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ABSTRACT
Semantic matching plays a critical role in an e-commerce search
engine, while one of the biggest challenges is the language gap be-
tween queries and products. Traditionally, some auxiliary functions,
such as the category navigation, are designed to help buyers to clar-
ify their intent. Recently, the advances in deep learning provide
new opportunities to bridge the gap, however, these techniques
suffer from the data sparseness problem. To address this issue, in
addition to the click-through data from buyers, we exploit other
types of semantic knowledge from the product category taxonomy
and sellers’ behavior. We investigate the correlation between query
intent classification and semantic textual similarity, and propose a
multi-task framework to boost their performance simultaneously.
Moreover, we design a Progressively Hierarchical Classification
(PHC) network architecture with the taxonomy to solve the cate-
gory imbalance problem . We conduct extensive offline and online
A/B experiments on a real-world e-commerce platform, and the
results show that the proposed method in this paper significantly
outperforms the baseline and achieves higher commercial value.
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• Information systems→Retrievalmodels and ranking;Com-
putational advertising; Information retrieval; •Computingmethod-
ologies → Natural language processing; Machine learning.
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Figure 1: Overview of the e-commerce business ecosystem.

1 INTRODUCTION
Nowadays, buyers increasingly rely on the e-commerce search en-
gine to find their desired products. Similar to the web search, one of
the biggest challenges to retrieve relevant products for a query is the
language gap problem, when buyers and sellers use different vocab-
ularies to express the same meaning. Traditionally, some auxiliary
functions, such as the category navigation, are designed to help
buyers to clarify their intent in more details. For example, when a
buyer input a query q=“car light”, firstly, the two different prod-
ucts, p1=“auto halogen bulb” and p2=“led lamp for toy car”
which are both relevant, may be difficult to get recalled by classical
text matching; secondly, most buyers who like the first may need
another action to filter out the second by choosing an intent cate-
gory. So, how to predict the query’s intent category and address
the language discrepancy problem between queries and products
are crucial to improve matching efficiency.

Recently, many deep neural networks have been successfully
applied to classification [6, 11, 23, 26, 28], and also provide new
opportunities to learn better distributed representations of words
and sentences to bridge the language gap. However, training a
state-of-the-art deep neural network model usually requires a large
amount of labeled data which is not always readily available. In a
commercial web search engine, it’s popular to use click-through
data as implicit feedback label [8, 16, 21]. Unfortunately, the data in
e-commerce is biased and noisy, because the buyer’s click behavior
is influenced not only by the recall rate of the online algorithm but
also by the product snapshot [24].

Actually, as shown in Figure 1, in addition to the buyer’s demand
side behavior, there are many other types of semantic knowledge
hidden in the platform and the seller’s supply side:



SIGIR 2019 eCom, July 2019, Paris, France Hongchun Zhang, et al.

(1) product and category: The platform builds a large-scale tax-
onomy. Products delivered by sellers are classified into a
suitable leaf category. The similarity between products with
same category is much higher than that of different cate-
gories. However, as shown in Figure 2, the distribution of
category data is extremely imbalanced.

(2) query and category: When many buyers search the same
query and click the same category’s products many times,
then the category has a very high probability to satisfy the
query intent.

(3) product and bid-word: The candidate bid-words are usually
the history queries with high page view (PV) or conversion
rate. The advertisers should pay for the clicks of bid-words
to get more exposure. Meanwhile, the cost guarantees their
similarity.

(4) category taxonomy tree: The path from root to leaf is a process
of subdividing layer-by-layer. The tree distance between two
category nodes is positively related to their similarity.

Inspired by these observations, in this paper, we propose a multi-
task learning framework for semantic matching with multi-type
knowledge from e-commerce ecosystem. We firstly generate dis-
tributed representation for each input text with TextCNN [28], and
then apply two learning tasks: One is a classification task using
data (1) and (2), the category plays a bridge role in intent similarity
between queries and products. Moreover, we design a Progressively
Hierarchical Classification (PHC) network architecture to enrich
the similarity of (4). The other task is a pair-wise semantic textual
similarity. Specially, we make use of (3) and click-through data as
weakly supervised label, and generate comparison training pairs
between titles and their positive/negative queries.

