
Modeling and Verifying Workflow-based Regulations

Daniel Fötsch
�
, Elke Pulvermüller

�
, and Wilhelm Rossak

�

�
University of Leipzig,

Department of Computer Science, Augustusplatz 10-11, 04109 Leipzig, Germany,
foetsch@informatik.uni-leipzig.de�

Friedrich-Schiller-University Jena,
Department of Computer Science, Ernst-Abbe Platz 1-4, D-07743 Jena, Germany,

[pulvermu|rossak]@informatik.uni-jena.de

Abstract. In this paper we present our approach to model and verify workflow-
intensive systems. Besides the functional properties (given by the temporal work-
flow description) we augment the model and model checking with additional
property treatment to deal with multifarious non-functional properties and prop-
erty hierarchies. This enables a more powerful verification of requirements such
as given business-driven regulations in these system workflows.

1 Introduction and Problem Statement

Workflow-intensive systems are systems consisting of hardware and software which
focus on workflows, i.e. on the temporal order of processing documents and data.

Workflow-intensive systems require both a model incorporating the functional and
non-functional properties as well as a temporal verification of (some of) these proper-
ties. The latter allows to ensure that certain (temporal) regulations hold in the system
model. Symbolic time and order are an important issue in workflow-intensive systems.
This characteristic makes them a suitable task for their verification by means of model
checking.

Workflow models describe a set of activities and their relationships in a temporal
order, start and termination criterions, and information about the individual activities,
such as associated IT applications and data, etc. [1]. In the web service development,
which is a specific workflow domain, workflows can be defined using XML-based (stan-
dardized) languages such as BPEL4WS, WSCI, and BPML. BPEL4WS [2] is quickly
emerging as the language of choice for the description of process interactions.

However, in all these standardized languages (and also in BPEL4WS) no explicit
support for the non-functional quality characteristics, e.g. efficiency or reliability, is
available. There are no explicit quality guidelines and no explicit modeling elements
are foreseen yet to capture or describe those in a structured way. But, modeling process
rules and business- or government-drivenregulations require both to consider functional
(directly workflow related) and multifarious non-functional properties.

Applying model checking, the workflow system is modeled as a special kind of
finite state automata, so-called Kripke automatas or Kripke models [3]. The relevant
properties are connected to the states (labeling). Selected temporal requirements the
system is expected to fulfill are formulated as temporal logic formulas. The temporal

REMO2V'06 825



logic languages used are CTL or LTL, for instance. Based on graph algorithms like
reachability algorithms, the model checking algorithm determines if the given temporal
requirement is fulfilled in the system model.

In the current practice, however, the world of Kripke automata with labelled states
and transitions offers a limited potential for (non-functional) property treatment. La-
bels attached to states are atomic propositions. Neither their structure (e.g. to reflect a
quality hierarchy) nor their operations can be explicitely defined. However, for multi-
farious properties different processing rules have to be taken into consideration within
the model checking algorithms (e.g. the efficiency properties are processed differently
to certain reliability properties).

In the following we describe our approach to XML-based modeling (extension to
BPEL4WS) and our verification approach (extension to CTL model checking algo-
rithms) to tackle the current problem of insufficient (non-functional) property treatment.

2 Model and Verification Extensions

To approach the above mentioned deficiencies both, existing modeling and verification
techniques have to be adapted. The verification algorithms have to exploit the available
model information to detail the verification results.

2.1 Non-functional Extensions in BPEL4WS Models

Figure 2 shows an example for a hierarchy of non-functional properties. To incorpo-
rate such non-functional properties in the workflow model, we augment the BPEL4WS
model definition.

Fig. 1. Non-functional extensions for a BPEL4WS model definition.

To obey the BPEL4WS standard, the properties are added by means of processing
instructions which can be processed by our transformation framework. These process-
ing instructions are structured as depicted in figure 1. The structured instructions define
an excerpt of the ISO 9126-1 quality model (cf. figure 2).

826 Regulations Modelling and their Validation and Verification 



Fig. 2. Excerpt of the ISO 9126-1 Quality Model [4]

The main types of the instruction structure are the propertyDef, the
algebraDef, the domainDef and the operationDef types. The propertyDef
type defines a specific non-functional property type in a hierarchical manner refer-
ring to the super-property (superProperty). The algebraDef connects a user-
defined algebra to a quality property. This algebra is defined with a value domain via the
domainDef type and with corresponding operations via the operationDef type.
The example in figure 1 details the maturity quality property. Its domain is defined
as the number of years of development experience. The semantics behind this is the
assumption that the higher the development experience the higher the maturity is.

