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ABSTRACT

Extreme multi-label classification is a rapidly growing research
area with many applications. In this paper we propose a system
design of extreme multi-label text classification (XMTC) on query
classification in the e-commerce domain. Search query classifica-
tion is more challenging than conventional document classification
because queries are usually very short and often ambiguous. We de-
sign a hybrid model that uses a deep neural network for long queries
and uses a Naive Bayes model for short queries. We formulate and
apply new data augmentation techniques and create new evalua-
tion metrics that are more suitable for the extreme multi-label task
in e-commerce. We also design end-to-end system level evaluation
methods to address the challenge in human judgment due to the
extremely large label space. We compare our deep neural network
model with the state-of-the-art method on our real e-commerce
data and observe about a 15% improvement in the F1 score. The
end-to-end system evaluation results show that our new system
improves query classification performance for a variety of query
sets. In particular, for the torso and tail queries in e-commerce, we
see 0.3% and 1.1% improvements in the NDCG score.
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1 INTRODUCTION

In e-commerce, there are many cases where we need to classify text
to a large label space [1, 2, 3], such as classifying search queries,
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product listing titles, or product listing descriptions to merchandise
categories. A typical merchandise category taxonomy is a multi-
leveled tree. Among these classification tasks, query categorization
is much more challenging than traditional document classification
tasks. First, queries are usually very short. The average length of
queries by eBay users is about four tokens. Second, many queries
are ambiguous. For example, the query ’Nike’ can be classified to
many categories such as men’s shoes, men’s clothing, women’s shoes,
kids’ clothing, Golf, and Yoga. 'Father’s day gift’ can be categorized to
home and living, electronic, art, clothing. The relevant search results
for such queries can span many leaf categories from multiple meta
categories (categories at the root level). Third, the label set is very
large when classifying the query to the leaf level of categories.
There are, for example, over 20k leaf categories at the eBay U.S. site
alone.

It is natural to model query categorization as a multi-class classi-
fication problem. The traditional binary or multi-class classification
problems, where one and only one label belongs to each document,
have been studied heavily in the literature [4, 5, 6]. However, we ob-
serve that, as mentioned above, many queries have more than one
ground-truth label, so we consider query categorization as a multi-
label problem. Multi-label classification is fundamentally different
from binary and multi-class classifications. A multi-label classifier
assigns the most relevant subset of labels to each sample while the
label set in a multi-class classifier is treated as independent vari-
ables, and the dependencies among labels are not leveraged. That
is, a multi-class classifier assumes that the class labels are mutually
exclusive [7].

The query categorization in our task is also an extreme classifi-
cation problem since the label set contains a tremendous number
of labels. Extreme classification is a rapidly growing research area
dealing with multi-class and multi-label problems with a very large
set of labels [8, 9, 10, 11, 12]. Combining the properties of our
query categorization, we treat it as an extreme multi-label (XML)
classification problem.

In this paper, we propose a system design to tackle query cate-
gorization as an XML problem. We design a hybrid model where
we combine deep neural network (DNN) model with a Naive Bayes
model. In particular, the model handles short queries using a Naive
Bayes model and handles long queries with DNN. The motivation
for using a hybrid model is based on our experiment results, de-
tailed in Section 4.3 Table4, where we found Naive Bayes model
has better performance in the short queries, while the DNN model
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outperforms the Naive Bayes model in long queries. We also apply
new data augmentation techniques and create new evaluation met-
rics for XML problems that are more suitable in the e-commerce
setting. We compare our system with the state-of-the-art method
on real data in e-commerce and show that our system enhances the
performance of query categorization in a few success measures.

2 RELATED WORK

2.1 Naive Bayes text classification model

Naive Bayes classifiers are used widely in text classification tasks.
These classifiers belong to the probabilistic classification family.
They are based on the Bayes theorem and assume that the features
are mutually independent. Despite its oversimplified assumption
on feature independence, Naive Bayes achieves competitive per-
formance in many complex applications [13, 14, 15]. The paper in
[16] extended the Naive Bayes classifier to utilize the structural
characteristics of e-catalogs for e-commerce and achieved improved
accuracy. The study of [17] proposed a semantic Naive Bayes clas-
sifier that incorporates the semantic feature of the document to
improve the conventional Naive Bayes classifier. Because of the
simplicity, effectiveness and excellent performance, Naive Bayes
classifier has been widely used in the industry, including the e-
commerce domain. Therefore, we use Naive Bayes classifier as one
of the baselines, although it is not specifically designed for the
XML classification. Naive Bayes performs very well with a small
amount of training data [18] that most other classifiers would find
insufficient, especially deep neural network. However, the deep
neural network usually outperforms the Naive Bayes where a large
amount of training data has been provided like in e-commerce.