Our contribution can be summarized as follows:
• we propose a multi-task learning framework of query in-
tent classification and semantic textual similarity to improve
semantic matching efficiency, and make use of multi-type
knowledge from the e-commerce ecosystem to address the
data sparseness problem;

• we design a PHC network architecture to solve the cate-
gory imbalance problem, and enrich the similarity between
taxonomy tree nodes simultaneously.

• We conduct extensive offline and online experiments on
an e-commerce search engine. The results demonstrate the
effectiveness of our framework.

2 RELATEDWORKS
In recent years, there have been many works to study deep learning
for semantic matching. Depending on the stage of signal matching,
these methods can be divided into two categories: Interaction based
and Representation based. The former constructs basic low-level
matching signals, and then aggregates matching patterns. For in-
stance, ARC-II [7] and MatchPyramid [17] and Match-SRNN [22]
are based on word-level similarity matrix, then different network
architectures are applied, such as 2-D CNNs [7, 17], RNNs [22].
KNRM [25] and Conv-KNRM [3] make the interaction between ev-
ery n-gram pair from two pieces of text and employ a kernel pooling
layer. The later, such as DSSM [8], CDSSM [21], ARCI [7], CNTN
[19], generates the distributed representation for each input text

Figure 2: Distribution of products number on category leafs.
This is extremely imbalanced.

separately, and then applies a classifier to compute the matching
score. Although recent works show that interaction-based methods
perform better in multiple text matching tasks, but suffer from the
expensive online computational complexity.

Moreover, training a deep model needs a large amount of labeled
data, which is expensive to obtain. To mitigate this issue, many
unsupervised learning models seek to exploit the implicit internal
structure of the corpus data. For example, various methods for
learning distributed word representations, such as word2vec [14],
GloVe [18], and sentence representations, such as paragraph vec-
tors [12], skip-thought [10], have been shown very useful for NLP
tasks such as sentence classification, sentiment analysis, etc. But it’s
almost impossible to learn a good representation by unsupervised
methods for complex task. Traditionally, weakly supervised learning
methods are more popular in the industry. DSSM [8], CDSSM [21],
LSTM-RNN [16] are trained in a weakly supervised manner with
the click-through data. Mostafa et al. [4] used the output of an un-
supervised ranking model as a weak supervision signal. Xiao et al.
[24] proposed a co-training framework to make use of the unlabeled
data. Unfortunately, the click-through data in e-commerce is biased
and noisy. Meanwhile, many models address the problem by implic-
itly performing limited transfer learning through the pre-trained
embedding of unsupervised methods. Daniel et al. [2] presented
a model to learn universal sentence encoder, which specifically
targets transfer learning to several NLP tasks. Subramanian et al.
[20] explored amulti-task learning technique with different training
objectives to learn general sentence representation. These works
demonstrate that sharing a single sentence representation across
related tasks leads to consistent improvements.

In an e-commerce scenario, in addition to the buyers’ behavior,
the platform and sellers also provide different types of labeled
data. Inspired by the weakly unsupervised and multi-task learning
methods, in this paper, we investigate query intent classification
and semantic textual similarity as two related tasks for semantic
matching. Moreover, to solve the category imbalance problem, we
design a PHC architecture with the taxonomy category path, which
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is different from the algorithm-level [13] and data-level methods
[1].

3 APPROACHES
In this paper, we illustrate a novel multi-task framework via leverag-
ing product category taxonomy tree to incorporate the correlation
between semantic textual similarity and query intent classification
using a weakly supervised method for generating training data. We
formally define these two tasks at first, and then present our data
generation method and modeling paradigm.

3.1 Semantic Similarity
3.1.1 Semantic Similarity (SS). SS is a core problem in many NLP
tasks.While in an e-commerce scenario, we also formulate a SS prob-
lem as measuring the similarity between a query and all products’
titles to retrieve those products which are semantically consistent
with the query. We call this task as Query-Title Similarity (QTS).

Traditionally, in the QTS problem, the similarity between each
query and its best-matched titles would be calculated. In this work,
we implement QTS in a dual way to utilize the knowledge from
sellers’ side, and calculate the similarity between each title and its
best-matched queries instead.

