
Modelling and Verifying of e-Commerce Systems

Andreas Speck

Friedrich-Schiller-University Jena
Department of Economics

Integrated Application Systems Group
andreas.speck@uni-jena.de
www.wiwi.uni-jena.de/wi2/

Abstract. Static function hierarchies and models of the dynamic behaviour are
typically used in e-commerce systems. Issues to be verifies are the completeness
and correctness of the static function hierarchies, business rules valid in defined
business domains and the consistency of models on different levels of abstraction.
Today the systems are mostly tested manually. Automated support may the verifi-
cation of static dependencies modelled in Boolean logic. Moreover, the checking
of dynamic process models can be supported by temporal logic specifications and
model checking tools.

1 Introduction and Problem Statement
Most large scale commercial systems share similar modelling and architecture con-
cepts. e-Commerce systems like Intershop Enfinity are typical examples of this type of
systems. Moreover other commercial e.g. the ERP system SAP R/3 have the same mod-
elling characteristics based on business processes. The design is modelled on different
abstraction levels. The static dependencies between the functionality are modelled in
hierarchies. The dynamic interactions are designed in process and workflow models.

A typical modelling method for commercial systems in general is ARIS (Architec-
ture integrated Information Systems) supported by the ARIS tool set of IDS Scheer (a
closer description of a ARIS subsystem optimised for e-commerce is given in section 2).
The typical problems that arise from this modelling concept are:
• Static function hierarchies must be complete and correct.
• Specific business rules, which are valid in defined business domains, are to be kept.
• Dynamic models on different levels of abstraction must be consistent.
Current practice is to test and check systems manually. Besides specific rules and reg-
ulations, experiences are used as base. However, it is obvious that the manual tests do
not cover all possible errors. Additionally they are very cost intensive especially for
commercial software developers.

2 e-Commerce Modelling by ARIS
As already mentioned the ARIS modelling concept is used in commercial systems in
general. In this section we will present ARIS for Enfinity [1] as a typical modelling
concept for e-commerce systems. Since there exist numerous modelling variants in
the general ARIS concept, we will focus on this specific version ARIS for Enfinity.

REMO2V'06 857

Function Hierarchy Event-driven Process Chain Intershop Pipeline
(generic model) (generic model) (proprietary model

ARIS for Enfinity)

Table 1. Model Types of the ARIS Method (ARIS for Enfinity)

However the ARIS for Enfinity modelling concept must still be considered as a very
generic model for e-commerce systems and may be applied for other systems e.g. like
mySAP. As there exist no final standards in e-commerce modelling (currently on base of
Web Services and BPEL4WS first approaches towards standardisation are in progress)
ARIS for Enfinity already gives a clear outlook on the future standard. Since there are
clear parallels between future BPEL4WS modelling and the already successfully ap-
plied ARIS for Enfinity, this paper is based on the ARIS for Enfinity experiences.

ARIS for Enfinity supports four layers of abstraction. The layers one to three are
standard in large scaled-commerce systems and other commercial applications. Only
the fourth layer uses an Enfinity specific model presentation (Intershop Pipelines).
However the basic concept is also base of generic modelling like in BPEL4WS, which
bears considerable similarities to the Intershop Pipelines.

1. Business Scenarios define the basic core, coarse grain elements of the e-commerce
application. They are very abstract. The verification on this level is and will be done
by human experts. Automation is not desirable.

2. Business Process Overview provides the overview over the functionality (main
functions). Usually only the static relations of the functions are considered (func-
tion hierarchies).

3. Business Processes describe the dynamic processes in the system. Yet, the models
are abstract. However, the business process models may be refined to the concrete
workflows. Usually EPCs (Event-driven Process Chains, [6]) are applied as mod-
elling technique.

4. Workflows describe the executable processes of the system. Intershop invented a
proprietary model: Intershop Pipelines, which are on the one hand graphical models

858 Regulations Modelling and their Validation and Verification

and on the other hand are interpreted by the application server of the e-commerce
system. Modelling languages on a similar level are web-service descriptions like
BPEL4WS (which are issue of standardisation at the moment).

The different ARIS model types are depicted in table 1. The Function Hierarchy
shows which function is member of which other function.

The dynamic model Event-driven Process Chain is a rather abstract process de-
scription. The main elements are the functions (rounded rectangles) and the events
(hexagons) which are connected by the organisational flow (arrows) and the logic con-
nectors (Boolean AND as depicted as well as OR and XOR). Examples of further el-
ements are organisational units executing certain functions, deliveries or application
systems providing functions.