2.2 Models for XML

2.2.1 Deep neural network models for XML. There are many ex-
isting methods for the XML text classification problem. Among
those methods, the neural network models, such as FastText [19],
CNN-Kim [20], Bow-CNN [21], and XML-CNN [7], constitute a big
family. These methods design different neural network structures
and directly map input text into the label space. XML-CNN is the
state-of-the-art (SOTA) in the XML text classification task as shown
in the paper [7]. It passes the document through convolutional fil-
ters and dynamic max-pooling layers to extract features and maps
those features to the label space with two fully-connected layers.
Despite the large amount of DNN methods in the XML text clas-
sification field, there are few DNN models designed for the XML
query categorization problem. Since queries are much shorter than
the samples of text datasets used in most of those DNN methods, it
is not desirable to apply those methods directly on query datasets.

2.2.2  Other models for XML. There are also some other methods for
the XML text classification problem. They can be roughly divided
into two groups. The first group is target-embedding methods, such
as SLEEC [22]. These methods project the label vectors to a low-
dimensional space to deal with the sparsity issue of the label space.
The second group is tree-based methods, such as FastXML [23].
These methods have a hierarchical structure similar to decision
trees. The XML-CNN paper [7] also compares these methods to
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XML-CNN and shows that XML-CNN is the SOTA, so we will only
compare our model with XML-CNN in our paper.

3 PROPOSED SYSTEM

Here we propose a system design for the extreme multi-label query
classification with a hybrid model. The hybrid model is a combi-
nation of a DNN model and a Naive Bayes model where the Naive
Bayes classifier is called when the query length is 1 (token), and the
DNN model is used otherwise. We experimented with various cut-
off query length thresholds, and a cutoff length of 1 gives the best
overall performance. Our DNN model for queries, namely XML-Q,
is a CNN-RNN model with differentiable F1 loss. It is an extension
of the model XML_CNN [7] that is more suitable for the query
classification.

We also propose three techniques for training data augmentation
to address the skewness of the data to improve model performance.
The standard definition of evaluation metric precision at k is flawed
for the multi-label task when the total number of true label for
the query is less than k, more details in Section 4.2.1. We therefore
design a new evaluation metric PR@k for the multi-label classifier
in Section 4.2.1.

The challenge of using human judgment to evaluate the XML
classifiers directly is that the label space is too large for the judge
to categorize the query to the entire label space according to the
judgment guidelines. Thus, we propose an end-to-end evaluation
in the system/application level. We implement the query classifier
in the search system and design an offline evaluation pipeline us-
ing golden data and the side-by-side human judgment of search
performance in 4.2.2 and Section 4.2.3. The end-to-end system per-
formance such as search relevance and ranking quality is evaluated
instead.

3.1 Hybrid Model

We propose a hybrid model where the Naive Bayes model is used
when the query length is 1, and the XML-Q model is called when
query length is larger than 1. The design is based on the comparison
of these two classifiers in the evaluation results shown in Table 4.
The Naive Bayes model has better performance for the head queries
where the query length is mostly 1-2, while the XML-Q classifier
is better for the torso and tail queries where query lengths are
usually longer than the head queries. One possible explanation is
that Naive Bayes is based on the joint probability of n-gram tokens.
The probability would vanish as the length of query increases. On
the other hand, the XML-Q model has higher capacity to learn the
fine-grained patterns in long queries. Also, the large number of
noisy training samples makes the XML-Q model robust by reducing
the variance of the XML-Q model. An additional explanation is
discussed below.

The current setting of cutoff query length for the hybrid model
is 1. Other choices of cutoff length such as 2,3 and 4 have also been
evaluated in our study, but the cutoff length of 1 gives the best
performance. Note that cutoff length of 1 means the function of
Naive Bayes classifier is similar to a look-up table, which gives
a good performance when plenty of user click data is accumu-
lated, and a high-quality look-up table is generated. Meanwhile,
the performance of XML-Q is not ideal because of the limited input
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information when the query length is 1. This analysis could also be
a reason why Naive Bayes outperforms XML-Q for head queries
with a length of 1.