Given a product title t and its candidate queries as set Q =
{qi |1 ≤ i ≤ n}, the category labels of t and Q are denoted as ct
and CQ = {ci |1 ≤ i ≤ n}, s.t. ci ∈ [1, |Nc |], |Nc | is the category
size. In QTS task, our framework needs to calculate the similarity
between t and each qi in Q , which is defined as Fs (t ,qi ;θs ) → R+,
where Fs is a score function and θs is the parameter of Fs . Suppose
t’s best-matched queries could be denoted as Q+t ⊆ Q , then others
as Q−

t and Q = Q+t
⋃
Q−
t . Consequently, the objective of QTS task

could be designed as minimizing:

log(
∑
qj ∈Q+t Fs (t ,qj ;θs )∑
qk ∈Q Fs (t ,qk ;θs )

) (1)

But this formulation is impractical because the cost of computa-
tional complexity is proportional to sample numbers in Q+and Q ,
which is often very large in our e-commerce scenario (more than108).
We would utilize an alternative method to solve it, and refer to 3.1.2
for more details.

3.1.2 Negative Sampling. An alternative method to optimize (1)
is using Noise Contrastive Estimation (NCE), which is applied by
[5, 15] to language modeling. This strategy is similar to hinge loss
which is also trained by telling positive data from noise samples.

To simplify (1), we select only one queryq∗ fromQ+ and limit the
number of negative queries. The NCE has a noise distribution Pn (·)
as a free parameter. Inspired by what has been implemented in [14],
we randomly chose samples according to the category frequency
distributionU (c)3/4/Z . It would reduce training time because of its
sampling on high frequency categories and the 0.75 power could
make the low frequency categories would be sampled more times
than 1 power.

Table 1: Structure of Taxonomy Tree of our site

Level1 Level2 Level3 Level4

30+ 200+ 500+ 5000+

Suppose there are K negative queries for each title t , (1) could
be rewritten as

Lst = −log(Fs (t ,q∗;θs )) −
K∑
k=1
Eqk∼Pn (c)[log Fs (t ,qk ;θs )],

s .t . q∗ ∈ Q+t ,

(2)

thus, the final loss of QTS task is defined as

Ls =
∑
t ∈T

Lst (3)

Now it could be trained via standard gradient descent. We would
propose our method to generate Q in Sec. 3.3.1.

3.2 Query Taxonomy
3.2.1 Text Classification. In an e-commerce scenario, query classi-
fication (QC) is important to understand buyer’s intent to retrieve
more related products. In addition to the QTS task, we also in-
troduce a classification problem to infer the cq , which is equal
to maximize the posterior probability P(cq |q;θc ), thus the trained
objective function of QC can be written as

− log(P(cq |q;θc )) (4)

Actually, this method could only assign just one category to each
query, while products are all arranged via a taxonomy tree (TT)
and have several levels of categories. As shown in Table 1, in al-
ibaba.com, products are arranged into four levels, from broad field
to specific. For instance, “balance scooter” falls under the cate-
gory ’Sports & Entertainment→Outdoor Sports→Scooters→Self-
balancing Electric Scooters’. Consequently, we also need the taxon-
omy tree to define a query’s categories as well.

3.2.2 Progressively Hierarchical Classification. To take into account
all different levels of the category path, we design a hierarchical
softmax structure named Progressively Hierarchical Classification
(PHC) network to leverage the semantic information from root to
leaf progressively. Our proposed structure is different from those
conventional hierarchical softmax methods, such as in Mikolov et
al. [14], where hierarchical softmax is used as a speedup technique,
and the binary Huffman tree is constructed by samples frequency
and could hardly represent the correlation between different leaf
nodes. We call the query taxonomy problem as Query Taxonomy
Classification Task (QTC).

