried out
both informally and formally:

– An informal validation looks at the behaviour of the model and checks that it
corresponds to the expected results. This activity may be supported by the
definition of several test cases which correspond to expected or forbidden
behaviours. For example, one can check that the model allows up to two
substitutions of field players and rejects a third one.

– A formal validation mechanism is built in the tool: it checks that invariants
and pre-conditions are verified in the initial state of an operation call, and
that invariants and post-conditions are verified in their final state. This is
mainly a consistency check: the explicit parts of the specification actually
implement the constraints of the implicit parts.

VDMTools don’t include a test generator: the animated sequences are thus
designed by the analyst based on his understanding of the model and of the
requirements.

854 Regulations Modelling and their Validation and Verification 



4.1 Italy vs Norway revisited

We are now able to analyse the Italy-Norway game by executing the model with
the VDM tools. It reveals that the following sequence of operations is invalid:

RED_CARD(1)
SUBSTITUTION(10,12)
SUBSTITUTION(2,13)
SUBSTITUTION(3,14)
Run-Time Error 58: The pre-condition evaluated to false

Actually, three field players have left the game. Moreover, Pagliuca (player
1) has remained goalkeeper for the whole match!

A valid sequence is:

RED_CARD(1)
CHANGE_GOALKEEPER(10)
SUBSTITUTION(10,12)
SUBSTITUTION(2,13)
SUBSTITUTION(3,14)

So, provided this formalisation captures the semantics of the soccer substi-
tution rules, Roberto Baggio has exited the match as being the goalkeeper, and
the remaining substitutions of Italy-Norway were valid!

Actually, the fact that it is possible to change the goalkeeper at any time
allows to make three substitutions of field players, like in the following sequence:

SUBSTITUTION(2,13)
SUBSTITUTION(3,14)
CHANGE_GOALKEEPER(4)
SUBSTITUTION(4,15)
CHANGE_GOALKEEPER(1)

In this sequence, player 4 exits as being the goalkeeper, but as soon as the
substitution has taken place, the original goalkeeper (player 1) is restored.

Such a formal model, and this counter-example, show that the distinction
between goalkeeper and field player does not make sense for substitutions. Actu-
ally, the FIFA (international soccer federation) simplified its substitution rules
short after the 1994 World Cup, allowing three substitutions of players during a
match without distinction between field players and goalkeepers.

5 Conclusion

This paper has presented a formalisation of the rules of the soccer game related
to the substitution of players. An example, taken from the 1994 World Cup
shows that the original rules may lead to several diverging interpretations. It

REMO2V'06 855



also shows that rules may lead to unexpected interactions: here the rules related
to exclusion of a player interfere with the rules related to player substitution.

Providing a formal model leads to a more rigorous application of the rules.
In the Italy-Norway example, one would have expected that the goal keeper
change which took place before the first substitution would have been notified
to the referee. It also allows to experiment with the model, which leads here
to the demonstration that the distinction between goalkeeper and field player
substitutions does not make sense.

Finding ways to detect errors in the model is an interesting field of research.
In this paper, the counter examples were discovered after a careful study of the
model. But tools based on test generation and model-checking techniques can
also be used during model validation.

This case study was primarily meant to be didactical and illustrative, but I
hope that it shows the usefulness of formalising human rules and experimenting
with executable models in order to find their weaknesses.

Acknowledgments Thanks to Marie-Laure Potet and the REMO2V reviewers for
their comments on a earlier versions of this document.

Part of this work is supported by the EDEMOI project, sponsored by the
ACI Sécurité Informatique of the French Ministry of Research.

References

1. CSK. VDMTools - The VDM-SL Language. Technical report, CSK, 2005.
http://www.vdmtools.jp/files/langmansl a4.pdf.

2. John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

3. ISO. Information Technology — Programming Languages, their environments and
system software interfaces — Vienna Development Method-Specification Language
Part 1: Base language, 1996.

4. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall, London,
1986.

5. Y. Ledru. Using KIDS as a tool support for VDM. In Proceedings of the 18th
International Conference on Software Engineering, pages 236–245. IEEE Computer
Society Press, 1996.

856 Regulations Modelling and their Validation and Verification 