3.2 Naive Bayes model

Our Naive Bayes model is a production model that is generated
using user clicked data. It is one of the baseline models in our study.
For each query, the clicked product listings are logged, and the
related categories for the listings are aggregated and grouped. Then
a table that maps queries to categories and click counts is generated.
The query has been further broken down to uni-gram and bi-gram
tokens to generate a table that contains tokens, categories, and
click counts. The noise in the table is reduced by removing rows
where the click counts are below a threshold where the threshold
is a hyperparemeter we tuned. The bag of words and multinomial
Naive Bayes methods are applied in the model. The probability of
the query given the category can be calculated as the production
from the likelihoods of bi-grams or uni-grams in the query.

3.3 Deep Neural Network Model

Our DNN model for long queries is called XML-Q (XML for queries).
It is based on the XML-CNN [7], which is designed for XML clas-
sification of the documents. In XML-Q, we made modifications to
the XML-CNN model architecture and loss function due to the dif-
ferences between query datasets and the document dataset used in

[7].

3.3.1 Architecture. Our queries, with an average length of four
tokens, as shown in Table 1, are much shorter compared with the
document dataset which has an average length of hundreds of to-
kens. our queries contain far less information than document and
need a richer feature extractor. While the XML-CNN uses only a
convolutional layer to extract features from the documents, XML-
Q has an extra recurrent units layer after the convolutional layer
to extract more sequential information. This recurrent layer also
replaces the functionality of the pooling layer in XML-CNN. In
our CNN+RNN structure, the convolutional layer extracts n-gram
information and the recurrent layer further extracts sequential in-
formation, thus it is a stronger feature extractor compared with
CNN or RNN alone. This observation is consistent with our experi-
ment results that the CNN+RNN structure has a better prediction
performance.

The architecture of XML-Q is summarized in Figure 1. All of
the hyper-parameters in the model architecture are tuned with a
validation set. The input query is truncated or padded to 10 tokens
where the last token is fixed to be <EOS>. Based on Table 1, 90%
of our queries have length less than 6, so we are not losing much
information in truncation. If the query is shorter than 10 tokens,
<PAD> tokens are padded to the beginning of the query to comply
with the preference of recurrent units. The tokens are then mapped
to learn-able length-256 word embeddings. The embeddings are
passed through a convolutional layer which is arranged similar to
XML-CNN [7]. The convolutional layer consists of three groups of
convolutional filters. The three groups have 512, 1024, 512 filters
with filter size 1, 2, 3, respectively. A filter with filter size k actually
has size 256 X k, meaning that the filter is convolved with word
embedding of k tokens. The model has more filters with filter size
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2, which implies the bi-gram information is more important in the
query classification. The output from the convolutional layer then
passes through a batch-normalization layer [24] and a ReLU layer
and is fed into a layer with gated recurrent units (GRU) [25]. The
GRU layer also consists of three groups of units with 512, 1024, 512
units, taking in the outputs from the three groups of filters from the
last layer respectively. The output from the GRU layer then passes
through a layer-normalization layer [26] and is concatenated. The
concatenated length-2048 representation is then fed into two fully-
connected layers where the number of units in the hidden layer is
80% of the number of units in the concatenated layer. The output
from the last fully-connected layer is passed through a sigmoid
function, and the output length is equals to the number of total
categories.

3.3.2  Loss function. Another difference between the query dataset
and document dataset in [7] is that the number of categories, or
labels, per query is 1.5, which is much smaller than the number of
labels per document. The total number of categories of queries is
about 20, 000, which is similar to, or greater than the number of
categories in document datasets. Therefore, each query, or sample,
has a much sparser output space. This sparsity leads to an imbal-
anced classes issue. That is, the output tends to be all close to zero
if no action is taken to alleviate this issue because the vast majority
of the ground-truth labels are zero.

To solve this problem, instead of using the cross-entropy loss
as in [7], we design a new soft F1 loss. According to the definition
in [27], the F1 score in multi-label classification is calculated for
each sample and is defined as the harmonic mean of precision and
recall. The F1 score is a common metric for classification problem
with imbalanced classes. It is desirable to optimize the F1 score
directly in our case. However, the F1 score is not differentiable,
thus it is hard to use it as a loss function in the DNN. Since the
harmonic averaging operation itself is differentiable, we examine
the precision and recall formula to identify the non-differentiable
part.