Suppose the taxonomy of products composed of L layer, each
level has its fitting parameters θ lc , l ∈ [1,L], level l ’s category is cl .
We implement an unsupervised method to build a large amount of
title-category pairs and query-category pairs, denoted as Q̃ = Q

⋃
T

respectively and theirCQ andCT , refer to 3.3.1 for details. As shown
in Figure 4, we design a recursive structure which could take all
levels of categories before a specific layer l and the original first
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Figure 3: Model Structure: The above half is the whole structure of our framework and another half below is the detailed
operations in CNN+MLP block

layer into account and output a category at each level,

P(clq |q;θ lc ) = σ (Fl [Φl (q)]) (5)

where

Φl (q) =
{
f1(q), l = 1,
fl (fl−1(fl−2(... f1(q)))) + f1(q), 2 ≤ l ≤ L,

(6)

where σ is softmax function, fl (·) refers to no-linear feature map-
ping at level l and it would output an intermediate representation,
and the Fl would project the representation into one-hot category
ids. For brevity, we omit parameter in fl (·). So the final objective
function of QTC is

Lc = −
∑
q∈ Q̃

L∑
l=1

P(clq |q;θ lc ) (7)

It might be similar to a recurrent-based decoder for generating
TT path because the distribution of category in a layer l always
depends on information from previous layer. However, instead of
using recurrent neural network to model the category path, we
incorporate more parameters {θ1, ...,θL} which could store more
information of the correlation and difference between category
nodes. What’s more, field knowledge from the taxonomy tree could
be preserved more when we add f1(q) to future levels as a residual
than otherwise.

3.3 Multi-Task Learning For Semantic
Similarity

In section 3.1 and 3.2, we have presented formulation of the two
tasks. In this part, we illustrate our system architecture and show
more details on data generation, multi-task strategy and model
establishment.

3.3.1 Unlabelled Data Generation. Aswementioned in 3.1, in order
to generate enough data for QTS and QTC tasks, we implement
an unsupervised method to build a large amount of title-category
pairs (T ,CT ), query-category pairs (Q,CQ ) and also Q+t for each t .

PHC

f1 f2 f3 f4

F4F3F2F1

C4C3C2C1

Query/title 
representation

Figure 4: PHC structure

• title-category pair. We use the product’s category path
submitted by sellers as this product title’s category path.
We defined our product taxonomy as four levels, top level,
second level, third level, and leaf category. Without a lack
of generality, for those which have less than four levels, we
copy their last available category node to fill out the absent
ones. In Table 1, we could see the taxonomy size for each
level and it’s a typical imbalanced distribution, which results
from commercial discipline. Therefore, re-sampling from
the original data and sample duplication are significant for
ensuring the model ability.

• query-category pair. Different from title-category pairs,
queries have no category path originally. Instead of asking
the human to evaluate or annotate millions of queries, we
use click-through data as implicit feedback for generating
queries’ categories [8, 21, 24]. From the click-through data,
we filter out high frequency queries firstly and assign the
product’s category, which has the highest click-through rate,
to that query. Also, we use bid-words as queries, and set
their binding product’s category as training label.

• Q+t to each title. Similar to what we do with query-category
pairs, firstly we screen out query q and its corresponding
products, whose click-through rate is higher than a thresh-
old to form some part of < q+, t > pairs. We also extract
bid-words for each title to form another part of < q+, t >
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pairs. Secondly, we randomly take K samples following the
distribution Pn (c) as negative queries.

3.3.2 Model Architecture. Inspired by prior works on multi-tasks
and co-training [24, 27], we use a multi-task strategy to optimize
QTS and QTC tasks simultaneously, which are defined before. The
flowchart of whole system is illustrated in Figure 3, we employ a
semantic embedding network at the base of whole model, which is
similar to TextCNN [9] on the architecture.

Our model would embed the query and title firstly, as shown
in Figure 3, and then multi-filter-size convolution blocks would
extract specific features at different granularities, from uni-gram
to 4-gram, to cover more types of correlation between words and
phrases. Mean-pooling is applied after each convolution block and
outputs a sentence level representation. The representations of all
convolution blocks are concatenated together, forming a compre-
hensive vector, then twoMLP layers are appended behind to project
this vector to semantic representation. Because we do not focus on
model structure designing in this paper, so for brevity, we define
Fs to represent all operations above as

Fs (t ,qj ;θs ) = NormDistcosine (Φ1(t),Φ1(qj )) (8)

in which NormDistcosine (·) is scaled cosine function,

NormDistcosine (v1,v2) = 0.5 ∗
vT1 v2

|v1 | |v2 |
+ 0.5 (9)

where Φ(∗) → Rd , Φ(·) represents the whole non-linear mapping
part of embedding model, and our proposed PHC takes Φ(t),Φ(qj )
as input and outputs {clt }Ll=1, {c

l
qj }

L
l=1. Now the training objective

of our multi-task framework could be denoted as

L = λsLs + λcLc (10)

where λs and λc are hyper-parameters. We set λs as 1, and λc as
0.1 in experiments.