The Intershop Pipeline Models include different types of nodes: Pipelet nodes im-
plement the re-usable specific business function. This business function is realised by
a small Java class. For more complex operations these classes call library code (in the
persistence layer), e.g. access to data bases or other systems. Control nodes define the
control flow of Pipelines. An example in the table is the call of a Sub-Pipeline or the
termination of this Sub-Pipeline. The interaction of the Pipelines and the web pages
(templates) exported to the web clients is described in interaction nodes. These nodes
define which data a Pipeline receives from a template activating the Pipeline (start in-
teraction) and which data is delivered to the resulting template (interaction).

<<concept>>
Order Process

<<optional>>
Approval

<<mandatory>>
Transaction

<<optional>>
Recurring Order

<<optional>>
Basket

<<mandatory>>
Price Model

<<mandatory>>
Fulfillment

<<mandatory>>
Payment

<<mandatory>>
Tax

<<optional>>
Shipping Cost

<<alternative>>
Service Delivery

<<alternative>>
Electronic Delivery

<<alternative>>
Shipping

<<optional>>
Price List

<<optional>>
Discount
{Binding T ime =

run−time}

<<alternative>>
Pay on Delivery

<<alternative>>
Credit Card

<<alternative>>
Pay by Bill

<<weak Constraint>>
mutex

<<requires>>

<<requires>>

<<mutex>>

Fig. 1. UML Function Hierarchy

REMO2V'06 859

3 Verification Concepts

3.1 Static Function Hierarchies

The static function hierarchies are rather easy to verify. The configurations of functions
may be represented by Boolean formulae [8] which may be verified automatically (e.g.
by theorem proofer or term rewriting).

The more interesting question is how to visualise the hierarchy. One possibility may
be to extend the ARIS model. Another alternative is to apply a more complex model.
UML class models may serve as compromise. They support numerous expressive mod-
elling elements and can be exported from the ARIS tools.

Besides the ordinary inclusion relationship (represented by aggregation) there ex-
ist variability (inheritance). Functions may be mandatory (AND), optional (OR) or al-
ternative (XOR). Moreover cross-tree constraints are introduced (either both functions
required or are mutual exclusive).

Typical rules on the level of static function hierarchies are:
• The number of times specific functions have to occur. E.g. a web-shop does not sup-

port all types of payment or delivery which are potentially possible.
• The locations in the hierarchy, where functions or sub-hierarchies of functions are

placed, are relevant.
Depending on the specific application type (called solution) like business to business

(B2B), business to consumer (B2C) or e-procurement there are variants (considered
as rules) in the characteristic hierarchies, e.g. B2C and e-procurement solutions offer
a comparatively large, predefined sub-hierarchy of price management functions while
B2B solutions support only a single function.

Fig. 2. Example: Login and Presentation Process

860 Regulations Modelling and their Validation and Verification

3.2 Business Rules in Dynamic Models

At Intershop a set of business rules (best practices) have been collected. Usually
these rules are base of the manual testing. Figure 2 shows a business process to be ver-
ified. This process describes the login and identification of a customer and the result-
ing different purchase and presentation functions. In contrast to the most other process
models the chosen example is quite small and easy to overlook. Usually the models are
much larger.

These rules, which have to be verified, deal with the temporal dependencies. There-
fore they can be transformed in temporal logic. In our case we apply Computational
Tree Logic (CTL) which is supported by the model checking tool Symbolic Model Val-
idation (SMV) [7]. The process models are transformed to automata verified by SMV.
1. A customer must be presented a catalogue choice in all cases. This rule is valid for

all customer categories. An appropriate CTL formula representing this rule is:
AG(Customer is on Home Page -> AF(Catalog Choice))

It is generally assumed Always Globally (AG) that the customer is already an the
home page of the shop (Customer is on Home Page = �). Now it has to be
verified that this precondition implies Always in the Future (AF) the customer will
have a Catalog Choice. There is no path that will not lead to Catalog Choice.

2. In this example a path has to be identified on which customer data are checked (is
true). Here we have to check that there is no state where customer data are checked
in order to receive a counter-example form the model checker.
AG(Customer is on Home Page -> AG(!Customer Data Check))

Again, we start with the same assumption as in the first example
(Customer is on Home Page = �).

The results of the SMV model checker are shown in figure 3.

Fig. 3. SMV Checking Results

Further examples for best practices / business rules are:
• Before a customer pays always a product presentation page is shown.
• There is no path which leads to an unintended loss of the content in the customer’s

shopping cart.
• The customer’s order may be identified in the different subsystems (ERP, logistic

system or e-commerce system).