TheopORsemantic,opANDsemantic and opNOTsemantic character strings
in figure 1 represent (each) a processing rule for the specific maturity property. The
three Boolean operations AND, OR and NOT have to be defined as these are used by
the model checking algorithms. In the case of the “developer experience” property, the
AND-operation (character string opANDsemantic) may be defined as a maximum
function, for instance. In syntax:
opANDsemantic :=

AND(developerExperienceDom,developerExperienceDom)
and semantics: AND(e1,e2) = e1 iff e1 � e2 else e2.
The concrete operation semantic definition is user-defined and depends on the expected
verification result semantic.

The BPEL4WS code depicted in figure 3 gives an example for the application of
the extended non-functional properties in BPEL4WS activities.

Fig. 3. Example for applying the properties in BPEL4WS activities.

The activity defines a synchronous invocation with variable ”shippingRequest” and
return value ”shippingInfo”. This invoke-activity is augmented with an additional
non-functional property: the information about the web service that it has been devel-
oped by somebody with equal or less than 5 years of development experience.

REMO2V'06 827



2.2 Transformation Framework

In order to verify the workflow definitions and also their non-functional properties, we
implemented the framework illustrated in figure 4. Our framework realizes a multi-
level transformation process from workflow definitions such as BPEL4WS in a formal
intermediate representation and further in a specific input model to verification tools
such as CoV [5]. As intermediate representation we use a guarded labelled automata
stored in XML.

Fig. 4. Transformation Framework

To implement the transformations, we define new complex operators on top of
elementary ones. This is provided by an XML transformation technology (similar to
XSLT) applying the operator hierarchy concept which is discussed extensively in [6].

Besides the transformation of higher-level into verification specific models, the
transformation framework enables to incorporate optimizing operations on the interme-
diate representation (e.g. minimizing product automatas for parallel workflow parts).

2.3 Model checking Extensions

Model checking CTL temporal formulas requires a special finite state automata as
model input (besides the temporal formula). The presented transformation framework
allows the transformation of the extended BPEL4WS workflow models into an extended
Kripke model preserving the following information in addition to traditional Kripke
structures (details may be found in [5]):

– Property algebras: Instead of simple atomic propositions of current Kripke models
these extended Kripke models define property algebras. By this means, it is possible
to model check user-defined types (i.e. user-defined domains and their operations).
The operationAND, OR and NOT build the set of operations which have to be defined
for each quality. The user-defined algebras form a parameter to the model checker.

– Property hierarchies: Instead of simple atomic propositions of current Kripke mod-
els a property tree is attached to the model elements (the states) reflecting the reality
of quality hierarchies. The property assignment of the properties p1 and p2 to the
states s1 and s2 may be defined hierarchically as follows, for instance: s1 :=
p1, s2; s2 := p2 (hierarchically assigning s2 to s1 besides the regular leaf
property p1).

828 Regulations Modelling and their Validation and Verification 



3 Related Work

The transformation framework is based on an earlier XML-based transformation ap-
proach [7]. Other aspect-oriented invasive composition approaches based on XML (e.g.
[8]) ignore operator hierachies and non-functional properties.

In [9] a requirement-driven approach is proposed for the design and verification of
web services. The formal requirements are used to derive process skeletons in BPEL4WS
and to validate the refined BPEL4WS process against the constraints described in the
requirements applying the symbolic model checker NuSMV. A number of alternative
approaches to validate workflow-intensive systems based on explicit state model check-
ing and SPIN may be found in [10–12], for instance. However, all of these approaches
do not support the validation of non-functional regulations and property hierarchies.

Details to the CoV model checker and its extended property treatment may be found
in [5]. Other existing extensions to model checking algorithms consider special proper-
ties like time [13] or dynamic variable assignment [14]. Again, user-definable property
algebras and the hierarchical non-functional property treatment are not considered. A
related approach in user-definable property algebras may be found in [15] (based on
Quasi-Boolean lattices). Their intention, however, is the realization of a multi-valued
model checking to deal with the synthesis of different models of one and the same
system.