4 EXPERIMENTS
4.1 Dataset and Metric
4.1.1 Dataset. As we introduced in Sec. 3.3.1, our multi-tasks
framework needs (T ,CT ), (Q,CQ ) and Q+t to train QTS and QTC
tasks jointly. Each sample is composed of a triplet of (q+,Q−, t),
where Q− = {q−}. We build the unlabeled triplets dataset D =
{(q+,Q−, t)} by first sampling search queries and click data from
1-year logs and then generating 10 candidates q− for every query
q+, t . In total, we get an unlabeled dataset consisting of about 5e8
(q+,Q−, t) triplets. In order to evaluate the semantic representation
performance of QTS task, 33,188 <q,t> pairs were annotated into
two categories, correlated and uncorrelated, via human effort or
user’s click-through data as well. Also, queries of these 30,000+
pairs were assigned its category path by human for QTC task too.

4.1.2 Metric. Our multi-task semantic similarity is composed of
two tasks: QTS and QTC. In QTS, these pairs which have a similarity
score higher than threshold would be assigned 1, the others are 0.
So we utilize the classical AUC score to determine the effectiveness.
In QTC, we use the accuracy to judge the classifier at each level.

4.2 Implementation Details
In order to prove that improvement of performance on semantic
similarity and query classification could be achieved simultaneously
and they mutually boost each other, we design a joint-training
experiment and also other ablations. We compare our work with
following methods:

(i) TextCNN [9] + QTS
(ii) TextCNN∗ + QTS
(iii) TextCNN∗ + QTS + QTC w/o PHC
(iv) TextCNN∗ + QTC with PHC
(v) TextCNN∗ + QTC w/o PHC
(vi) TextCNN∗ + QTS + QTC with PHC

TextCNN∗ represents a classic TextCNN model which is initialized
via a word2vec [14] embedding. QTC w/o PHC means that this
configuration implements a QTC task but only uses the leaf category
in TT and drops the PHC structure. If the configuration has no QTS
task, then it is only a taxonomy classification model. We use (ii) as
our baseline. In these experiments, we use L=4 to construct a PHC
structure with four levels. The TextCNN’s embedding size is 80∗V ,
where V= 900,000 is the vocabulary size. After that, there have 2 ×
4 convolution layers behind, four sets of kernels with lengths from
1 to 4 respectively and we applied max/mean-pooling after each
convolution layer at each set. There are also two fully-connected
layers behind with size of [128, 128]. fl (·) → R128, s .t .1 ≤ l ≤ L.

4.3 Results Analysis
4.3.1 Performance of Multi-Task Training. We evaluate AUC on the
annotated dataset, and test all levels of accuracy too. From Table 2,
we can see that TextCNN + QTS has the lowest score on AUC. Since
TextCNN∗ improves a lot on AUC, word2vec embedding initializa-
tion is significant. If we take a comparison between results from (ii)
(iii) (vi) and (iv) (vi), in which exp. (vi) increases relatively 5.10% and
11.27% at AUC comparing to (iii) and (ii) respectively, at the same
time, exp. (iii) and (vi) all perform better than other single-task
solutions. At Acc4, (vi) outperform (iv) by 0.87% and (iii) outstrip
(v) 4.77%. So it is easy for us to conclude that QTS and QTC are col-
laboratively optimized and jointly-training them could remarkably
enhance each other. As mentioned in the introduction, it could force
the category information to flow back into semantic representation
and promote its ability to restore more knowledge about categories,
which could be intuitively inferred through our observation on
data structure in alibaba.com’s e-commerce platform. What’s more,
for all methods, we test their text embedding and illustrate the
ROC curve to directly depict their difference of effectiveness. In
Figure 5, our proposed method with QTS + QTC + PHC configu-
ration achieve the highest AUC score, which supersedes anyone
without multi-task learning.