Precisi TP TP
recision = =
TP+ FP  Number of positive labels in prediction
TP TP
Recall =

TP+FN _ Number of positive labels in ground-truth

, where TP is true positive, FP is false positive, and FN is false
negative. We observe that thresholds are applied in deriving the
predicted labels and TP, and the non-differentiability comes from
this thresholding step. Therefore, we remove the thresholding and
estimate TP and number of positive labels in prediction with a soft,
differentiable formula defined as:

L
soft TP = » t;-0(yp)
I=1

soft num. of positive predictions = ||a(y)||§

, where L is thenumber of categories, ¢ is the ground-truth vector,
y is the logits vector, ¢ is the sigmoid function, and subscript [
means the I’th category. By replacing the TP and number of positive
predictions with the soft version, the F1 score is differentiable, and
we call it "soft F1 score". The soft F1 score is used as the cost function
in XML-Q.
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Figure 1: Architecture of deep neural network model XML-Q for long queries

3.3.3 dropout and learning rate decay. During the training phase,
we applied two techniques to prevent over-fitting and accelerate
the convergence. First, we use dropout [28] with a keep-rate of 0.8
in the fully-connected layers to prevent over-fitting. The second
technique is the application of cosine decay with restarts to the
learning rate as proposed in [29]. The learning rate starts from
0.001 and follows a cosine decay function with a period of 4 epochs.
When the learning rate touches zero in 2 epochs, it restarts to 0.0008,
and the cosine decay function has a period of 8 epochs. Every time
it restarts, the learning rate is 0.8 of the previous restart, and the
cosine function period is twice as long as the previous one. The
learning rate scheduler is shown in Figure 2.

1e-4-164
2 8e5
£ 5e. L
% ‘ S
- o \_‘ 2 epochs \\‘\~6\38?5hs
0 100k 200k 300k

Number of iterations

Figure 2: Learning rate scheduler of the DNN model

3.4 Data augmentation

The number of available training samples in e-commerce is usually
very large, but we found that it is still helpful to augment the dataset
to balance the data distribution in query classification. We collect

the latest half-year data as the base dataset and collect another half-
year data before the base dataset as the augmentation candidate set.
The final training set consists of the full base set and part of the
candidate set we selected. The final training set leads to a better
performance in our experiment compared with the base set alone
or base set plus full candidate set. We applied three augmentation
techniques.

The first technique is used to alleviate the skewness of labels, or
categories, in query classification. Some popular categories have
lots of data while some others have far less. For example, in our
dataset, the maximum number of queries for a category is 364771
while the minimum number is 1, and the average number of queries
for each category is 1377, as shown in Table 1. We, therefore, added
data from the 1500 categories with the lowest frequencies in the
candidate set to the final set.

mean | 90% tile
Query length 3.9 6.0
#labels for each query 1.5 2.0

#search-requests for each query | 1377.1 | 2420.0

Table 1: query set statistics

The second technique is to augment selected queries that con-
tain brand names, such as Dior, Haier, or Nike. When such queries
are short and ambiguous, the predicted categories are sometimes
dominated by the information in the brand name. For example, the
ground-truth category of the query "Dior Gaudron" is "pottery &
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glass" where "Gaudron" is a series of products of Dior for dinner-
ware. However, since the majority of queries with brand "Dior" are
clothes or cosmetics and "Gaudron" contains only very ambigu-
ous information to the model, the model tends to classify "Dior
Gaudron" into clothes and cosmetics. Therefore, for queries with
brand names, if the category has low frequencies within the brand,
repeat the queries 50 times and add to the final set. We repeat the
queries 50 times as a result of tuning with the validation set. More
specifically, for each brand, we collect all queries with this brand
name and count the number of queries for each category, and then
we sort the categories according to the query frequencies, and take
half of the categories with the lowest query frequency. The queries
in those categories with that specific brand are then selected from
the candidate set and added to the final set.

The third technique is used to catch the residuals of our model.
We first train XML-Q with the base set and record the misclassifi-
cation rate of each category on the base training set. We then add
the samples of 1000 categories with worst performance and which
have not yet added to the final set.