REMO2V'06 861

3.3 Consistency between Models on Different Levels of Abstraction
There are no typical rules for the refinement of more abstract models (e.g. EPC models)
to more detailed ones (e.g. Pipelines or BPEL4WS). However, usually characteristic
sequences in abstract models should appear in detailed models. These characteristic se-
quences may serve as specifications, which have to be verified. These sequences may
be considered as a rules which are then checked as demonstrated in section 3.2. How-
ever up to now there is little research how to manage this kind of very specific rules
which are different for each application. The versioning approach for static features
like presented in [8] may be starting point for future work.

4 Related Approaches
In hardware verification there are a considerable number of model checking approaches.
The verification of software and specifically the dynamic processes is still at it’s very
beginning. An early example for software checking is Bandera, an integrated collection
of program analysis and transformation components [4], which allows to validate Java
code to a certain extend (e.g. limited lines of code).

Assuming the system is developed starting with manually produced state charts (as
realised in [3] and [2], for instance) it is possible to translate programs and requirements
applying a generation technique. However, consistency problems arise if the model is
produced independently from the implementation.

The validation of the behaviour of components is also related to this work since it
meets the problems in the lower abstraction levels. In [10] an approach called PACC is
presented. It allows component certification and documentation. The approach consid-
ers enforcing predefined and designed interaction patterns. Another approach to model
and validate the dynamic activities of components may be found in [9]. In this approach
model checking is explicitly applied in order to validate the behaviour of the compo-
nents and composites.

Some approaches deal with the validation of workflows in general by applying
model checkers. An example for a workflow checking approach is [5]. Here web service
workflows are to be validated.

5 Conclusion and Future Work
The testing of large scale commercial systems such as e-commerce systems is currently
manually realised. Function hierarchies may be modelled in Boolean logic which are
automatically verified by theorem proofer or with term rewriting. The checking of dy-
namic process models (e.g. against business rules) can be supported by temporal logic
and model checking techniques.

Future work will be to improve the workflow models on the most detailed level.
Further semantic information has to be captured. Code characteristics of the Pipelets
will be included in the models.

Another issue is the improvement of the model checking technology. Since the SMV
is quite optimal for the representation of hardware, the support of workflows and soft-
ware requires new verification systems to be invented. Specifically properties (e.g. rep-
resenting further semantics) and their hierarchical arrangement have to be dealt with.

862 Regulations Modelling and their Validation and Verification

References

1. M. Breitling. Business Consulting, Service Packages & Benefits. Technical report, Intershop
Customer Services, Jena, 2002.

2. E.M. Clarke and W. Heinle. Modular translation of statecharts to smv. Technical Report
CMU-CS-00-XXX, Department of Computer Science, CMU, Pittsburgh, 1998.

3. K. Fisler, S. Krishnamurthi, D. Batory, and J. Liu. A Model Checking Framework for Layered
Command and Control Software. In Proceedings of the Workshop on Engineering Automation
for Software Intensive System Integration, June 2001.

4. J. Hatcliff, C. Pasareanu, R. S. Laubach, and H. Zheng. Bandera: Extracting Finite-state
Models from Java Source Code. In Proceedings of the 22nd International Conference on
Software Engineering, June 2000.

5. C. Karamanolis, Giannakopoulou D., J. Magee, and S. Wheater. Model Checking of Work-
flow Schemas. In In Proc. of the 4th International Enterprise Distributed Object Computing
Conference (EDOC’00). IEEE Computer Society, 2000.

6. G. Keller, M. Nüttgens and A.-W. Scheer. Semantische Prozessmodellierung. Technical report
Nr. 89, Veröffentlichungen des Instituts für Wirtschaftsinformatik, Saarbrücken, 1992.

7. K. McMillan. Symbolic Model Checking. PhD Thesis, CMU, Pittsburgh, 1992.
8. E. Pulvermüller, A. Speck, and J. O. Coplien. A Version Model for Aspect Dependencies. In

Proceedings of 2nd International Symposium of Generative and Component-based Software
Engineering (GCSE 2001), LNCS, Erfurt, Germany, September 2001. Springer.

9. A. Speck, E. Pulvermüller, M. Jerger, and B. Franczyk. Component Composition Validation.
International Journal of Applied Mathematics and Computer Science, 12(4):581–589, 2003.

10. J. Stafford and K. Wallnau. Predicting Assembly from Certifiable Components. In Proceed-
ings of the Workshop on Feature Interaction in Composed Systems, ECOOP 2001, Technical
Report No. 2001-14, ISSN 1432-7864. Universitaet Karlsruhe, June/September 2001.

REMO2V'06 863

864 Regulations Modelling and their Validation and Verification