4.3.2 Gain from PHC structure. From results of (iv) (v) and (iii) (vi),
Acc4 gains a 2.51% and 3.40% improvements from (iv) to (v) and
(iii) to (vi). These improvements come from the application of the
taxonomy tree, in which more levels information of non-leaf layers
are restored and also basic field knowledge are strengthened. Addi-
tional performance difference between (vi) (iii) and (vi) (ii) prove
that with the PHC structure, the QTS could be boosted more. We
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Table 2: Metric Scores in QTS and QTC

Model Similarity Metric Taxonomy Metric
AUC Acc1/Acc2/Acc3/Acc4 (%)

(i)TextCNN +QTS 0.5557 -
(ii)TextCNN∗ +QTS 0.6300 -
(iii)TextCNN∗ + QTS + QTC w/o PHC 0.6670 -/-/-/44.39
(iv)TextCNN∗ + QTC with PHC 0.6444 72.44/65.26/58.70/53.23
(v) TextCNN∗ + QTC w/o PHC 0.6193 -/-/-/40.39
(vi)TextCNN∗ + QTS + QTC with PHC 0.7010 75.78/65.29/59.26/54.10

Table 3: Online Common Search Evaluation

SE performance PV-CTR(%) FBR(%) NLS(%)

100% traffic +1.5 +4.2 -68.7
* SE stands for Search Engine

Table 4: Online Ads Search Evaluation

Ads SE performance ADS-COV(%) ADS-CTR(%) RPM(%)

30% traffic +1.4 +4.6 +6.7
100% traffic +4.8 +6.6 +13.4

guess all these improvements contributed by adding into relation-
ship between query words and all levels of category-information
rather than only the leaf nodes. From Figure 5, we can also see a
4.05% gain from TM* + QTC to TM* + QTC + PHC and a 5.09% from
TM* + QTC + QTS to TM* + QTC + QTS + PHC on AUC.

4.4 Analysis on Online Evaluation
4.4.1 Common Search Experiment. For our motivation on seman-
tic matching, we wish to understand user’s intent more precisely,
retrieve more relevant products and indirectly enhance the Click-
Through Rate (CTR) and Feedback Rate (FBR) per page view (PV).
In e-commerce scenario, queries without enough retrieval results
are called "null and low search" queries (NLS). It would harm the
user experience if NLS frequently occur and further undermine
the benefit of platform and sellers. So we conduct an online experi-
ments in real-world e-commerce scenario, the www.alibaba.com.
We conduct an A/B test based on our multi-task approach inside
our online search engine and calculate the NLS rate on tail queries
to evaluate the online performance of our methods.

In Table 3, the NLS rate drops 68.7% which is significant while the
PV-CTR still increases 1.5%. So we can make the conclusion that our
multi-task learning could recall more products and the improved
PV-CTR proves that the increments of products are relevant rather
than uncorrelated ones which would lead to lower PV-CTR on the
contrary. Also the FBR get a gain of 4.2%, which means precision
of matching buyer’s intent is also increased.

4.4.2 E-commerce Advertisement Experiment. This paradigm used
in common search could also be expanded into e-commerce com-
putational advertising scenario (ADS), where the advertisers want

Figure 5: ROC Curve of different Methods

their products in advertising campaign to be exposed to buyers with
implicit interest for getting orders or feedbacks. In order to prove
that our strategy could also enhance the performance in ADS, we
implement another online A/B testing experiment on our online ads
engine. We use the ads-coverage rate of pv (ADS-COV), Exposure
ADS CTR (ADS-CTR) and Revenue per mille (PRM) of platform to
evaluate the matching ability. The common metric, ADS-CTR and
ADS-COV could be defined as below.

ADS −CTR =
NADS-PV

NExposed ADS
, (11)

ADS −COV =
NADS-PV
NPV

, (12)

where the N∗ means number of ∗. In Figure 6, we can see that
after the Ads SE employed our proposed method, the metric on
ADS-CTR, ADS-COV and RPM are all improved significantly. Also,
results of continuous five-days online experiment could be found
in Table 4. From this result, there is a 13.4% gain on RPM in 100%
in search traffic configuration. Also the ADS-CTR is also improved
6.6%, which means that those additional 4.8% ads exposed, which
resulting from our strategy are also relatively correlated to buyer’s
intents.

www.alibaba.com
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Figure 6: Five Days Experiment on Ads SE: (a) ADS-COV (b) ADS-CTR (c) RPM

5 CONCLUSION
In this paper, we propose a multi-task method to jointly train query
intent classification and semantic textual similarity simultaneously
and a novel recursive way to add taxonomy tree into this frame-
work. Experiments show that our proposed strategy could achieve
higher accuracy and AUC on classification and similarity problem
respectively, which both justify our assumptions that there are pos-
itive interaction between these two tasks and using taxonomy tree
also can improve semantic representation for queries.