4 EXPERIMENT
4.1 Dataset collection and preprocessing

In the e-commerce domain, there are millions of buyer engagement
data (click/add2cart/purchase) generated in search log systems ev-
ery day. Our data set consists of 275 million <query, category>
pairs and the click-through rate (CTR) for each pair. The query is
normalized by removing certain special characters. For each query,
the clicked product listings and the click/impression count are ag-
gregated for one year and grouped by the category. We eliminated
those <query, category> pairs where aggregated click counts are
less than 3 to reduce the noise in the data while retaining as many
categories as possible. In our dataset, the number of total categories
is about 20,000, covering the entire label space.

4.2 Evaluation

The evaluation in our study includes a model level evaluation and
a system level evaluation. We propose a system level evaluation
because the number of total categories is too large for human judges
to evaluate the quality of the query classifier directly. In our study,
the query categorization is a component in the e-commerce search
system. We implement the baseline or the target query models
in the search system and compare whether there is any improve-
ment for the search system with the target model and how much
improvement it brings.

We design two approaches for the system level evaluations. The
first approach is the offline golden data evaluation, and the second
approach is the human judgment of end-to-end search relevance.

4.2.1 model level evaluation. The evaluation of a multi-label classi-
fier is more challenging than the evaluation of a multi-class classi-
fier. In the multi-label setting, both the ground-truth and predicted
labels for a testing sample could be a subset of the label set. Hence,
the prediction can be entirely correct, partially correct or entirely
incorrect. There are three ways to evaluate a multi-label classifier.
First, one could evaluate partitions, which measures how far the
classifier predictions are from the ground-truth labels; second, one
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can evaluate ranking, which evaluates if the labels are ranked in
order of human judged relevance; third, one can use the label hier-
archy, which evaluates the effectiveness of the system to take into
account the hierarchical structure of the labels [30, 31].

In our study, all the categories are at the leaf level, and the
hierarchical structure of the labels can be ignored, so we evaluated
both the partitions and the rankings. The partitions measure the
partial correctness. We used the definition of precision, recall, and
F1 proposed by [27]. The precision is the ratio of the correctly
predicted true labels to the total number of true labels, averaged
over all samples. The recall is the ratio of correctly predicted true
labels to the total number of predicted true labels, averaged over
all samples. F1 is the harmonic mean of precision and recall.

YiNZ
Precision = — Z' Nzl
~ o |Zif
YiNZ
Recall = — Z' Nzl
vl
2x|YiNZ;
Fl= - Z |1m 1|
n [Yi] + |Z;]

, where n is the number of instances in evaluation set. Y i are
the true labels for the instance x_i, and Z_i are the predicted labels
for the instance x_i. Both Y_iand Z_i € {0,1}

In the e-commerce domain, the order of the predicted categories
for the query matters. The more relevant categories with higher
CTR should rank higher than the less relevant categories with lower
CTR and the categories that are not relevant. Rank-based evaluation
metrics, such as precision at top k (P@k), have been widely used
in the multi-label tasks [7, 23, 10, 22]. P@k is calculated for each
query and then averaged over the whole evaluation set. For each
query, the P@k is defined as:

p@k = %Zyl

, where k could be 1,3,10 and y_1 is the ground-truth labels
among the top k predicted labels for each query.

The standard definition of P@k is flawed when the total number
of ground-truth labels is less than k. For example, assume the query
has two true labels only, and the query classifier predicts both of
them right. Then the expected precision at top k should be 1. How-
ever, according to the definition, the P@3 will be 2/3. Furthermore,
based on the definition, P@k is not a comparable metric between
datasets when the average number of labels of queries various a
lot.

We propose a modified metric called PR@k as:

1
PR@k = D) 2

, where tlis the number of true labels in the top k. In the definition
of PR@K, the sum of true positives is divided by the minimum of k
and the number of true labels ¢/, instead of k, to address the problem
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when k is larger than tl. In this new definition, the precision at k
and the recall at k will be the same, so we name it as PR@k.

4.2.2  offline golden data evaluation pipeline. Human judgment is
time- and money-consuming. Thus, we built the offline golden data
evaluation pipeline and evaluated the system performance and the
search relevance with the pipeline before the human judgment. The
pipeline utilizes human judgment results accumulated from the
past as the golden dataset.