4 Summary and Conclusion

In the web environment, standards (and BPEL4WS in particular) gain growing impor-
tance for the modeling of workflows. Besides the workflow models to capture the sys-
tem, specific requirements to the system form the base for the verification of the model.
These requirements are business- and government-driven regulations, for instance. As
workflows are closely connected to time and order temporal requirements are natural.
Therefore, model checking, which is suited for temporal logic, is the means of choice
to verify that a requirement is satisfied in a given workflow model.

In our approach we extend the BPEL4WS definition language exploiting BPEL4WS
processing instructions. Structured instructions allow the augmentation of non-functional
and hierarchical properties with user-defined property algebras. A transformation frame-
work converts the input into an intermediate XML format and further into the verifier
input format. By means of an operator hierarchy different input formats may be pro-
cessed and also different output formats may be produced. In our approach, we refer
to the CoV output format. CoV is a model checker which is able to deal with property
hierarchies and user-defined property algebras.

The intermediate model of our transformation framework does not yet handle some
advanced BPEL4WS features (e.g. the correlation sets and dynamic process instan-
tiation). Further work is also needed to support the optimization of the intermediate
models (minimizing their size, for instance). We are currently working on optimizing
operators. Moreover, the verification algorithm efficiency in open (web) systems can be
improved directly. AI and compositional techniques are currently under investigation.
The management of model evolution and the consequences for the reuse of existing
verification results is a further domain for future research.

REMO2V'06 829



References

1. Workflow Management Coalition 2 Crown Walk, Winchester, Hampshire SO23 8BB, UK.:
Terminology & Glossary – WFMC-TC-1011, Version 3.0. (1999)

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language
for Web Services, Version 1.1, 5 May 2003. (2003)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. 3 edn. The MIT Press, Cam-
bridge, Massachusetts; London, England (2001)

4. ISO/IEC: FCD 9126-1.2: Information Technology – Software Product Quality. Part 1: Qual-
ity Model. (1998)

5. Pulvermüller, E.: Verifikation von Komponenten-basierten Systemen auf Basis eines erweit-
erten temporalen Verifikationsverfahrens. PhD thesis, Friedrich-Schiller-University of Jena,
Jena, Germany (2006)

6. Fötsch, D., Speck, A., Hänsgen, P.: The Operator Hierarchy Concept for XML Docu-
ment Transformation Technologies. Berliner XML Tage 2005 (BXML’05), 12.-14. Septem-
ber 2005 in Berlin. In Eckstein, R., Tolksdorf, R., eds.: Berliner XML Tage 2005, XML-
Clearinghouse (2005) 59–70

7. Schonger, S., Pulvermüller, E., Sarstedt, S.: Aspect-Oriented Programming and Component
Weaving: Using XML Representations of Abstract Syntax Trees. In: Proceedings of the 2nd
German GI Workshop on Aspect-Oriented Software Development; - Technical Report No.
IAI-TR-2002-1, Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Informatik III
(2002) 59 – 64

8. Kessler Piveta, E., Zancanella, L.: Architecture of an XML-based Aspect Weaver. In:
Proccedings of Workshop on Correctness of Model-based Software Composition (CMC),
ECOOP 2003. No. 2003-13, Darmstadt, Germany, Universität Karlsruhe (2003) 9 – 14

9. Pistore, M., Roveri, M., Busetta, P.: Requirements-Driven Verification of Web Services.
Electr. Notes Theor. Comput. Sci. (105) 95–108

10. Nakajiama, S.: Model-Checking Verification for Reliable Web Service. In: OOPSLA 2002
Workshop on Object-Oriented Web Services. (2002)

11. Kazhamiakin, R., Pistore, M., Roveri, M.: Formal Verification of Requirements using SPIN:
A Case Study on Web Services. In: 2nd International Conference on Software Engineering
and Formal Methods (SEFM 2004), 28-30 September 2004, Beijing,China, IEEE Computer
Society (2004) 406–415

12. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW ’04:
Proceedings of the 13th international conference on World Wide Web, New York, NY, USA,
ACM Press (2004) 621–630

13. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, Ph.,
McKenzie, P.: Systems and Software Verification: Model-Checking Techniques and Tools.
Springer-Verlag (2001)

14. Cho, S.M., Kim, H.H., Cha, S.D., Bae, D.H.: Specification and Validation of Dynamic
Systems Using Temporal Logic. IEE Proceedings Software 148 (2001) 135–140

15. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-Valued Symbolic Model-
Checking. ACM Transactions on Software Engineering Methodology 12 (2003) 371–408

830 Regulations Modelling and their Validation and Verification 