Future work would be carried on two directions: first, we will add
more information about products besides titles to improvematching
precision to user’s query. Secondly, there are many other advanced
framework on textual representation, and we would incorporate
them into our tasks to obtain more improvement on business.

REFERENCES
[1] Lida Abdi and Sattar Hashemi. 2015. To combat multi-class imbalanced problems

by means of over-sampling techniques. IEEE Transactions on Knowledge and Data
Engineering 28, 1 (2015), 238–251.

[2] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[3] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of
the eleventh ACM international conference on web search and data mining. ACM,
126–134.

[4] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural ranking models with weak supervision. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 65–74.

[5] Michael U Gutmann and Aapo Hyvärinen. 2012. Noise-contrastive estimation
of unnormalized statistical models, with applications to natural image statistics.
Journal of Machine Learning Research 13, Feb (2012), 307–361.

[6] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146 (2018).

[7] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in Neural Information Processing Systems. 2042–2050.

[8] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management. ACM, 2333–2338.

[9] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[10] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in
Neural Information Processing systems. 3294–3302.

[11] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neu-
ral networks for text classification. In Twenty-ninth AAAI conference on Artificial
Intelligence.

[12] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International Conference on Machine Learning. 1188–1196.

[13] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision. 2980–2988.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in Neurl Information Processing Systems. 3111–3119.

[15] Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training
neural probabilistic language models. arXiv preprint arXiv:1206.6426 (2012).

[16] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. Ward. 2015.
Deep sentence embedding using the long short term memory network: analysis
and application to information retrieval. IEEE/ACM Transactions on Audio Speech
& Language Processing 24, 4 (2015), 694–707.

[17] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text matching as image recognition. In Thirtieth AAAI Conference on
Artificial Intelligence.

[18] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of conference on Empirical
Methods in Natural Language Processing (EMNLP). 1532–1543.

[19] Xipeng Qiu and Xuanjing Huang. 2015. Convolutional neural tensor network
architecture for community-based question answering. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.

[20] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
2018. Improving language understanding by generative pre-training.
URL https://s3-us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language understanding paper. pdf (2018).

[21] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM International Conference on Information
& Knowledge Management. ACM, 101–110.

[22] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng.
2016. Match-srnn: Modeling the recursive matching structure with spatial rnn.
arXiv preprint arXiv:1604.04378 (2016).

[23] Jing Wang and Min-Ling Zhang. 2018. Towards mitigating the class-imbalance
problem for partial label learning. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. ACM, 2427–2436.

[24] Rong Xiao, Jianhui Ji, Baoliang Cui, Haihong Tang, Wenwu Ou, Yanghua Xiao,
Jiwei Tan, and Xuan Ju. 2019. Weakly Supervised Co-Training of Query Rewrit-
ing andSemantic Matching for e-Commerce. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining. ACM, 402–410.

[25] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. ACM, 55–64.

[26] Honglun Zhang, Liqiang Xiao, Yongkun Wang, and Yaohui Jin. 2017. A general-
ized recurrent neural architecture for text classification with multi-task learning.
arXiv preprint arXiv:1707.02892 (2017).

[27] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren,
and Rong Jin. 2018. Visual search at alibaba. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,
993–1001.

[28] Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820 (2015).


	Abstract
	1 Introduction
	2 Related Works
	3 Approaches
	3.1 Semantic Similarity
	3.2 Query Taxonomy
	3.3 Multi-Task Learning For Semantic Similarity

	4 Experiments
	4.1 Dataset and Metric
	4.2 Implementation Details
	4.3 Results Analysis
	4.4 Analysis on Online Evaluation

	5 Conclusion
	References