The offline golden data evaluation pipeline can be treated as
a mini search system. The inventory is a mixture of all product
listings from the golden dataset and 10% of product listings from
the production inventory. The golden data contains 500k human
judgment data in the format of query, the top 3 returned product
listings, and the human labeled relevance score for each <query,
item> pair. The relevance score is either 0 or 1, where 0 means not
relevant, and 1 means relevant. Based on the user search frequency,
the queries can be divided into head, torso and tail queries. We
define that head queries are those count for the top 30% of the total
impressions, and torso queries are those with the top 30-60% im-
pressions, and tail queries are those with the rest 40% impressions.
The performance of a search engine is usually quite different in
head, torso and tail queries. Most of the search engines perform
very well in the head query. The performance in the tail query
set distinguishes the good search engines from the others. To bet-
ter evaluate the search system, we generated head, torso, and tail
queries based on the demand frequency from the latest search log
joined with the queries in the golden data. We sampled 10k queries
from each intersection as the final evaluation set for head, torso
and tail queries. For each query in the evaluation set, the top N
product listings can be predicted with the golden data evaluation
pipeline, and the precision, recall, accuracy, and AUC [32, 33] can
be calculated by comparing the system prediction to the golden
data label.

4.2.3 search relevance human judgment. If the result of the target
model is better than the baseline from the offline golden data eval-
uation pipeline, the next step is to conduct human judgment on
end-to-end search relevance. The search system is set up with base-
line or control models and with the full inventory. The evaluation
query set includes 4500 queries, 1/3 for each of the head, torso,
and tail query segments. The judges are asked to judge the top 5
product listings for each query to four levels of relevance based on
the judgment guideline: Excellent, Good, Acceptable and off-topic.

Three judgments were collected for each query to reduce bias.
Meanwhile, we designed a side by side group comparison. Two
groups of results were shown on the one page for each judgment,
one group from the baseline, and another group from the target.

NDCG is a score defined to measure the search ranking. We
modified the definition of NDCG to represent both the ranking
quality and relevance.
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D
NDCG* = ﬁ
IDCG
N Zrel,-
DCG = —_—
— loga(i + 1)
N zprefect,-
IDCG =

— loga(i + 1)

where N=min(5,#totalReturns), the NDCG” is calculated based
on the top up to 5 returned product listings for each query. rel i is
the relevance score of the product listing at position i by a human
judge. We modified the definition of IDCG such that all the top 5
product listings should be Excellent for a perfect search system, so
prefect_i in the IDCG equation is Excellent score. The NDCG score
is calculated for each query and averaged over all the evaluation
set.

4.3 Results

The XML-CNN model [7] has achieved the-state-of-the-art perfor-
mance and beats the other 7 most representative multi-label models
such as FastXML [23], SLEEC [22], Bow-CNN [21], and FastText
[19] on 6 benchmark datasets. Thus, among all the multi-label mod-
els, we will compare our model to XML-CNN only. Another baseline
is the Naive Bayes model which was the production model in our
system. In the experiments, we evaluated: 1) the performance of our
deep learning model XML-Q compared to the XML-CNN model;
2) the comparison of the Naive Bayes model, XML-Q model, and
hybrid model in the offline golden data evaluation pipeline; 3) the
comparison of the hybrid model and Naive Bayes model in search
relevance human judgments.

Our XML-Q model is an extension of XML-CNN by adding a few
components that are more suitable for e-commerce query classifi-
cation. These components include differentiable F1 loss, additional
RNN layer, and cosine learning rate decay. As shown in Table 2,
by replacing the original binary cross-entropy loss with the dif-
ferentiable F1 loss, we see 22.95% improvement in the F1 score,
41.43% improvement in the precision, 17.43% drop in the recall, and
6.74%, 2.80%, and -0.22% changes in the PR@1, 3, and 10, respec-
tively. The contributions of adding additional RNN layer and using
cosine learning rate decay to the F1 score are 0.69% and 2.58%, and
contribution to the PR@10 is 1.38% and 1.54% respectively.

| P | SR | §F1 | 5PR1 | 5PR3 | 5PR10
F1 Loss 4143 | -17.43 [ 2295 | 674 | 2.80 | -0.22
AddRNN [ 151 [ 0.03 | 069 | 1.24 [ 122 | 138
Cos Decay | 2.39 2.72 2.58 2.15 1.86 1.54

Table 2: The contributions of new components in XML-Q
to the model performance in precision, recall, F1, PR@k
(k=1,3,10) (in %).

Since differentiable F1 loss has a big impact on the performance
of query categorization, for easy comparison, we show the perfor-
mance of XML-CNN with differentiable F1 loss (XML-CNN*) and
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XML-Q model in Table 3. From the XML-CNN* model to XML-Q
model, the total improvement is about 11.2% in precision, 18.6%
in recall, 15.0% in F1 score, and 11.8%, 10.5%, 8.9% in PR@1, 3, 10,
respectively. Note that data augmentation also contributes to total
improvement.

Model | P | R | F1 | PR1| PR3 | PR10
XML-CNN* | 61.01 | 55.09 | 57.90 | 64.79 | 71.28 | 78.89
XML-Q | 72.16 | 73.68 | 72.91 | 76.57 | 81.75 | 87.75

Table 3: Comparison of XML-CNN* and XML-Q in precision,
recall, F1, PR@k (k=1,3,10) (in %).

Table 4 shows the comparison of XML-Q and the Naive Bayes
model in the top and the comparison of the hybrid model and the
Naive Bayes model in the bottom using the offline golden data
evaluation pipeline. The top of the table illustrates that XML-Q
model has a better performance in both torso and tail query sets
and the Naive Bayes model outperforms the XML-Q model in the
head query set. This mixed result is one of the reasons why we
propose the hybrid model that combines the Naive Bayes model
and XML-Q. It is not easy to classify whether a query is the head
query or not. We could build a dictionary that contains all the head
queries based on user behavior date and maintain it. Alternatively,
to our observation, most of the head queries are shorter than torso
and tail queries, so it is also straightforward to build a hybrid model
based on the query length. We tested different cutoff query lengths
from 1 to 4, and the hybrid model with a cutoff length 1 gives the
best performance. As shown in the bottom of the table, the hybrid
model outperforms the Naive Bayes model among all head, torso,
and tail query sets.

| QSet | 5 Acc | 5P | SR | §F1 | SAUC

head -0.3 | -02|-08 | -0.8 -0.1
XML_Q-NBayes | torso | 0.2 02 | 05 | 05 0.1
tail 0.4 00 | 1.7 | 1.5 0.1

head 0.3 03 | 1.1 1.0 0.2
Hybrid-NBayes | torso | 0.5 00 | 1.9 | 1.6 0.1
tail 0.8 03 | 26 | 2.2 0.3

Table 4: Comparison of XML_Q and Naive Bayes model (top)
and Hybrid model and Naive Bayes model (bottom) in accu-
racy, precision, recall, F1 and AUC (in %) for head, torso and
tail query set using Offline golden data evaluation pipeline.

The search relevance human judgment result in Table 5 shows
that from Naive Bayes model to the hybrid model, the NDCG* score
improves by 0.3% for torso queries and 1.1% for tail queries. The
improvement of the head queries is neutral. One reason is that a
large portion of the head queries is of length 1, so the hybrid and
Naive Bayes are the same model in this case. Another reason is that
the head queries are relatively easy to classify based on the human
judgment results, so the predictions of both the Naive Bayes model
and XML-Q are correct. The average performance improvement of
NDCG" for the full query sets is 0.4%.
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QuerySet ‘ NDCG improvement

head 0.0
torso 0.3
tail 1.1
mix 0.4

Table 5: Comparison of hybrid model and Naive Bayes
model in NDCG” (in %) for head, torso and tail query sets
from search relevance human judgment results.

5 CONCLUSION

This paper presents the system design of extreme multi-label query
classification as an application in the e-commerce search system.
We propose a hybrid model that combines the Naive Bayes classifier
and a deep neural network model, XML-Q, for the query classifi-
cation based on the length of queries. The Naive Bayes model is
used for the queries with one word, and the deep neural network
model is used for the rest of the queries. The deep learning model
is an extension of the state-of-the-art XML-CNN model. A few
components and adjustments have been made to make the model
more suitable for query classification, such as the differentiable
F1 loss, additional RNN layers, and the cosine learning rate decay.
Three new data augmentation techniques have been applied to the
training data which significantly improve the model performance.
New evaluation metric PR@k is designed to address the problem
in the standard precision@k metrics when k is larger than the total
true labels of the query. Since the label set is huge for the query
classification in this paper, it is almost impossible to do direct hu-
man judgment on such large label space. Therefore, we propose
end-to-end system level evaluations. The evaluation results show
that the hybrid model enhances the performance of query classifi-
cation for different query sets, especially the torso and tail query
sets.
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